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Abstract

Standard economic models view risk taking and time discounting as two independent dimen-
sions of decision makers’ behavior. However, mounting experimental evidence demonstrates
the existence of robust and systematic interaction effects. There are striking parallels in pat-
terns of risk taking and time discounting behavior, which suggests that there is a common un-
derlying force driving these interactions. Here we show that decision makers’ anticipation of
something going wrong in the future conjointly with their proneness to probability weighting
generates a unifying framework for explaining seven puzzling regularities: delay-dependent
risk tolerance, aversion to sequential resolution of uncertainty, preferences for resolution tim-
ing, hyperbolic discounting, subadditive discounting, the differential discounting of risky and
certain outcomes, and the order dependence of prospect valuation. Finally, we discuss the im-
plications of our framework for understanding real-world behavior, such as the coexistence of
underinsuring and overinsuring.
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1 Introduction

Whatever the nature of our decisions, hardly ever can we be sure about their outcomes. In
particular, the consequences of the most important decisions in our lives, such as what line of
business to enter or whom to get married to, do not materialize immediately but usually take
quite some time to unfold. In other words, these important decisions involve both risk and delay.
Driven by the evidence challenging Expected Utility Theory and Discounted Utility Theory, the
last half century has seen a surge of new models of decision making for the domains of risk
taking and time discounting (for reviews see Starmer (2000) and Frederick, Loewenstein, and
O’Donoghue (2002)). However, comparatively few endeavors have been undertaken to develop
an integrated view of risk and time (Prelec and Loewenstein, 1991; Quiggin and Horowitz, 1995;
Baucells and Heukamp, 2012; Abdellaoui, Kemel, Panin, and Vieider, 2017). Integration of these
two dimensions seems necessary because mounting experimental evidence points to significant
interaction effects between risk and delay that cannot be accommodated by standard approaches.
Our contribution to the literature is threefold: First and foremost, we identify a mechanism
driving the observed interactions of risk and delay and, thus, we provide a unifying account
of a host of seemingly unrelated experimental findings. Second, we show that commonly used
specifications of discount functions can be directly derived from our model of risk preferences.
Third, we discuss the implications of our framework for explaining puzzling phenomena in real-
world behavior, in particular, the coexistence of overinsuring and underinsuring.

Concerning the first objective, we identify seven regularities in risk taking and time discount-
ing behavior, organized along six dimensions, which are summarized in Table 1 in Section 2.
First, both observed risk tolerance and observed patience increase with time delay. The latter
effect is well known and has been extensively discussed under the headings “decreasing im-
patience” and “hyperbolic discounting”. Second, risk taking and time discounting behavior
are process dependent, i.e. sequential valuation over the course of time makes decision mak-
ers appear both less risk tolerant and less patient. The third dimension concerns the timing of
uncertainty resolution: many decision makers seem to have an intrinsic preference for resolu-
tion timing, in many cases for late rather than for early resolution of uncertainty. Fourth, the
presence of risk influences time discounting in an unexpected way: Certain outcomes seem to
be discounted more heavily than uncertain ones. Finally, people’s evaluations of future risky
payoffs depend on the order by which they are devalued for risk and for delay.

Most previous efforts to explain these puzzling experimental findings have primarily focused
on single aspects and not attempted to attribute the entirety of the observed phenomena to a
single driving force. Consequently, many diverse modeling approaches focus on one regularity
of observed behavior.1 In the following we show that all these seemingly unrelated effects can
be rationalized within a unifying framework that relies on two basic ideas. First, there is risk
attached to any future prospect as only immediate consequences can be totally certain. In par-

1We will discuss these approaches in detail in Section 2.
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ticular, something may go wrong before outcomes materialize. This “something may go wrong”
is generally an event unrelated to the prospect under consideration. For example, an unforeseen
contingency may arise, such as missing one’s transatlantic flight because the taxi driver was late.
Presumably, almost everyone can readily recall such an incident.

Second, if future prospects are perceived as inherently risky, people’s risk tolerance must
play a role in their valuations of future prospects. Therefore, the characteristics of (atemporal)
risk preferences are crucial not only for evaluating delayed risky prospects but also for delayed
(allegedly) certain ones. There is abundant evidence from the field and the laboratory that risk
taking behavior depends nonlinearly on the objective probabilities (for a recent review see Fehr-
Duda and Epper (2012)). Thus, models involving probability weighting, such as Rank Dependent
Utility Theory (RDU) (Quiggin, 1982) and Cumulative Prospect Theory (Tversky and Kahneman,
1992), have proven to be the most successful contenders of Expected Utility Theory (Wakker,
2010).

Our approach relies on a specific characteristic of probability weighting, proneness to Allais-
type common-ratio violations that is one of the most widely replicated experimental regularities in
the lab, found both in human and animal behavior: Probabilistically mixing two lotteries with an
inferior lottery frequently leads to preference reversals (Allais, 1953). Here we show that, in the
context of RDU, this feature of probability weighting, subproportionality, conjointly with inherent
future risk provides an integrative account of all the seven facts listed in Table 1 and and, thus,
also a rationale for many real-world phenomena that have been puzzling economists for a long
time.

The remainder of the paper is organized as follows: Section 2 discusses the interaction effects
identified by experimental work in detail and argues that none of the existing explanations have
attempted to accommodate all of them. Key assumptions are discussed in Section 3. Model
predictions and the corresponding experimental evidence are summarized in Section 4. Section
5 is dedicated to the derivation of discount functions from various specifications of probability
weighting functions. In Section 6 we discuss the implications of our findings for understand-
ing real-world behavior. Finally, Section 7 concludes. Proofs and complementary materials are
available in the appendix.

2 Seven Regularities in Risk Taking and Time Discounting

In the following we describe the experimental evidence in more detail and discuss previous
attempts at explaining these effects. Turning to the first phenomenon, delay dependence of risk
taking behavior, Table 1 indicates that risk tolerance appears not to be a stable feature of people’s
behavior. Rather, it is higher for payoffs materializing in the future than for payoffs materializing
in the present (Jones and Johnson, 1973; Shelley, 1994; Ahlbrecht and Weber, 1997; Sagristano,
Trope, and Liberman, 2002; Noussair and Wu, 2006; Coble and Lusk, 2010; Abdellaoui, Diecidue,
and Öncüler, 2011). This finding may have far-reaching implications for real-world behavior: If
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people are willing to tolerate high risks for prospects in the remote future, they may be reluctant
to support policies combating global warming or to buy insurance for natural hazards. Greater
risk tolerance for future payoffs poses serious problems for models of risk preferences that treat
risk tolerance as independent of the passage of time.

While several authors in finance have recognized the importance of accounting for delay-
dependent risk tolerance (Khapko, 2015; Eisenbach and Schmalz, 2016), attempts at identifying
its potential source are scarce. Baucells and Heukamp (2012) suggest an axiomatic model for the
domain of prospects with a single non-zero outcome P = (x, p; t), which captures interactions
of risk and delay by a psychological distance function. The psychological distance of a given
outcome x is assumed to increase with increasing delay t or decreasing probability p. Hence, in
their model, risk tolerance and patience are, by assumption, two sides of the same coin. They
posit a hard-wired trade-off between these two processes that, additionally, depends on outcome
magnitude: With increasing x, it takes a smaller decrease in probability to compensate for a given
increase in delay, thereby generating directly the delay dependence of risk tolerance.

Table 1: Seven Facts on Risk Taking and Time Discounting

Dimension Fact Observed risk tolerance Fact Observed patience
Delay dependence #1 increases with delay #2 increases with delay

Process dependence #3 higher for one-shot than #4 higher for one-shot than
for sequential valuation for sequential valuation

Timing dependence #5 intrinsic preference −
for resolution timing

Risk dependence − #6 higher for risky payoffs
than for certain ones

Order dependence #7 depends on order of −
delay and risk discounting

The table describes seven regularities in experimental findings on risk taking and discounting behavior with
respect to delay, process, timing, risk, and order effects.

It is well known by now that delay dependence is also manifest in discounting behavior,
which constitutes empirical Fact #2. Contrary to the prediction of standard Discounted Utility
Theory, many people behave more patiently with respect to more remote payoffs. They exhibit
decreasing impatience, implying that people’s discount rates are not constant but decline with the
length of delay (Strotz, 1955; Benzion, Rapoport, and Yagil, 1989; Loewenstein and Thaler, 1989;
Ainslie, 1991; Loewenstein and Prelec, 1992; Halevy, 2015). This regularity has triggered a large
literature on so-called hyperbolic time preferences (e.g. Laibson (1997); Frederick, Loewenstein, and
O’Donoghue (2002)). Hyperbolic preferences have been readily adopted by applied economics
in many fields such as saving behavior, procrastination, addiction, and retirement decisions. Hy-
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perbolic preference models provide, however, no explanation for the interaction effects observed
in the data. Several papers posit uncertainty to be the cause of hyperbolic discounting (Sozou,
1998; Dasgupta and Maskin, 2005; Bommier, 2006; Pennesi, 2017). Most closely related to our ap-
proach are Halevy (2008)’s and Walther (2010)’s models that derive hyperbolic discounting from
the combination of future uncertainty with nonlinear probability weighting. However, neither
author investigates the ramifications of their assumptions for risk taking behavior, no do they
address other interaction effects such as process and order dependence.

Another regularity in the data concerns Facts #3 and #4, the process dependence of risk
taking and time discounting behavior. It generally makes a difference whether future prospects
are assessed in one shot or sequentially over the course of time. In the domain of risk, people
tend to invest less conservatively, i.e. they take on more risk, when they are informed about
the outcomes of their decisions only infrequently (Gneezy and Potters, 1997; Thaler, Tversky,
Kahneman, and Schwartz, 1997; Bellemare, Krause, Kröger, and Zhang, 2005; Gneezy, Kapteyn,
and Potters, 2003; Haigh and List, 2005).2 This finding #3 is often interpreted as a manifestation
of myopic loss aversion, a term coined by Benartzi and Thaler (1995). In this context, myopia
is defined as narrow framing of decision situations which focuses on short-term consequences
rather than on long-term ones. Loss aversion, one of the key constituents of Prospect Theory,
describes people’s tendency to be more sensitive to losses than to gains.3 According to this
interpretation, if people evaluate their portfolios frequently, the probability of observing a loss is
much greater than if they do so infrequently. While loss aversion may contribute substantially
to people’s risk aversion it cannot account for the other findings on risk taking interacting with
discounting behavior.

Process dependence of risk taking was analyzed in the seminal work by Segal (1987a,b, 1990)
who deals with the evaluation of multi-stage prospects in the domain of RDU. Dillenberger
(2010) provides a necessary and sufficient condition for preferences for one-shot resolution of
uncertainty which holds generally in Gul (1991)’s model of disappointment aversion, but also
applies to the prospects studied here. Since all these papers deal with dynamic, but essentially
atemporal, situations, they are not concerned with time discounting or the other facts listed in
Table 1.

In the domain of time discounting, a similar phenomenon of process dependence has been
observed, listed as Fact #4 in Table 1: The discounting shown over a particular delay is greater
when the delay is divided into subintervals than when it is left undivided (Read, 2001; Read
and Roelofsma, 2003; Ebert and Prelec, 2007; Epper, Fehr-Duda, and Bruhin, 2009; Dohmen,

2In these experiments subjects evaluate sequences of identical two-outcome lotteries over several periods where the
range of potential outcomes increases with the number of periods. Unlike Gul (1991)’s disappointment aversion
(Palacios-Huerta, 1999; Artstein-Avidan and Dillenberger, 2015), our model does not deliver clear predictions for this
class of prospects.

3Recently, Köszegi and Rabin (2009) extended the concept of loss aversion to changes in beliefs about present and
future consumption. Their model also predicts decision makers to prefer information to be clumped together rather
than apart. The experimental data of Zimmermann (2015) finds little support for a systematic aversion to piecewise
information.
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Falk, Huffman, and Sunde, 2012, 2017). For example, discounting over a one-year period will be
greater when the year is divided into two subperiods of six months, and even more so when it
is divided into subperiods of, say, twelve months. This regularity is called subadditive discounting
and has been interpreted as a manifestation of (pure) time preferences.

The third row in Table 1 refers to Fact #5, the effect of the timing of uncertainty resolution
on risk taking behavior. Principally, knowing the outcome of one’s decision before the actual
payment date should be beneficial because one can integrate this information into one’s future
plans. Therefore, according to the standard model of risky choice, information is valuable if it
enables the decision maker to choose better strategies. If she does not or cannot condition her
actions on what she learns, she should be indifferent toward the timing of uncertainty resolution
and, thus, the information about realized outcomes should be worthless to her (Grant, Kajii,
and Polak, 1998).4 In contrast to this prediction, many people prefer uncertainty to resolve later
rather than sooner (Chew and Ho, 1994; Ahlbrecht and Weber, 1996; Arai, 1997; Lovallo and
Kahneman, 2000; Eliaz and Schotter, 2007; von Gaudecker, van Soest, and Wengström, 2011;
Ganguly and Tasoff, 2017). For instance, some people with a family history of a genetic disorder
may choose not to be informed whether they are affected by the disorder or not. Such an intrinsic
preference for resolution timing cannot be accommodated by the standard theory of risk taking
but is usually modeled by an additional preference parameter (Kreps and Porteus, 1978; Chew
and Epstein, 1989; Grant, Kajii, and Polak, 2000). Epstein and Kopylov (2007) and Epstein (2008)’
axiomatic papers analyze resolution timing as well. In their work, decision makers may become
more pessimistic as payoff time approaches, either due to changes in beliefs or anticipatory
feelings (see also Köszegi and Rabin (2009) and Caplin and Leahy (2001)).

Fact #6 pertains to a number of experimental studies that report systematic effects of risk on
discounting behavior: Discount rates for certain future payoffs tend to be higher than discount
rates for risky future payoffs (Stevenson, 1992; Ahlbrecht and Weber, 1997). Higher discount
rates for certain payoffs not only run counter to intuition but also contradict the standard model
of discounting according to which the same level of patience applies to risky and certain future
prospects. Risk-dependent discounting is also evident in diminishing immediacy: People’s prefer-
ence for present certain outcomes over delayed ones, immediacy, weakens drastically when the
outcomes become risky: Whereas many people prefer a smaller immediate reward to a larger de-
layed one, merely a minority continue to do so when both rewards are made probabilistic - they
behave as if they discounted the risky reward less heavily than the original certain one (Keren
and Roelofsma, 1995; Weber and Chapman, 2005; Baucells and Heukamp, 2010).

Furthermore, the valuation of future prospects appears to be order dependent, labeled Fact #7:
It makes a difference whether a risky future payoff is first devalued for risk and then for delay
or in the opposite order (Öncüler and Onay, 2009). When payoffs are discounted for risk first
they are assigned a less favorable value than in the reverse case. Moreover, the delay-first value

4Recently, Ely, Frankel, and Kamenica (2015) suggested a model of suspense and surprise that generates demand for
noninstrumental information because it may be entertaining per se.
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practically coincides with the value reported when both dimensions are accounted for in one
single operation.

The evidence discussed above demonstrates striking parallels between the susceptibility of
observed risk tolerance and observed patience to the length of delay as well as the evaluation
process: Deferring payoffs to the remote future apparently makes people both more risk tolerant
and more patient, and one-shot evaluation has favorable effects on risk taking as well as on time
discounting behavior. Since the effects appear not to be arbitrary aberrations from the predictions
of the existing models, one might ask whether there is a common mechanism governing not
only delay and process dependence, but also timing, risk, and order dependence. As we will
demonstrate below, the answer is in the affirmative.

3 The Model

In the following, we will first present the general setup of our approach. Second, we justify our
assumptions on the characteristics of the probability weighting function. Finally, we explain how
we integrate that “something may go wrong” into the model.

3.1 Risk Preferences

In this paper, we rely on Rank Dependent Utility Theory (RDU), a generalization of Expected
Utility Theory (EUT), that allows for nonlinear weighting of the probabilities. This additional
component has proven to be an exceptionally powerful force. First, overweighting of small prob-
abilities may counteract risk aversion embodied in the utility function. Thus, RDU can handle
the empirically observed probability dependence of risk tolerance (for an early example see Pre-
ston and Baratta (1948)). Probability weighting captures the intuition that “attention given to
an outcome depends not only on the probability of the outcome but also on the favorability of
the outcome in comparison to the other possible outcomes” (Diecidue and Wakker (2001), p.
284). Typically, decision makers focus on the worst and best possible outcomes and give much
less attention to intermediate outcomes that will generally be underweighted even when they
have the same objective probabilities as the extreme outcomes (Quiggin, 1982). Second, RDU
displays first-order risk aversion, i.e. preferences between prospects whose consequences are
sufficiently close to one another do not necessarily tend to risk neutrality. Thus, the experimental
evidence of pronounced risk aversion over small stakes favors RDU over many other approaches
that accommodate non-EUT behavior but display only second-order risk aversion (Sugden, 2004).
Additionally, RDU respects completeness, transitivity, continuity, and first-order stochastic domi-
nance, qualities that many economists are hesitant to dispense with. Finally, each prospect carries
a value that is independent of the other elements of the choice set.5

5RDU can handle correlation aversion as well: When decision makers evaluate risky consumption streams they often
have a preference for diversifying consumption across time, i.e. they prefer some good and some bad to all or nothing
(Kihlstrom and Mirman, 1974; Richard, 1975; Epstein and Tanny, 1980; Bommier, 2007; Denuit, Eeckhoudt, and Rey,
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According to RDU, a decision maker’s atemporal risk preferences over prospects that are
played out and paid out with negligible time delay can be represented by a rank-dependent
functional. Consider a prospect P = (x1, p1; ...; xm, pm) over (terminal) monetary outcomes x1 >

x2 > ... > xm ≥ 0 with xi ∈ X ⊂ R+
0 , pi ∈ [0, 1] and Σpi = 1. The function u denotes the

utility of monetary amounts x, and w denotes the subjective probability weight attached to p1,
the probability of the best outcome x1. As usual, both u and w are assumed to be monotonically
increasing, w to be twice differentiable and to satisfy w(0) = 0 and w(1) = 1. Unless stated
otherwise, w is assumed to be continuous on [0, 1]. Decision weights πi are defined as6

πi =


w(p1) for i = 1

w
(

∑i
k=1 pk

)
− w

(
∑i−1

k=1 pk

)
for 1 < i < m

1− w(1− pm) for i = m

(1)

Thus, the decision weight of xi is the probability weight attached to the probability of obtain-
ing something at least as good as xi minus the probability weight attached to the probability of
obtaining something strictly better than xi. Finally, the prospect’s value is represented by

V(P) =
m

∑
i=1

u(xi)πi . (2)

Rearranging terms in Equation 2 yields

V(P) = u(x1)w(p1) + u(x2)
(

w(p1 + p2)− w(p1)
)
+ ... + u(xm)

(
1− w(1− pm)

)
=
(

u(x1)− u(x2)
)

w(p1) + ... +
(

u(xm−1)− u(xm)
)

w(1− pm) + u(xm) .
(3)

This representation of V clarifies that xm is effectively a sure thing whereas obtaining something
better than xm is risky.

If the prospect is not played out and paid out in the present, but at some future time t > 0,
prospect value is affected by time discounting as well. We follow the standard approach and
model people’s willingness to postpone gratification by a constant rate of time preference η ≥ 0,
yielding a discount weight of ρ(t) = exp(−ηt).7 A prospect to be played out and paid out at
t > 0 is discounted for time in the following standard way:

V0(P) = V(P)ρ(t). (4)

Abundant empirical evidence has demonstrated that risk taking behavior depends nonlinearly
on probabilities (Starmer, 2000; Fehr-Duda and Epper, 2012). However, in order to explain the

2010). Epper and Fehr-Duda (2015) show that RDU implies correlation aversion if the decision maker is sufficiently
pessimistic, which is usually borne out by the data.

6Alternatively, decision weights πi can be expressed in terms of the cumulative distribution function F of the outcomes
xi: πi = w(1− F(xi+1))− w(1− F(xi)) for 1 ≤ i ≤ m, where F(xm+1) := 0.

7This assumption is not crucial for our results - neither a zero rate of time preference, i.e. ρ = 1, nor genuinely
hyperbolic time preferences affect our conclusions.
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observed interaction effects, we need to put more structure on the type of nonlinearity.

3.2 Probability Weighting

Inspired by one of Allais (1953)’s famous examples, Kahneman and Tversky (1979) presented
subjects with the following experiment: Subjects had to choose between 3000 dollars for sure and
4000 dollars materializing with a probability of 80%. Most people chose the sure option of 3000

dollars. When confronted with the choice between a 25%-chance of receiving 3000 dollars and a
20%-chance of receiving 4000 dollars, the majority opted for the 4000-dollar alternative. Scaling
down the probabilities of 100% and 80% by a common factor, in this example 1/4, induced many
people to reverse their preferences. Obviously, such Allais-type behavior is inconsistent with
EUT.

An intuitive explanation for common-ratio violations is fear of disappointment: Losing a
gamble over very likely 4000 dollars is anticipated to be much more disappointing than losing a
gamble over 4000 dollars with only a small chance of materializing. On the other hand, winning
4000 dollars in the unlikely situation of a 20%-chance may trigger feelings of elation. Thus, when
people are prone to disappointment and/or elation, their behavior appears to depend nonlinearly
on the probabilities (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991; Wu, 1999; Rottenstreich and
Hsee, 2001; Walther, 2003).8

In RDU, common-ratio violations are mapped by subproportionality of probability weights.
Formally, subproportionality holds if 1 ≥ p > q > 0 and 0 < λ < 1 imply the inequality

w(p)
w(q)

>
w(λp)
w(λq)

(5)

(Prelec, 1998). Kahneman and Tversky (1979) note that this property imposes considerable con-
straints on the shape of w: it holds if and only if ln w is a convex function of ln p. In other words,(

d ln w
d ln p

)′
> 0, or the elasticity of w, εw(p) = d ln w

d ln p , is increasing in p. Define ω(ln p) := ln w(p).
Then a subproportional w is equivalent to ω being a convex function of ln p. Obviously, convexity
can manifest itself in many different degrees - constant, increasing or decreasing absolute con-
vexity, constant, increasing or decreasing relative convexity, a mix or even none of these. We will
return to this issue in Section 5 when we discuss the implications of specific types of probability
weighting functions for time discounting.

8Perceptual and procedural factors are potential drivers of probability distortions as well. The fathers of prospect
theory, Kahneman and Tversky, attributed probability dependence to the psychophysics of perception according to
which the sensitivity toward changes in probabilities diminishes with the distance to the natural reference points
of certainty and impossibility (Tversky and Kahneman, 1992). Several other contributions focused on procedural
aspects of choice (Rubinstein, 1988; Loomes, 2010). In these models, a prospect’s value depends not only on the
prospect’s own characteristics but also on other prospects in the choice set. A recent contribution in this category is
Bordalo, Gennaioli, and Shleifer (2012) who posit that probabilities are distorted in favor of payoffs that are perceived
as particularly salient. Whatever its cause, we interpret probability weighting in rank-dependent models as a kind
of reduced form generated by some psychological mechanism or by the specific way risk is perceived by the brain
(Tymula and Glimcher, 2017).
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Subproportionality implies the certainty effect, which constitutes the special case of p = 1.
Therefore,

w(λq) > w(λ)w(q) (6)

is satisfied for any λ, q such that 0 < λ, q < 1.9 There is also ample evidence for general
common-ratio violations that do not involve a sure outcome (Kahneman and Tversky, 1979;
MacCrimmon and Larsson, 1979; Loomes and Sugden, 1987; Nebout and Dubois, 2014; Chark,
Chew, and Zhong, 2016). This feature of subproportional probability weights has another crucial
implication: It produces an aversion to compounding of probability weights (Segal, 1987a,b,
1990). We will use this insight when we discuss aspects of uncertainty resolution.

On average, estimated probability weighting curves overweight small probabilities and un-
derweight large probabilities of the best outcome, which is also a common finding of individual
estimates (Gonzalez and Wu, 1999; Bruhin, Fehr-Duda, and Epper, 2010). This feature is labeled
regressiveness:10

A probability weighting function w(p) is regressive if there exists a probability p∗ ∈ (0, 1),
such that

w(p) > p for p < p∗

w(p) = p∗ for p = p∗

w(p) < p for p > p∗
. (7)

In the context of rank-dependent models, regressiveness of the probability weighting function
generates overweighting of a prospect’s tail outcomes and underweighting of its intermediate
outcomes, which nicely captures the notion that more extreme outcomes within a given prospect
are more salient. While the driver of our results is subproportionality, regressiveness is an inde-
pendent additional characteristic that captures key features of real-world behavior, discussed in
Section 6.

Many functional specifications proposed in the literature exhibit subproportionality over
some probability range under appropriate parameter restrictions (see Appendix B.2). Perhaps
the most prominent representative of a globally subproportional function is Prelec (1998)’s flex-
ible two-parameter specification, designed to map common-ratio violations. Throughout the
paper, we will use this “standard” functional specification, which is also regressive for typical
parameter estimates, to illustrate our results.

9The numerical example above is a manifestation of the certainty effect, as the smaller outcome in the first decision
situation, 3000 dollars, materializes with certainty.

10Aside from regressive shapes, convex weighting curves which globally underweight probabilities comprise another
common category of individuals’ probability weighting functions (see e.g. van de Kuilen and Wakker (2011)), which
may be subproportional as well. Empirical estimates are often based on inverse-S shaped functional forms, that
are concave over small probabilities and convex over large probabilities. For our purposes, the less demanding
assumption of regressiveness is sufficient.
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3.3 Future Uncertainty

The final building block of our model concerns the integration of “something may go wrong”
due to unexpected contingencies. This (uninsurable) risk inherent in the future, survival risk for
short, turns allegedly guaranteed payoffs into risky ones and introduces an additional layer of
risk over and above the objective probability distributions of risky payoffs (henceforth referred to
as prospect risk). Consequently, there are two distinct types of risk, time-independent prospect risk
and time-dependent survival risk. Thus, the subjective perception of future uncertainty changes
the nature of the objective prospect. Formally, let 0 < s < 1 denote the constant per-period
probability of prospect survival, i.e. the probability that the decision maker will actually obtain
the promised rewards by the end of the period. Essentially, there are two ways of accounting for
this subjective probability s. First, for a delay t, the probability st is transformed according to the
decision maker’s probability weighting function, and the resulting w(st) affects the prospect as a
whole, i.e. all outcomes equally. In this case, prospect value amounts to

V0(P) = V(P)w(st)ρ(t). (8)

Such an approach only affects measured discount rates but cannot handle the observed in-
teraction effects. Thus, we work with the second solution, namely that s impacts the probability
distribution of the prospect. Then the probability that the allegedly guaranteed payment xm ma-
terializes at the end of period t is perceived to be st, and the probabilities of obtaining something
better than xm are scaled down by st. Therefore, the objective m-outcome prospect is subjec-
tively perceived as an (m+1)-outcome prospect P̃ =

(
x1, p1st; x2, p2st; ...; xm, pmst; x, 1− st

)
, where

x captures that “something may go wrong”.
Setting u(x) = 0, the subjective present value of the prospect amounts to

[V(P̃)]0 =

((
u(x1)− u(x2)

)
w(p1st) + ...

... +
(

u(xm−1)− u(xm)
)

w
(
(1− pm)st

)
+ u(xm)w(st)

)
ρ(t)

=

((
u(x1)− u(x2)

)
w(p1st)

w(st)
+ ...

... +
(

u(xm−1)− u(xm)
)w
(
(1−pm)st

)
w(st)

+ u(xm)

)
w(st)ρ(t) .

(9)

From the point of view of an outsider, the subjective probability distribution of prospect P
is not observable. Consequently, she infers probability weights w̃ and discount weights ρ̃ from
observed behavior on the presumption that the decision maker evaluates the objectively given
prospect P, and estimates preference parameters according to RDU in the standard way:

[V(P̃)]0 =

((
u(x1)− u(x2)

)
w̃(p1) + ... +

(
u(xm−1)− u(xm)

)
w̃(1− pm) + u(xm)

)
ρ̃(t) , (10)
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interpreting w̃ as true probability weights and ρ̃ as true discount weights, while in fact the
weights are distorted by survival risk. By comparing Equation 9 with Equation 10 we can see
that the relationships between true and observed weights are given by

w̃(p) =
w(pst)

w(st)
, (11)

ρ̃(t) = w(st)ρ(t). (12)

These equations define the central relationships between observed and true underlying prob-
ability and discount weights. Concerning observed discount weights, a representation equivalent
to Equation 12 was derived by Halevy (2008) in the context of Yaari (1987)’s dual theory. Note
that Equation 12 also holds for observed discount weights based on the separable model of Equa-
tion 8. Thus, if discounting of dated sure outcomes is the sole focus of research, it does not matter
in which way the probability of prospect survival is integrated into the model. Therefore, it takes
at least two non-zero outcomes to be able to separate risk taking from time discounting. As will
become clear below, the choice of integration method is crucial for explaining delay dependent
risk tolerance and preferences for resolution timing.

Since w̃(p) 6= w(p) and ρ̃(t) 6= ρ(t) for subproportional preferences, survival risk drives a
wedge between true underlying preferences and observed risk taking and discounting behavior.
Thus, future risk conjointly with proneness to Allais-type behavior provides the missing link
between behavior under risk and over time. A summary of the model variables is provided in
Table 2.

Table 2: Model Variables
Variable Description Characteristics

Pr
os

pe
ct

s x monetary payoff x ≥ 0
p probability of x 0 ≤ p ≤ 1
s probability of prospect survival 0 < s < 1
1− s survival risk
t length of time delay t ≥ 0

Pr
ef

er
en

ce
s u(x) utility function u(0) = 0, u′ > 0

w(p) true probability weight w(0) = 0, w(1) = 1, w′ > 0
η rate of pure time preference η ≥ 0, constant
ρ(t) discount weight ρ(t) = exp(−ηt)

Be
ha

vi
or w̃(p) observed probability weight w̃(p) = w(pst)/w(st)

ρ̃(t) observed discount weight ρ̃(t) = w(st)ρ(t)
η̃(t) observed discount rate η̃(t) = −ρ̃′(t)/ρ̃(t)
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4 Unifying the Experimental Evidence

In the following, we discuss the implications of our approach for the experimental phenomena
listed in Table 1 and demonstrate that all the Facts #1 through #7 can be explained within our
framework. An important feature of future prospects concerns the timing of the resolution of
uncertainty. We distinguish three different cases: First, the prospect is played out and paid out
at the same time, i.e. both prospect risk and survival risk are resolved simultaneously in one
shot at the payment date t. This situation refers to the issue of delay dependence. Second, both
prospect and survival risk are resolved sequentially over the course of time, which is the topic of
process dependence. Finally, prospect risk is resolved before the payment date, setting the focus
on resolution timing. The proofs of the respective propositions are presented in Appendix A.

4.1 Facts #1 and #2: Delay Dependence

In the following, prospect risk and survival risk are resolved simultaneously in one shot at time
t. Starting with the analysis of risk tolerance, we see from Equation 11 that observed probability
weights w̃(p) deviate systematically from the underlying atemporal ones w(p).

PROPOSITION 1:
Given subproportionality of w, t > 0 and s < 1:

1. The function w̃ is a proper probability weighting function, i.e. monotonically increasing in
p with w̃(0) = 0, w̃(1) = 1.

2. w̃ is subproportional.

3. w̃ is more elevated than w: w̃(p) > w(p). Elevation increases with

• time delay t,
• survival risk 1− s, and
• degree of subproportionality.

4. w̃ is less elastic than w.

5. The decision weight of the (objectively) worst possible outcome, xm, decreases with delay t.

[Proof in Appendix A]

That w̃ is more elevated than w constitutes one of the central implications of our model.11 It
11Clearly, subproportionality is sufficient to produce all the results of Propositions 1 (as well as of the following

propositions). But is subproportionality, aside from survival risk 1− s > 0, also necessary? For statements that refer
to the present it is necessary that preferences exhibit the certainty effect, i.e. that w(p)w(q) < w(pq) for any p, q < 1,
which is implied by but does not imply subproportionality. Therefore, the result that risk tolerance is higher for
future prospects than for present ones does not depend on subproportionality, only on the certainty effect. However,
for statements pertaining to relationships between behaviors at different times in the future, for instance, that risk
tolerance is increasing in t or that discount weights decline hyperbolically, subproportionality is necessary (for a
proof with respect to observed discount weights see Saito (2011)). For example, preferences that are not generally
subproportional but exhibit the certainty effect, such as the discontinuous weighting function w(p) = γp for p < 1
and w(1) = 1 defined for 0 < γ < 1, will show an increase in risk tolerance relative to the present as well as
quasi-hyperbolic discounting.
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follows directly from subproportionality:

w̃(p) =
w(pst)

w(st)
>

w(p)
w(1)

= w(p). (13)

Since the probability weighting function maps the decision weight of the best possible outcome,

an increase in the elevation of the probability weighting curve gets directly translated into higher

revealed risk tolerance.12 Thus, the presence of survival risk makes people appear more risk

tolerant for delayed prospects than for present ones. Intuitively, the event of something going

wrong takes on the role of the perceived sure outcome, which makes xm an intermediate one

and, thus, less salient to the decision maker.

The delay dependence of observed probability weights w̃ is illustrated in Figure 1. The top

row of Figure 1 characterizes preferences in the atemporal case. Panel 1a shows a typical spec-

imen of a regressive probability weighting function w for delay t = 0, underweighting large

probabilities and overweighting small probabilities of the best outcome. For illustrative pur-

poses, Panel 1b on the right side depicts the corresponding decision weights πi for a prospect

involving 21 equiprobable outcome levels, with outcome rank 1 denoting the best outcome and

outcome rank 21 the worst one. Their objective probabilities are represented on the horizontal

gray line. As one can see, a regressive w generates strong overweighting of the extreme outcomes

and underweighting of the intermediate ones relative to the objective probability distribution.

The middle row of Figure 1 demonstrates the predictions for one-shot resolution of uncer-

tainty, i.e. when prospects are played out and paid out simultaneously in the future, the focus

of Proposition 1. Future uncertainty is captured by the parameter s = 0.8, i.e. the per-period

prospect survival rate is perceived to be 80%. When payoffs are delayed by two periods, t = 2,

and uncertainty resolves in one shot (n = 1), observed probability weights w̃ shift upwards, as

shown in Panel 2a. This shift rotates the decision weights π̃i counterclockwise, as depicted in

Panel 2b. Now the worst outcomes are underweighted while the best ones are more strongly

overweighted. For longer time delays these effects become more pronounced and may lead to

a substantial underweighting of the worst outcomes. Thus, underweighting of adverse extreme

events becomes more likely with longer time horizons. Note that, due to Proposition 1.5, the

weight of the (objectively) worst outcome xm will decline with t, whatever the shape of the sub-

12In the domain of simple prospects (x, p), Baucells and Heukamp (2012) derive a time-dependent probability weight-
ing function w̃(p) = w (p exp(−rxt)), which obviously decreases with t. A crucial element of their model is rx, the
probability discount rate that is assumed to decrease with outcome magnitude. This assumption drives their result
that risk premia decline with time delay.
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proportional function.

That, in fact, probability weights react to delay was shown experimentally by Abdellaoui,

Diecidue, and Öncüler (2011). They conducted a carefully designed experiment eliciting proba-

bility weights for both present and delayed prospects, i.e. in our notation w(p) and w̃(p). Their

results provide support for our approach as w̃ is significantly more elevated than w in the ag-

gregate as well as for the majority of the individuals.13 In their study on ambiguity, Abdellaoui,

Baillon, Placido, and Wakker (2011) show estimates of a probability weighting curve derived

from choices over prospects delayed by three months. This curve is also much more elevated

than typical atemporal estimates are (see for example Bruhin, Fehr-Duda, and Epper (2010)).

Allegedly guaranteed future payoffs constitute a special case of risky ones. As evident in

Equation 12, the observed discount weight for time equals ρ̃(t) = w(st)ρ(t). Clearly, if w is linear,

ρ̃ declines exponentially irrespective of the magnitude of s. To see this, note that ρ(t) = exp(−ηt)

and st = exp
(
−
(
− ln(s)

)
t
)

, implying a discount rate η̃ = η − ln(s) > η for 0 < s < 1. In this

case, uncertainty per se increases the absolute level of revealed impatience, but cannot account

for declining discount rates. Thus, an expected-utility maximizer will exhibit a constant discount

rate that is higher than her underlying rate of pure time preference, but her behavior will not

show any of the interaction effects addressed in this paper. If, however, w is subproportional

and 0 < s < 1, the component w(st) distorts the discount weight in a predictable way, set out in

Proposition 2. Prediction 2.3 is essentially equivalent to Theorem 1 in Halevy (2008).

PROPOSITION 2

Given subproportionality of w:

1. ρ̃(t) is a proper discount function for 0 < s ≤ 1, i.e. decreasing in t, converging to zero
with t→ ∞, and ρ̃(0) = 1.

2. Observed discount rates η̃(t) are higher than the rate of pure time preference η for s < 1.

3. Observed discount rates decline with the length of delay for s < 1.

4. Greater survival risk generates a greater departure from constant discounting.

5. Comparatively more subproportional probability weighting generates a comparatively greater
departure from constant discounting.

[Proof in Appendix A]

13In their experiment, prospect risk is resolved at the conclusion of the experiment - i.e. there is a distinct, albeit small,
time delay between decision making and the resolution of prospect risk.
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Figure 1: Delay Dependence and Process Dependence
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For purposes of illustration, the curves are derived from Prelec (1998)’s two-parameter probability weighting function
w(p) = exp

(
− β(− ln(p))α

)
, assuming a degree of subproportionality α = 0.5 and convexity β = 1. Survival risk s is

set at 0.8 per period. n denotes the number of (equally spaced) stages in the case of sequential evaluation. Top row
(1. atemporal): The graphs show atemporal probability weights w (Panel 1a) and their associated decision weights π
(Panel 1b) for a prospect involving 21 equiprobable outcomes, with outcome rank 1 denoting the best outcome. Their
objective probabilities are represented on the horizontal gray line. Middle row (2. one-shot): Panel 2a and 2b show
w̃ and π̃ for a delay of two periods, t = 2, when uncertainty resolves in one shot n = 1. Bottom row (3. sequential):
Panel 3a and 3b show w̃ and π̃, respectively, for a delay of two periods when uncertainty resolves sequentially in

n = 24 equally spaced stages, w̃(p) =
(

w
(
(pst)1/n

)
w
(
(st)1/n

) )n

.
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Figure 2: Hyperbolic and Subadditive Discount Rates η̃
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Panel a shows discount rates as they move with the length of delay t for different levels of survival risk 1− s, where
s denotes the probability of prospect survival. When there is no survival risk, s = 1, the observed discount rate
is constant and equals the rate of pure time preference (line labeled by s = 1.0). The higher is the level of risk,
the lower s, the more pronounced the hyperbolic decline of discount rates over time is for decision makers with
subproportional probability weights (curves labeled by s = 0.5 and s = 0.8). η̃(t) := − ∂ρ̃

∂t /ρ̃. w is specified as Prelec’s
probability weighting function (in this example α = 0.5 and β = 1). Panel b depicts discount rates for a constant
level of survival probability s = 0.8 and varying number of resolution stages n. The more often a particular delay is
divided into subintervals (of equal length in this graph), the higher is the discount rate, a manifestation of subadditive
discounting.
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In our model, decreasing impatience is not a manifestation of pure time preferences but a

consequence of survival risk changing the subjective nature of future prospects. At the level

of observed behavior, decreasing impatience is the mirror image of increasing risk tolerance if

survival risk is integrated into the prospect’s probability distribution. In fact, the degree of prone-

ness to common-ratio violations, the degree of subproportionality, can be interpreted as degree

of time insensitivity. Intuitively, when the future is inherently risky, promised rewards do not

materialize with certainty and, therefore, they incorporate the potential of disappointment. Be-

cause more immediate payoffs are more likely to actually materialize than more remote payoffs,

this potential is perceived to decline with the passage of time and becomes almost negligible

for payoffs far out in the future. Technically, since shifting a payoff into the future amounts to

scaling down its probability, a decision maker with subproportional preferences becomes pro-

gressively insensitive to a given timing difference.14 This insight provides a testbed for analyzing

risk taking and time discounting behavior at the individual level because the characteristics of

the probability weighting function feed directly into the characteristics of the discount function.

Interestingly, the most widely used specifications of discount functions that can accommo-

date decreasing impatience, the hyperbolic discount function, the Constant Relative Decreasing

Impatience (CRDI) and the Constant Absolute Decreasing Impatience (CADI) specifications can

be directly derived from specific varieties of subproportional probability weighting functions, as

we show in Section 5.

The effects of survival risk on revealed discount rates are presented in Panel a of Figure 2,

which depicts a typical decision maker’s observed discount rates η̃ as they react to varying levels

of s. The horizontal line represents the case of no survival risk, s = 1. In this case, the observed

discount rate η̃ is constant and coincides with the true underlying rate of time preference η.

When survival risk comes into play, however, discount rates decline in a hyperbolic fashion, and

depart from constant discounting increasingly strongly with rising uncertainty, as shown by the

curves for s = 0.8 and s = 0.5, respectively.

4.2 Facts #3 and #4: Process Dependence

So far, we have considered the case of uncertainty resolving in one shot. In this Section we deal

with uncertainty resolving sequentially over the course of time. Specifically, we examine the

14Saito (2015) shows that in the continuous case for ρ = 1 the common ratio effect and hyperbolic discounting are
equivalent. ρ = 1 indicates that the only source of time preference is future uncertainty.
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case when both prospect risk and survival risk are resolved simultaneously over the course of

time. If uncertainty resolves sequentially, future prospects turn into multi-stage ones. In this

case, the question arises in which way multi-stage prospects are transformed into single-stage

ones, the domain over which risk preferences are defined. In principle, there are two different

transformation methods, reduction by probability calculus and folding back. Reduction involves

the calculation of the probabilities of the final outcomes and the transformation of these values by

the appropriate weighting function. Folding back, on the other hand, weights the probabilities at

each stage and then compounds these weights. It is well known that a naive RDU decision maker

will be dynamically inconsistent if she cares only about the probabilities of the final outcomes

- as the payment date draws near, she will re-evaluate the prospect and, because of the delay

dependence of risk tolerance, become comparatively more risk averse.

Folding back, on the other hand, ensures dynamic consistency but has substantial conse-

quences for revealed risk taking behavior. As already noted, the certainty effect embodied

in subproportional preferences generates an aversion to compounded probability weights: For

1 > p = q1q2 the compounding of the respective weights always leads to lower prospect values,

i.e. w(p) > w(q1)w(q2) holds whatever are the values of 0 < q1 < 1 and 0 < q2 < 1. But can we

say more than that? What happens when the number of stages increases from 2 to n > 2 and in

which way does the specific composition of the probability p affect prospect value?

In the following, we set ρ = 1 for ease of exposition. Let us first consider a two-outcome

prospect P = (x1, p; x2) resolving in two stages, n = 2, denoted by corresponding subscripts to

w̃ and ρ̃, such that uncertainty is partially resolved at some future time t1 and fully resolved at

the payment date t > t1, as depicted in Figure 3. Applying folding back, the resulting two-stage

prospect is evaluated as

[V2(P̃)]0 =
(

u(x1)− u(x2)
)

w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
+ u(x2)w

(
st1
)

w
(
st−t1

)
=

((
u(x1)− u(x2)

)w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
w(st1)w(st−t1)

+ u(x2)

)
w
(
st1
)

w
(
st−t1

)
=

((
u(x1)− u(x2)

)
w̃2(p) + u(x2)

)
ρ̃2(t) ,

(14)

which yields the relationships

w̃2(p) =
w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
w (st1)w (st−t1) ,

(15)
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Figure 3: Sequential Resolution of Uncertainty

0

1− s t1

01− st−t1

x2st−t1(
1− p

t1
t

)
st1

0

1− s t−t1

x2

(
1− p

t−t1
t

)
st−t1

x1

p
t−t1

t st−
t1

p
t 1

t st 1

0 t1 t

ρ̃2(t) = w
(
st1
)

w
(
st−t1

)
, (16)

as ρ̃2(t) is interpreted as the discount weight attached to the allegedly certain outcome x2.

Subproportionality ensures that

w̃2(p) =
w
(

p
t1
t st1

)
w
(

p
t−t1

t st−t1

)
w (st1)w (st−t1)

<
w(pst)

w(st)
= w̃(p) , (17)

one of the main results generalized in Proposition 4. Now suppose that the interval [0, t] is

partitioned into n subintervals with lengths τi, i ∈ {1, ..., n}, such that ∑n
i=1 τi = t. In this case,

it is straightforward to show that, for any number of outcomes m ≥ 1, the observed probability

weights are given by

w̃n(p, t) =
∏n

i=1 w
(

p
τi
t sτi

)
∏n

i=1 w (sτi)
=

n

∏
i=1

w̃
(

p
τi
t , τi

)
. (18)

The following Proposition 3 summarizes our insights on subproportional probability weights

w themselves, which drive overall prospect value, without teasing apart the separate effects

on observed risk tolerance and discounting behavior. We extend these results to observed risk
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tolerance w̃ in Proposition 4. Since discount weights ρ̃(t) = w(st) are simple probability weights

themselves, Proposition 3 also speaks directly to observed discounting behavior.

PROPOSITION 3:

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving simul-

taneously, and folding back:

1. Probability weights w for one-shot resolution of uncertainty are greater than compounded

probability weights for sequential resolution for any number of resolution stages n > 1.

2. For a given number of resolution stages n, probability weights are smallest for evenly

spaced partitions τi =
t
n = τ.

3. For evenly spaced partitions, probability weights decline with the number of resolution

stages n.

[Proof in Appendix A]

Proposition 3.1 generalizes the implications of the certainty effect to any number of stages.

Thus, total prospect value is always smaller for sequential resolution of uncertainty. In other

words, in our setting a decision maker exhibits a preference for one-shot resolution of uncertainty

(Fact #3) as well as subadditive discounting (Fact #4). However, a preference for one-shot resolution

of uncertainty does not hold generally under subproportionality in RDU but only applies to the

class of prospects studied here, i.e. prospects that are devalued by survival risk without effects

on the rank order of the outcomes. For details see our discussion in Appendix B.1.

We also find that a prospect’s minimum value is attained when compounding occurs over

equiprobable stages. This finding constitutes a generalization of Segal (1990)’s result for atem-

poral two-stage lotteries. Partitions of equal length correspond to the least degenerate multi-

stage prospect and can be interpreted as the comparatively most ambiguous situation, which is

strongly disliked by people with subproportional preferences.15 Finally, we find a clear ranking

of prospect values in the case of partitions of equal length, namely, increasing the number of

equiprobable stages depresses prospect value.

15Because of this characteristic, Segal (1987b) proposes to model ambiguity aversion by subproportional risk prefer-
ences over two-stage lotteries. A recent paper by Dillenberger and Segal (2014) shows that such an approach has
another attractive implication: It is able to solve Machina (2009, 2014)’s paradoxes which involve a number of situa-
tions where standard models of ambiguity aversion are unable to capture plausible features of ambiguity attitudes
(Baillon, l’Haridon, and Placido, 2011).
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Proposition 3 sets out the implications of subproportionality on overall prospect value. Thus,

in the case of time discounting, we predict both decreasing impatience and subadditivity as well

as an aversion to discounting over evenly spaced subintervals. Panel b of Figure 2 shows the

effect of varying the number of compounding stages on observed discount rates. As predicted,

discount rates increase in the number of stages. In our model, subadditive discounting is the

result of decision makers’ aversion to compounded probability weights and not a feature of pure

time preferences themselves, as posited in the literature.

Since observed risk tolerance depends on the interaction of probability weights and discount

weights (subproportional probability weights themselves), it is a priori not clear whether all

these characteristics carry over to observed risk tolerance. As it turns out, with one exception,

the characteristics of subproportional probability weights shape observed delay-dependent risk

tolerance accordingly:

PROPOSITION 4:

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving simul-

taneously, and folding back:

1. Risk tolerance is higher for one-shot resolution of uncertainty than for sequential resolution
of uncertainty, w̃(p, t) > w̃n(p, t), for any n > 1.

2. For a given number of resolution stages n, risk tolerance is lowest for evenly spaced parti-
tions if the elasticity of w is concave.

3. For evenly spaced partitions, risk tolerance declines with the number of resolution stages,
w̃n(p, t) < w̃n−1(p, t).

[Proof in Appendix A]

As we have shown in Proposition 1.2, w̃ is subproportional itself and, therefore, Propositions

4.1 does not come as a big surprise. If prospect risk and survival risk are resolved simultaneously

in one shot, not only overall prospect value but also the separate components w̃ and q̃ attain their

maximum values. If uncertainty resolves sequentially, both types of weights are smaller than

in the one-shot case. For evenly spaced partitions, this effect gets more pronounced the finer

is the partition of delay t into subintervals. Therefore, anticipating to watch uncertainty resolve

over time considerably dampens the effect of long time horizons on observed risk tolerance

because, intuitively, the decision maker is frequently exposed to the possibility of a disappointing

outcome.
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Contrary to the probability weights w themselves, subproportionality alone does not guar-

antee that, for a given number of resolution stages, risk tolerance w̃ attains its minimum at

evenly spaced partitions. The additional requirement of concavity of the elasticity of w implies

that the elasticity increases more quickly for small probabilities than for large ones. While such

a characteristic has not attracted any attention in the literature, there is a nice specimen of a

subproportional regressive probability weighting function with concave elasticity, promoted for

example by Chateauneuf, Eichberger, and Grant (2007), the so-called neo-additive specification

w(p) =


0 for p = 0

β + αp for 0 < p < 1

1 for p = 1

. (19)

with 0 < β < 1, 0 < α ≤ 1 − β. If β = 0, w is not subproportional, for α + β = 1 it is

not regressive. It is linear over the inner probability interval and, thus, provides an excellent

approximation for the commonly used nonlinear functional forms. Since we rarely, if at all, have

experimental evidence for behavior over probabilities that are extremely small or extremely large,

such an approximation seems justified.

The bottom row of Figure 1 demonstrates the effect of sequential valuation on observed

probability weights w̃ and their corresponding decision weights for a delay of t = 2. If a prospect

is evaluated in 24 evenly spaced time intervals, n = 24, the probability weighting curve takes

on a convex form, which implies strong risk aversion. The associated decision weights for our

reference prospect involving 21 equiprobable outcomes are depicted in Panel 3b. The decision

weight curve now rotates clockwise: The worst outcomes are strongly overweighted while the

best outcomes are considerably underweighted. Sequential valuation, therefore, has a dramatic

effect on the overweighting of adverse tail events. This effect may be called myopic probability

weighting in the style of myopic loss aversion (Benartzi and Thaler, 1995) which has similar

consequences on risk taking behavior when short-sighted investors are frequently exposed to the

possibility of facing losses.

4.3 Fact #5: Timing Dependence of Risk Tolerance

The previous theoretical result rests on the assumption that prospect risk is resolved simulta-

neously with survival risk. If the prospect is played out before payment takes place, prospect

risk is segregated from survival risk. As long as prospect risk is unresolved, both types of risks
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are effective, after resolution of prospect risk only survival risk remains to be resolved, defining

two distinct stages of uncertainty resolution. As Segal (1990) argues, folding back is particularly

plausible when the stages are clearly distinct.

Figure 4 depicts three different cases: First, the prospect is played out immediately after

prospect valuation. In this case, the decision maker will know the outcome right after her de-

cision and faces only survival risk. This situation corresponds to the left panel, labeled “im-

mediate”. In fact, this case corresponds to the representation in Equation 8 where survival risk

affects prospect value as a whole and not its probability distribution. The right panel shows the

other extreme, labeled “late” when the prospect is played out and paid out at the same time t,

handled by Propositions 1 and 2. The middle panel is dedicated to the intermediate case when

prospect risk is resolved at some time t1 in the future before the final payment date t, the focus

of Proposition 4.

The corresponding formulas for the respective probability and discount weights are given by

w̃(p; t, t1) =
w(pst1)

w(st1)
, (20)

ρ̃(t; t1) = w(st1)w(st−t1)ρ(t). (21)

Figure 4: Resolution Timing of Prospect Risk

4 Resolution of Prospect Uncertainty
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The figure shows three different timings of the resolution of prospect risk. Uncertainty gets resolved either immedi-
ately at t = 0 (left tree), at t1 between the present and the time of payment (middle tree), or at the time of payment at
t > 0 (right tree). Without loss of generality, we set x = 0 here.

PROPOSITION 5

23



Given subproportionality of w, s < 1, t1 < t, and folding back:

1. Prospects with prospect risk resolving at the time of payment t are valued more highly than
prospects resolving at t1 < t.

2. The wedge between late and immediate resolution, w(pst)
w(p)w(st)

, declines with probability p.

3. The wedge between late and immediate resolution increases with time horizon t and sur-
vival risk 1− s.

[Proof in Appendix A]

While it is always the case that late resolution at t is preferred to any earlier resolution time

t1, we cannot ascertain that intermediate resolution at t1 > 0 is generally better than immediate

resolution at t1 = 0. Due to the ambiguity effect resulting from time partitions of equal length,

discussed above, the discount weight w(st1)w(st−t1) decreases with t1 for t1 ∈
[
0, t

2

)
and increases

for t1 ∈
( t

2 , t
]
, while risk tolerance increases throughout on [0, t1]. Therefore, total prospect value

increases with t1 as long as both factors increase, which is always the case for t1 > t
2 . Depending

on the relative magnitudes of the effects before t
2 , prospect value may decrease after t1 = 0 for

some time. Obviously, this depends on the prospect under consideration.

Examining a simple prospect (x, p) with value u(x)w(pst1)w(st−t1) shows that the minimum

of the utility weight w(pst1)w(st−t1) is attained at t∗1 = t
2 −

ln(p)
2 ln(s) , which lies below t

2 . If t∗1 > 0,

then immediate resolution may be preferred to some later times before t
2 , otherwise prospect

value increases monotonically in resolution time. The latter is the case for p ≤ st. For a given

prospect, this condition is more likely to be met for low survival risk and/or short time horizons.

In our view, that subproportional risk preferences induce a preference for late resolution of

prospect risk constitutes the third important result besides delay- and process-dependence. If

decision makers perceive the future as inherently risky and apply folding back, this property fol-

lows endogenously from subproportionality and does not constitute an independent preference

as in the theoretical literature on resolution timing (Kreps and Porteus, 1978; Chew and Epstein,

1989; Grant, Kajii, and Polak, 2000). These theories build on the assumption that the decision

maker has an intrinsic preference for early or late resolution of uncertainty and examine the

ramifications of this assumption for different models of atemporal risk preferences. For related

work see also Epstein and Kopylov (2007) and Epstein (2008).

The preference for late resolution of uncertainty can also be interpreted as an aversion to

non-instrumental information. Information is non-instrumental when no further action can be
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taken that will change the decision maker’s utility.16 Grant, Kajii, and Polak (1998) present the

following example of non-instrumental information:

“Consider, for example, the decision of whether to be tested for an incurable genetic disorder. A director of
a genetic counseling program told the New York Times that there are basically two types of people. There
are ‘want-to-knowers’ and there are ‘avoiders’. There are some people who, even in the absence of being
able to alter outcomes, find information of this sort beneficial. The more they know, the more their anxiety
level goes down. But there are others who cope by avoiding, who would rather stay hopeful and optimistic
and not have the unanswered question answered.” (Grant, Kajii, and Polak (1998), p.234).

That there are different types of decision makers has not only been observed in the context

of health-related information but also in the domain of financial decisions. Several experimental

studies investigated people’s intrinsic preferences for resolution timing. Generally, there are

varying percentages of people with preference for early resolution, preference for late resolution

and timing indifference (Chew and Ho, 1994; Ahlbrecht and Weber, 1996; Arai, 1997; Lovallo

and Kahneman, 2000; Eliaz and Schotter, 2007; von Gaudecker, van Soest, and Wengström, 2011).

Epstein and Zin (1991) find a preference for late resolution of uncertainty in market data on U.S.

consumption and asset returns. In line with our predictions, preference for late resolution seems

to be particularly pronounced for positively skewed distributions, i.e. for prospects with small

probabilities of the best outcome, and increases with time delay.

4.4 Fact # 6: Risk Dependence of Patience

Researchers have been puzzled not only by delay-dependent risk tolerance and preferences with

respect to resolution timing but also by other interactions between time and risk, encompassing

risk-dependent discounting and diminishing immediacy. As we will show below, these findings

can be naturally accommodated within our framework.

Several studies have found that decision makers appear to discount certain future outcomes

more heavily than risky ones (Stevenson, 1992; Ahlbrecht and Weber, 1997). Without loss of

generality, we analyze two-outcome prospects in this section, m = 2. Let V0 denote the present

value of the prospect P = (x1, p; x2) delayed by t periods. Hence, for ρ = 1,

V0 =

((
u(x1)− u(x2)

)w(pst)

w(st)
+ u(x2)

)
w(st) (22)

16There is a number of papers studying preference for instrumental information in non-expected utility models (see for
instance Wakker (1988), Schlee (1990), Safra and Sulganik (1995). Li (2011) analyzes aversion to partial information
in the context of ambiguity averse preferences. See also the discussion of the value of information in Dillenberger
(2010).
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Furthermore, let Vt denote the future value of P as of t:

Vt =
(

u(x1)− u(x2)
)

w(p) + u(x2). (23)

Discounting by w(st) yields

Vtw(st) =

((
u(x1)− u(x2)

)
w(p) + u(x2)

)
w(st). (24)

According to standard discounting theory, the present value V0 should be equal to the dis-

counted value of Vt, namely Vtw(st). However, because w(p) < w(pst)
w(st)

, actually Vtw(st) < V0.

Therefore, it seems as if the certain value Vt is discounted more heavily than the (at t equally

attractive) future prospect. The difference in the valuations is not caused by different rates of

time preference for risky and certain payoffs, however, but by survival risk changing the nature

of the future prospect when evaluated from the point of view of the present rather than from the

point of view of the future.

The same kind of risk dependence is at work when the revealed preference for a certain

smaller present payoff over an allegedly certain larger later payoff decreases substantially when

both payoffs are made (objectively) probabilistic. This finding was labeled diminishing immediacy

(Keren and Roelofsma, 1995; Weber and Chapman, 2005). Because of the certainty effect, the

additional layer of riskiness affects the later payoff much less than the present one because, due

to survival risk, it is viewed as a risky prospect already from the outset.

4.5 Fact #7: Order Dependence of Risk Tolerance

An analysis equivalent to risk dependence can be applied to the issue of order dependence of

prospect valuation. In principle, there are three different methods of establishing a decision

maker’s value of a prospect P = (x1, p; x2) delayed by t periods: the time-first order, the risk-first

order, or the direct method. The time-first order encompasses, at the first stage, the elicitation

of the present risky prospect which is considered to be equivalent to the future one and, at the

second stage, the elicitation of the certainty equivalent of this present risky prospect. The risk-

first order reverses the elicitation stages and assesses the certainty equivalent as of time t first

and its present value thereafter. The direct method, finally, elicits the present certainty equivalent

of the delayed prospect in one single operation.
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When the decision maker is required to state the prospect’s value when discounting solely

for risk, she ignores the dimension of time and reports Vt, the value of which gets discounted

to Vtw(st). Conversely, when discounting for time first, she states the present prospect which is

equivalent to the delayed one, evaluated as
((

u(x1)− u(x2)
)

w(pst)
w(st)

+ u(x2)

)
w(st). Discounting

for risk at the second stage results in its value V0, which is equal to the present value elicited by

the direct method.

Therefore, we predict that discounting for risk first results in a lower prospect valuation than

discounting for time first. Moreover, discounting for time first is equivalent to prospect eval-

uation in one single operation. In their study on order dependence, Öncüler and Onay (2009)

indeed found this pattern: While valuations resulting from the time-risk order and the direct

method are not statistically distinguishable from each other, risk-time evaluations are signifi-

cantly lower than the ones obtained from the other two methods (see also Ahlbrecht and Weber

(1997)).

5 Subproportionality and Decreasing Impatience

In this section we deal with the implications of specific types of probability weighting functions

for observed discounting behavior. The most widely used specification of a globally subpro-

portional probability weighting function is Prelec (1998)’s “standard” two-parameter specifica-

tion. While this standard specification has been extensively used in experimental research, Prelec

(1998)’s discussion of other forms has been largely ignored in by experimental economics. His

paper provides a wealth of insights into three different patterns of subproportionality, all of

which are derived from preference conditions.17 As it will become apparent, in our framework

these types of subproportional probability weighting functions transfer nicely to well-known

specifications of discount functions. Additionally, we examine neo-additive weights, which are

particularly useful in the context of ambiguity (see the extension of our results to the case of

ambiguity in Appendix B.3).

Our discussion centers on the measurement of the degree of subproportionality. As men-

tioned above, subproportionality reflects convexity of the probability weighting function in log-

log coordinates, i.e. convexity of ω(ln p) = ln
(

w(p)
)

. Therefore, one can define degrees of

17 Luce (2001) provides preference conditions for a general class of (not necessarily subproportional) probability

weighting functions of the form w(p) = exp
(
− f (p)α

)
which encompasses all three types of Prelec’s functions as

special cases.
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relative and absolute subproportionality in terms of the Arrow-Pratt indices of convexity of ω,

RC(ω) and AC(ω):

RC(ω(ln p)) = − ln(p)
ω′′

ω′
,

AC(ω(ln p)) = −ω′′

ω′
.

(25)

While this practice seems straightforward, measuring the degree of departure from constant

discounting does not have such an obvious solution. Prelec (2004) discusses several possibili-

ties: First, one could compare discount functions directly by their convexity because convexity

promotes higher discounting of the immediate future and lower discounting of the more remote

future. Second, one could examine the decline of the discount rate −ρ̃′(t)/ρ̃(t) or, finally, one could

calculate the degree of convexity of ln ρ̃(t), which is equivalent to examining proportional rather

than absolute changes in the discount rate. Prelec argues in favor of the third solution because

higher convexity of ln ρ̃(t) is associated with more choices of dominated options in two-stage

problems. In the following, we adopt this view as well and define the degree of decreasing im-

patience by the (relative and absolute) Arrow-Pratt indices of convexity of ln ρ̃(t) (see also Rohde

(forthcoming)).

RC
(

ln ρ̃(t)
)
= −t

(
ln ρ̃(t)

)′′
(

ln ρ̃(t)
)′ ,

AC
(

ln ρ̃(t)
)
= −

(
ln ρ̃(t)

)′′
(

ln ρ̃(t)
)′ .

(26)

We analyze four cases characterized by different patterns of subproportionality/ convexity.

For ease of exposition we set ρ = 1.

5.1 Constant Relative/Decreasing Absolute Convexity

The standard Prelec specification of probability weights is given by

w(p) = exp
(
− β(− ln p)α

)
,
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where α > 0 determines the degree of departure from linearity. The parameter β > 0 is a net-

index of convexity of w which essentially governs the point of intersection of w with the diagonal.

If α < (=,>)1, w is subproportional (proportional, supraproportional).

Let us first examine in which sense the parameter α is an index of subproportionality of w.

Changing to log-log coordinates, its corresponding ω-function is defined by

ω(ln p) = −β(− ln p)α ,

which is a convex function of ln p as ω“ = α(1 − α)β(− ln p)α−2 > 0 in the relevant case of

α < 1. Table 3 summarizes the indices of convexity for all the cases discussed in this section.

The first column of Table 3 shows the indices resulting for the standard specification. While

relative convexity of ω is constant and equal to 1− α, its absolute convexity is decreasing. In

other words, the standard Prelec probability weighting function with α < 1 exhibits constant

relative subproportionality 1− α and decreasing absolute subproportionality.

Prelec derives this type of subproportional weighting function from the preference axiom of

Compound Invariance:18

The preference relation � exhibits compound invariance if for any outcomes x, y, x′, y′ ∈ X,

probabilities p, q, r, v ∈ [0, 1], and compounding integer N ≥ 1: If (x, p) ∼ (y, q) and (x, r) ∼
(y, v) then (x′, pN) ∼ (y′, qN) implies (x′, rN) ∼ (y′, vN).

This condition entails that common ratio violations are preserved under probability discount-

ing, which may be the case when ultimate success requires several independent successes in a

row (Prelec (1998), p. 502f).

Let us now turn to the discount function ρ̃ implied by a compound invariant probability

weighting function. Substituting st for p yields

ρ̃(t) = w(st) = exp
(
− β

(
t(− ln s)

)α
)
= exp

(
−γt1−θ

)
, (27)

where γ = β(− ln s)α and θ = 1− α. This functional form of ρ(t) belongs to the class of Constant

Relative Decreasing Impatience (CRDI) discount functions characterized by a constant Arrow-

Pratt index of relative log-convexity θ. This class is defined as (Bleichrodt, Rohde, and Wakker,

18All Prelec (1998)’s results are based on the assumption of a separable representation of the form V
(
(x, p)

)
=

u(x)w(p) for simple prospects (x, p) (a full rank-dependent representation is only required for the one-parameter
version of the compound invariant weighting function).
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2009): The discount function ρ̃(t) is a CRDI function on a time interval T ⊂ [0, ∞] if there exist

constants γ > 0 and θ, and a normalization constant k > 0, such that

ρ̃(t) =


k exp

(
−γt1−θ

)
for δ < 1,

kt−γ for δ = 1 (only if 0 /∈ T),

k exp
(
γt1−θ

)
for δ > 1 (only if 0 /∈ T).

(28)

This functional form is quite flexible since it can accommodate decreasing, constant and

increasing impatience, depending on the value of the parameter θ. The interesting case is θ < 1

which generates decreasing impatience. By and large, the parameter γ can be interpreted as level

of impatience.19 The compound invariant probability weighting function therefore produces

a CRDI discount function with normalization k = 1 and decreasing impatience as θ = 1 −
α < 1. Thus, the degree of relative subproportionality translates directly into the degree of

relative decreasing impatience.20 As Table 3 shows, neither RC nor AC depend on survival risk

s. However, s impacts the level of impatience γ. As ∂γ
∂s = −αβ

s(− ln s)1−α < 0, greater subjective

uncertainty, 1− s, leads to higher impatience.

Table 3: Convexity of Probability Weights and Discount Functions

Preference Compound Conditional Projection Uniform
condition Invariance Invariance Invariance Invariance
RC(ω) 1− α α(− ln p) α(− ln p)

1−α ln p
−β ln p
β+αp

AC(ω) 1−α
ln p −α −α

1−α ln p
−β

β+αp

RC(ln ρ̃) 1− α αt(− ln s) αt(− ln s)
1−αt ln s

−βt ln s
β+αst

AC(ln ρ̃) 1−α
t α(− ln s) α(− ln s)

1−αt ln s
−β ln s
β+αst

19Another variant of a CRDI function, the constant-sensitivity discount function ρ(t) = exp
(
−(γt)θ

)
, which allows

for a cleaner separation of time insensitivity θ and impatience γ, was axiomatized by Ebert and Prelec (2007).
20Bleichrodt, Rohde, and Wakker (2009) provide a preference condition for CRDI in the case of separable representa-

tions. As the compounding of probability p by N translates into pN = (st)N = stN , not surprisingly, their essentially
equivalent axiom involves multiplication of t by a constant factor (N does not have to be an integer, see Prelec
(1998)’s proof on p. 517). The authors interpret their preference condition in the following way: If the unit of time
is changed, for example from a day to a week, without changing the numbers, then equality of time delays in terms
of required outcome compensation should be maintained.
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5.2 Decreasing Relative/Constant Absolute Convexity

Another type of a subproportional probability weighting function is the exponential-power speci-

fication for p > 0

w(p) = exp
(
−β

α
(1− pα)

)
= exp

(
β

α

(
exp

(
−α(− ln p)

)
− 1
))

,

where α, β > 0. This function is discontinuous at p = 0 and is concave and overweighting on

(0, 1) for sufficiently small values of β. It is straightforward to show that the Arrow-Pratt index

of absolute convexity of its associated ω-function is constant and equal to −α (see Table 3).21

The preference condition for the exponential-power case is Conditional Invariance:

The preference relation � exhibits conditional invariance if for any outcomes x, y, x′, y′ ∈ X,

probabilities p, q, r, v ∈ [0, 1], and “conditional” probability λ, 0 < λ < 1: If (x, p) ∼ (y, q) and

(x, r) ∼ (y, v) then (x′, λp) ∼ (y′, λq) implies (x′, λr) ∼ (y′, λv).

In this case, common ratio violations are preserved under the proportional reduction of the

probabilities, for example pertaining to the case when ultimate success is conditional on some

other independent event (Prelec (1998), p. 510).

The corresponding discount function belongs to the class of Constant Absolute Decreasing

Impatience (CADI) functions. Following Bleichrodt, Rohde, and Wakker (2009)’s definition:22

The discount function ρ̃ is a CADI function if there exist constants γ > 0, θ and a normalization

constant k > 0, such that:

ρ̃(t) =


k exp

(
γ exp(−θt)

)
for θ > 0 ,

k exp(−γt) for θ = 0 ,

k exp
(
− γ exp(−θt)

)
for θ < 0 ,

(29)

with k = exp(−β/α), γ = β/α, and θ = α(− ln s).

Such a CADI function exhibits decreasing impatience for θ = α(− ln s) > 0 which is also

equal to the index of absolute convexity of ln ρ̃. In this case, constant absolute subproportionality

21Prelec (1998) notes that only ω-functions with decreasing absolute convexity can exhibit both, subproportionality and
continuity at p = 0. Note that the full specification in Prelec (1998) (Proposition 4) also includes the (proportional)
special case w(p) = pβ with β > 0. The power function cannot accommodate the common ratio effect, and the
resulting discount function has an exponential form.

22Bleichrodt, Rohde, and Wakker (2009) also provide a preference condition for CADI in the case of separable rep-
resentations. As multiplying a probability p with a factor λ := sτ translates into λp = sτst = st+τ , their axiom
involves additions of time periods. Consequently, adding a common extra delay to every outcome involved should
not change the required compensations.
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governs constant absolute decreasing impatience, which is additionally modulated by subjective

uncertainty s, as shown in the second column of Table 3. In fact, both RC and AC react to survival

risk. The greater is subjective uncertainty, 1− s, the more decreasingly impatient is behavior.

Mirroring the discontinuity of w at zero, the CADI decreasing impatience specification ex-

hibits a potentially undesirable characteristic: For t → ∞, ρ̃ → k = exp(−β/α) > 0, which may

or may not make sense in the specific context of application.23

5.3 Increasing Relative/Decreasing Absolute Convexity

The third type of a (weakly) subproportional probability weighting function, discussed by Prelec

(1998), is the hyperbolic logarithm variety. It is specified as

w(p) = (1− α ln p)−
β
α , (30)

with α, β > 0. This function is typically inverse S-shaped, but may also become concave and

overweighting when β is very small. It displays decreasing absolute/increasing relative subpro-

portionality, as the entries in the third column of Table 3 indicate.

Its corresponding discount function is the generalized hyperbolic one (Loewenstein and Prelec,

1992):

ρ̃(t) = (1 + γt)−
θ
γ , (31)

where γ = α(− ln s) > 0 and θ = β(− ln s) > 0. Neither of the associated indices of convexity is

constant, as shown in Table 3.

The underlying preference condition is Projection Invariance:

For any outcomes x, y and probabilities p, q, r, v: (x, p) ∼ (y, q) and (x, rp) ∼ (y, vq) implies

(x, r2 p) ∼ (y, v2q).

This is the simplest of the three cases discussed so far as it only involves two indifferences.

Indifference is preserved when the probabilities are squared.

Because of its lack of flexibility, Bleichrodt, Rohde, and Wakker (2009) argue against the gen-

eralized hyperbolic discount function - contrary to CRDI and CADI, the hyperbolic specification

accommodates increasing impatience only in a particular subcase over a limited time interval

and, furthermore, is characterized by an upper bound to the degree of decreasing impatience.

23This potentially unattractive feature disappears in the full model with ρ̃(t) = w(st) exp(−ηt).
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5.4 Decreasing Relative/Increasing Absolute Convexity

An example of decreasing relative and increasing absolute convexity of the ω-function is the

neo-additive specification defined in Equation 19. Neo-additive capacities, the equivalent of

neo-additive probability weights in decision under ambiguity, were axiomatized by Girotto and

Holzer (2016). Their preference condition of Uniform Invariance translates to the case of risk as

follows:

For any probabilities p1, p2, q with 0 < pi, pi + q < 1, 0 ≤ q < 1, i ∈ {1, 2},
w(p1 + q)− w(p1) = w(p2 + q)− w(p2) holds.

This condition simply means that adding a constant probability increases probability weights

uniformly.

The associated discount function is defined as

ρ̃(t) =

 1 for t = 0

β + α exp
(
− (− ln s)t

)
for t > 0

. (32)

For t tending to infinity, ρ̃ tends to β (unless ρ 6= 1). For β = 0, w is not subproportional but

captures the certainty effect and, thus, induces quasi-hyperbolic discounting, ρ̃(t) = α exp
(
−

(− ln s)t
)

(Laibson, 1997). In this case, the parameter α < 1 is interpreted as present bias or

variable costs associated with future payoffs.24

A large body of empirical evidence documents the prevalence of common-ratio violations as

well as of non-exponential discounting, at least at the level of aggregate behavior (Kahneman and

Tversky, 1979; Thaler, 1981; Benzion, Rapoport, and Yagil, 1989; Starmer and Sugden, 1989; Prelec

and Loewenstein, 1991). However, there is vast heterogeneity in individuals’ behaviors (Hey and

Orme, 1994; Chesson and Viscusi, 2000; Bruhin, Fehr-Duda, and Epper, 2010) and the question

arises whether common-ratio violations and non-constant discounting are actually exhibited by

the same people.25 To our knowledge, potential links between risk preferences and time pref-

erences at the level of preference conditions or parameter estimates have not been explored so

far. However, using the decline of discount rates as a measure of decreasing impatience, Epper,

24Benhabib, Bisin, and Schotter (2010) find little empirical support for quasi-hyperbolic discounting, but evidence
favoring a variant ρ(t) = − β

x + α exp(−ηt) for 0 < t, where x denotes the monetary payoff to which discounting is

applied. They interpret the term β
x as fixed costs that imply both decreasing impatience and the magnitude effect

in discounting.
25Note that we predict merely a correlation between insensitivities to probabilities and delays, and not a one-to-one

correspondence a la Baucells and Heukamp (2012).
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Fehr-Duda, and Bruhin (2011) provide evidence that subjects’ departures from linear probability

weighting are indeed highly significantly correlated with the strength of the decrease in discount

rates. In fact, the only variable associated with decreasing discount rates turns out to be the

degree of nonlinearity of probability weights, which explains a large percentage of the variation

in the extent of the decline, whereas observable individual characteristics, such as gender, age,

experience with investment decisions and cognitive abilities are not significantly correlated with

the degree of non-constant discounting.

6 Implications for Real-World Behavior

The driver of the seven phenomena uncovered by experimental research is subproportionality

of probability weights, which can take on many different shapes, e.g. convex, concave, or re-

gressive ones. We have chosen a regressive specimen for our graphical illustrations because it

is this characteristic that speaks to real world behavior. Regressiveness in the context of RDU

produces overweighting of rare extreme events and underweighting of intermediate events and,

thus, a preference for positively skewed distributions and an aversion to negatively skewed ones.

This feature has proven useful to make sense of many phenomena in finance and insurance mar-

kets. First of all, it solves the classical puzzle of the coexistence of gambling and insuring. In

finance, a series of papers found support for Barberis and Huang (2008)’s prediction that assets

with higher predicted skewness earn lower returns in the long run (e.g. Ang, Hodrick, Xing, and

Zhang (2006); Barberis (2013); Polkovnichenko and Zhao (2013); Boyer and Vorkink (2014); Eraker

and Ready (2015). Concerning the aggregate stock market, De Giorgi and Legg (2012) show that

high equity premia and the non-participation puzzle are consistent with the stock market ex-

hibiting negatively skewed returns. A recent contribution shows that people’s decisions whether

to participate in the stock market and which stocks to buy seem largely driven by probability

weighting (Dimmock, Kouwenberg, Mitchell, and Peijnenburg, 2018). A related finding concerns

household portfolios - underdiversified households tend to hold stocks with positively skewed

returns (Spalt, 2013).

Extreme risk aversion in insurance markets is another area of application of probability

weighting (Sydnor, 2010). For example, Barseghyan, Molinari, O’Donoghue, and Teitelbaum

(2013) show that one of the most important drivers of people’s deductible choices is the over-

weighting of small probabilities. Overweighting of small probabilities also explains consumers’

34



purchases of extended warranties for household appliances, and even for telephone wires, at

exorbitant prices (Cicchetti and Dubin, 1994; Huysentruyt and Read, 2010). Another example

is flight insurance policies that used to be extremely popular in the 1950’s and 60’s when they

were sold at vending machines at U.S. airports.26 Many passengers were willing to pay outra-

geous premiums, obviously overweighting the rare event of an imminent airplane crash (Meade,

1957).27

All these issues relate to the overweighting of rare extreme events, which is predicted by the

standard regressive shape of the probability weighting function. However, overweighting of rare

extreme events is incompatible with underinsurance which is a prevalent phenomenon as well.

For example, inhabitants of disaster-prone areas are often not willing to take insurance even

when it is highly subsidized (Kunreuther, 1984; Viscusi, 2010). Globally, between 1960 and 2011

nearly 60% of major natural catastrophes worldwide were uninsured (von Peter, von Dahlen, and

Saxena, 2012). Even in high-income countries, only 50% of the damage resulting from catastro-

phes, such as earthquakes, tsunamis and floods, were covered by insurance contracts. von Peter,

von Dahlen, and Saxena (2012) argue that uninsured losses stemming from major natural catas-

trophes have large and significant negative effects on economic activity, both on impact and over

the longer run. Contrary to flight insurance policies, underinsurance is prevalent with respect to

regular life insurance contracts: Many consumers are reluctant to buy adequate life insurance,

thereby exposing their loved ones to considerable poverty risk (Bernheim, Forni, Gokhale, and

Kotlikoff, 2003; Cutler, Finkelstein, and McGarry, 2008). This lack of adequate insurance cover-

age is puzzling because people seem to be extremely risk averse in other domains of economic

decisions.

Our analysis offers a solution to this puzzle. Take, for example, natural disasters such as

earthquakes and tsunamis. Rarely can their timing be predicted long before their actual occur-

rence. They literally appear out of the blue. In these cases, uncertainty resolves in one shot at

some unknown time in the future. Due to delay dependence of risk tolerance, people display

high risk tolerance in these circumstances and, thus, may be unwilling to take out insurance at

all. The opposite type of process is at work in the stock market. Information on asset prices

is readily available, for many assets even in real time. Therefore, notwithstanding the longterm

26This type of insurance seems to have been popular in other places as well. In 1997 Japanese regulatory agencies
granted AIG the right to sell travel insurance via vending machines at Japanese airports, see Fingleton (2008), p.
421.

27Taken from Footnote 1 in “Air Trip Insurance”, Washington and Lee Law Review 20, Issue 2, Article 16.
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nature of many investments, uncertainty is perceived to resolve sequentially over the course of

time rather than in one shot in the distant future. One can watch price bubbles building up,

but not tectonic plates shifting. Process dependence of risk tolerance implies that, even for long

time horizons, rare adverse events tend to be overweighted when the resolution of uncertainty

is observable. Furthermore, being able to observe the resolution of uncertainty over time leads

to a pronounced willingness to take out insurance. Therefore, investments in the predictability

of natural disasters may have a beneficial effect on insurance take up as well as on mitigation

measures. If underinsurance is indeed driven by delay-dependent risk tolerance caused by the

inherent uncertainty of the future, there is probably not much policy can do about changing

preferences - that something may go wrong is a fact of life. Increasing the frequency of feedback

may reduce excessive risk tolerance but may not be feasible. The upshot of these insights is that

mandatory insurance and environmental taxes may be the only effective instruments to counter

delay-dependent risk tolerance.28

7 Discussion

The ultimate driver of our results is the Allais-type probability dependence of risk attitudes in

conjunction with survival risk. In our view, it is indisputable that the future is inherently uncer-

tain. Presumably, almost everyone has experienced at some point in their past that something

went wrong. Probability dependence of risk preferences, on the other hand, has received over-

whelming support from the lab and, increasingly, from the field as well. Thus, our assumptions

are a perfect starting point for modeling interactions of risk taking and discounting behavior.

Our framework provides a host of predictions which should now be taken to the laboratory.

We propose an ambitious research program: One could examine risk taking and time discounting

at the level of preference conditions, as set out in Section 5, to find out whether the same subjects

belong to a specific preference type in both decision domains. Another route is to collect rich

data and estimate structural models. Section 5 delineates the expected correlations between

risk taking and time discounting parameters. If such correlations are found, they could also

indicate the equivalence of discounting for time and discounting for risk, as is often posited

in the psychology literature (i.e. Rachlin, Raineri, and Cross (1991); Takemura and Murakami

(2016)). The ultimate test of our model, therefore, is to exogenously manipulate the subjective

28For example, several Swiss cantons have mandatory insurance schemes that cover earthquakes.
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probability that something may go wrong, s. We think this is the most challenging endeavor.

First of all, it might take huge variations in st to generate noticeable effects on observed behavior

in typical lab settings. However, it is practically impossible to postpone payments for much more

than one year. In our graphical illustrations we used a comparatively high survival risk parameter

- only 80% of the prospects are expected to survive one year - to show substantial effects. Such a

high risk seems implausible, at least in the developed world. This drawback suggests to conduct

experiments in countries where it is quite likely that something may go wrong and institutions

of contract enforcement are weak. Another problem involves the manipulation procedure. The

procedure of choice is most likely some priming manipulation which, on the one hand, must have

a lasting effect throughout the experiment and, on the other hand, must affect the perception that

something may go wrong in the future without having negative side effects on the participants’

trust in the experimenter. A loss of trust may be quite disastrous for the lab’s reputation. We

therefore invite the experimental research community to come up with clever designs that avoid

these pitfalls.

Risk taking and time discounting are complex tasks and many different considerations may

affect concrete decisions. If the drivers of probability weighting are actually emotional reactions

to disappointment and elation, these emotions may be much less powerful when people think

about financial matters, such as future incomes and budget constraints. In the domain of financial

decisions, knowing the outcome of a risky decision presumably is almost always advantageous.

Therefore, the predicted preference for late resolution of uncertainty may be much less pro-

nounced in the financial sphere than in other domains of life where genuinely non-instrumental

information may be available.

Last but not least, we would like to encourage the experimental community to be careful

with assumptions on functional forms. As our discussion in Section 5 has demonstrated, there

are many possibilities in which way subproportionality and decreasing impatience may manifest

themselves. We think it is not a good idea to simply use a particular specification because

“everybody else has used it” without making sure that it fits the data - and this is particularly

important when estimating parameters at the individual level.
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Appendix A: Proofs of Propositions

Proof of Proposition 1

1. Since w̃(0) = w(0)
w(st)

= 0, w̃(1) = w(st)
w(st)

= 1, and w̃′ = w′(pst)st

w(st)
> 0 hold, w̃ is a proper

probability weighting function.

2. Subproportionality of w̃ follows directly from subproportionality of w as for p > q and

0 < λ < 1:
w̃(λp)
w̃(λq)

=
w(λst p)
w(λstq)

<
w(st p)
w(stq)

=
w̃(p)
w̃(q)

. (33)

3. • Since w is subproportional,

w̃(p) =
w(pst)

w(st)
>

w(p)
w(1)

= w(p) (34)

holds for s < 1 and t > 0. Therefore, w̃ is more elevated than w.

• Obviously, elevation gets progressively higher with increasing t and an equivalent

effect is produced by decreasing s. Since w̃ increases monotonically in t and w̃ ≤ 1 for

any t, elevation increases at a decreasing rate.

• In order to show that a comparatively more subproportional probability weighting

function entails a greater increase in observed risk tolerance we examine the relation-

ship between the underlying atemporal probability weights w and observed ones w̃.

Let w1 and w2 denote two probability weighting functions, with w2 exhibiting greater

subproportionality.

If w1(λ)w1(p) = w1(λpq) holds for a probability q < 1, then w2(λ)w2(p) < w2(λpq)

follows as w2 is more subproportional than w1 (Prelec, 1998). Choose r < 1 such that

w2(λ)w2(p) = w2(λpqr). For λ = st, the following relationships hold:

w̃1(p)
w1(p)

=
w1(λp)

w1(λ)w1(p)
=

w1(λp)
w1(λpq)

. (35)

Applying the same logic to w2 yields

w̃2(p)
w2(p)

=
w2(λp)

w2(λ)w2(p)
=

w2(λp)
w2(λpqr)

>
w2(λp)
w2(λpq)

. (36)

38



Therefore, the relative wedge w̃2(p)
w2(p) caused by subproportionality is larger than the

corresponding one for w1.

4. For the elasticity of w̃, εw̃(p), the following relationship holds:

εw̃(p) =
w̃′(p)p
w̃(p)

=
w′(pst)pst

w(pst)
= εw(pst) < εw(p) , (37)

as the elasticity εw increases in its argument iff w is subproportional.

5. As w̃(p) > w(p) holds for any 0 < p < 1, π̃m = 1− w̃(1− pm) < 1− w(1− pm) = πm

results for the decision weight of xm. As w̃ increases with t, the weight of xm declines with

time delay. �

Proof of Proposition 2

1. ρ̃(0) = w(s0)ρ0 = 1. Since w′ > 0 holds, ∂w(st)
∂t < 0 and, therefore, ρ̃′ < 0. Finally,

lim
t→∞

ρ̃(t) = 0 (in terms of discount rates: lim
t→∞

η̃(t) = η).

2. Discount rates are generally defined as the rates of decline of the respective discount func-

tions, i.e. η = − ρ′(t)
ρ(t) and η̃(t) = − ρ̃′(t)

ρ̃(t) . Therefore,

η̃(t) = − ρ̃′(t)
ρ̃(t)

= −w′(st)st ln(s) exp(−ηt)− w(st) exp(−ηt)η
w(st) exp(−ηt)

= −
(

w′(st)st

w(st)
ln(s)− η

)
= − ln(s)εw(st) + η

> η

(38)

since ln(s) < 0, w > 0, w′ > 0. Note that w′(st)
w(st)

st corresponds to the elasticity of the proba-

bility weighting function w evaluated at st, εw(st).

3. Since the elasticity of a subproportional function is increasing in its argument, the elasticity
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of w(st) is decreasing in t. Thus,

η̃′(t) = − ln(s)
∂εw(st)

∂t
< 0. (39)

4. In order to derive the effect of increasing survival risk, i.e. decreasing s, we examine the

sensitivity of ρ̃(t+1)
ρ̃(t)ρ̃(1) = w(st+1)

w(s)w(st)
, which measures the departure from constant discounting

between periods t + 1 and t, with respect to changing s:

∂
∂s

(
w(st+1)

w(s)w(st)

)
= 1(

w(s)w(st)
)2

(
(1 + t)stw(s)w(st)w′(st+1)− tst−1w(s)w(st+1)w′(st)− w(st)w(st+1)w′(s)

)
= 1

s
(

w(s)w(st)
)2

(
(1 + t)st+1w(s)w(st)w′(st+1)− tstw(s)w(st+1)w′(st)− sw(st)w(st+1)w′(s)

)
= w(st+1)

sw(s)w(st)

(
(1+t)st+1w′(st+1)

w(st+1)
− tstw′(st)

w(st)
− sw′(s)

w(s)

)
= w(st+1)

sw(s)w(st)

(
(1 + t)εw(st+1)− tεw(st)− εw(s)

)
< 0.

As st+1 < st < s, εw(st+1) < εw(st) < εw(s) and, hence, the sum of the elasticities in the

final line of the derivation is negative. Therefore, increasing survival risk, i.e. decreasing s,

entails a greater departure from constant discounting.

5. In order to examine the effect of the degree of subproportionality on decreasing impatience,

suppose that the probability weighting function w2 is comparatively more subproportional

than w1, as defined in Prelec (1998), and that the following indifference relations hold for

two decision makers 1 and 2 at periods 0 and 1:

u1(y) = u1(x)w1(s)ρ for 0 < y < x,

u2(y′) = u2(x′)w2(s)ρ for 0 < y′ < x′ .
(40)

Due to subproportionality, the following relation holds for decision maker 1 in period t:

1 =
u1(x)w1(s)ρ

u1(y)
<

u1(x)w1(st+1)ρt+1

u1(y)w1(st)ρt . (41)

Therefore, the probability of prospect survival has to be reduced by compounding s over
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an additional time period ∆t to re-establish indifference:

u1(y)w1(st)ρt = u1(x)w1(st+1+∆t)ρt+1. (42)

It follows from the definition of comparative subproportionality that this adjustment of the

survival probability by ∆t is not sufficient to re-establish indifference with respect to w2,

i.e.

u2(y′)w2(st)ρt < u2(x′)w2(st+1+∆t)ρt+1. � (43)

Proof of Proposition 3

1. Setting q = pst or q = st, respectively, we prove by induction that w(q) > ∏n
i=1 w(qi) for

probability q, 0 < q < 1, and q = ∏n
i=1 qi.

• For n = 2 subproportionality implies w(q) = w(q1q2) > w(q1)w(q2).

• Assume that w(∏n
i=1 ri) > ∏n

i=1 w(ri) for any probabilities 0 < ri < 1.

• For q = ∏n+1
j=1 qj subproportionality implies

w(q) = w

(
qn+1

n

∏
i=1

qi

)
> w(qn+1)w

(
n

∏
i=1

qi

)
> w(qn+1)

n

∏
i=1

w(qi) =
n+1

∏
j=1

w(qj).

2. Without loss of generality, we reorder the sequence of subintervals such that τ1 ≤ τ2 ≤ ... ≤
τn. For some i, τi−1 < τi holds because otherwise the partition would be equally spaced

right away. In this case, there exists ε > 0 such that τi−1 + ε < τi − ε is still satisfied. Due to

subproportionality, the following relationship holds for 0 < q < 1:

w(qτi−1)

w(qτi−ε)
>

w(qτi−1 qε)

w(qτi−εqε)
=

w(qτi−1+ε)

w(qτi)
, (44)

implying w(qτi−1)w(qτi) > w(qτi−ε)w(qτi−1+ε).

3. Consider two equally spaced partitions of [0, t]: (τi = t
n =: τ)i=1,...,n and (δi = t

n−1 =:

δ)i=1,...,n−1. Our claim is that for 0 < p ≤ 1,
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n

∏
i=1

w
(

p
τ
t sτ
)
<

n−1

∏
i=1

w
(

p
δ
t sδ
)

. (45)

Setting q =
(

p
1
t s
) t

n(n−1) , we examine whether

(
w
(

qn−1
))n

<

(
w
(
qn))n−1

. (46)

Proceeding by induction:

• n = 2: Subproportionality implies
(

w(q)
)2

< w
(

q2
)

.

• n = 3: Subproportionality implies w
(

q3
)
>

(
w(q2)

)2

w(q) . Thus,

(
w(q3)

)2
>

(
w(q2)

)2

w(q)

(
w(q2)

)2

w(q)
>

(
w(q2)

)3
w(q2)(

w(q)
)2

>

(
w(q2)

)3(
w(q)

)2

(
w(q)

)2 =
(

w(q2)
)3

(47)

• n→ n+ 1: Suppose that
(

w(qn−1)
)n

<
(

w(qn)
)n−1

holds. Subproportionality implies
w(qn−1)

w(qn)
> w(qn)

w(qn+1)
. Hence,

(
w(qn+1)

)n
>

(
w(qn)w(qn)

w(qn−1)

)n

=

(
w(qn)

)n+1(
w(qn)

)n−1

(
w(qn−1)

)n

>

(
w(qn)

)n+1(
w(qn−1)

)n

(
w(qn−1)

)n =
(

w(qn)
)n+1

(48)

�

Proof of Proposition 4

1. Consider Equation 18:
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w̃n(p, t) =
n

∏
i=1

w̃
(

p
τi
t , τi

)
.

Note that w̃
(

p
τi
t , τi

)
=

w
(

p
τi
t sτi

)
w(sτi )

<
w
(

p
τi
t sτi st−τi

)
w(sτi st−τi)

=
w
(

p
τi
t st
)

w(st)
= w̃

(
p

τi
t , t
)

.

According to Proposition 1, w̃ (p, t) is subproportional for a fixed length of delay t and,

therefore,

w̃n(p, t) <
n

∏
i=1

w̃
(

p
τi
t , t
)
< w̃

(
n

∏
i=1

p
τi
t , t

)
= w̃(p, t) . (49)

2. We proceed by induction.

• Consider the case of n = 2 and assume that the time interval of length t is divided

into two subintervals of lengths τ and t − τ with τ < t/2 < t − τ. We compare

w̃n corresponding to the evenly spaced partition (t/2, t/2) with the respective w̃n for

(τ, t− τ) by examining when

w
(
(p1/ts)t/2

)
w
(
(p1/ts)t/2

)
w(st/2)w(st/2)

<
w
(
(p1/ts)τ

)
w
(
(p1/ts)t−τ

)
w(sτ)w(st−τ)

holds. Rearranging terms yields

w
(
(p1/ts)t/2

)
w
(
(p1/ts)t/2

)
w
(
(p1/ts)τ

)
w
(
(p1/ts)t−τ

) <
w(st/2)w(st/2)

w(sτ)w(st−τ)
.

Since p1/ts < s for any 0 < p < 1, this condition amounts to requiring that w(qt/2)w(qt/2)
w(qτ)w(qt−τ)

increases in q, 0 < q < 1. It is straightforward to show that its derivative with respect

to q equals

∂

∂q

(
w(qt/2)w(qt/2)

w(qτ)w(qt−τ)

)
=

t
(
w(qt/2)

)2

qw(qτ)w(qt−τ)

(
εw(qt/2)−

(
λεw(qτ) + (1− λ)εw(qt−τ)

))
,

where λ = τ/t. As τ < t/2 < t− τ and εw(qt−τ) < εw(qt/2) < εw(qτ), the term in the

brackets is positive if the elasticity of w, εw, is a strictly concave function.
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• For n ≥ 2 the general formula for the derivative reads as

(
w(qt/n)

)n

q ∏n
i=1 w(qτi)

(
tεw(qt/n)−

n

∑
i=1

τiεw(qτi)

)
,

where (τi)i=1,...,n is a partition of the time interval t with ∑n
i=1 τi = t.

• n→ n + 1: Assume that for t > 0

tεw(qt/n)−
n

∑
i=1

τiεw(qτi) > 0 (50)

holds. Define a partition (δi)i=1,...,n+1 of t as follows:

δi =
nτi

n + 1
for 1 ≤ i ≤ n

δn+1 =t−
n

∑
i=1

δi =
t

n + 1

Then the following relationships result:

n+1

∑
i=1

δiεw

(
qδi
)
=

n

∑
i=1

nτi

n + 1
εw

(
q

nτi
n+1

)
+

t
n + 1

εw

(
q

t
n+1

)

tεw

(
q

t
n+1

)
− t

n + 1
εw

(
q

t
n+1

)
=

tn
n + 1

εw

(
q

t
n+1

)
Since Equation 50 holds for any t > 0 and, therefore, also for t̃ = tn

n+1 and τ̃i =
nτi

n+1 ,

t̃εw

(
qt̃/n

)
−

n

∑
i=1

τ̃iεw
(
qτ̃i
)
> 0, (51)

which implies
tn

n + 1
εw

(
q

t
n+1

)
−

n

∑
i=1

nτi

n + 1
εw

(
q

nτi
n+1

)
> 0. (52)

3. We examine whether

w
(
(p1/ts)t/n

)
w(st/n)

n

<

w
(
(p1/ts)t/(n−1)

)
w(st/(n−1))

n−1

, which is equal to the con-
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dition that (
w
(
(p1/ts)t/n

))n

(
w
(
(p1/ts)t/(n−1)

))n−1 <

(
w(st/n)

)n

(
w
(
st/(n−1)

) )n−1 .

Therefore, we examine whether the derivative of (w(qt/n))
n

(w(qt/(n−1)))
n−1 with respect to q is positive.

It is straightforward to show that

∂
(w(qt/n))

n

(w(qt/(n−1)))
n−1

∂q
=

t
(
w(qt/n)

)n

q
(
w
(
qt/(n−1)

) )n−1

(
εw

(
qt/n

)
− εw

(
qt/(n−1)

))
> 0 (53)

as the elasticity of w is increasing. �

Proof of Proposition 5

Without loss of generality, we set the number of outcomes m = 2.

1. The value of the prospect to be resolved immediately amounts to

((
u(x1)− u(x2)

)
w(p) + u(x2)

)
w(st)

<

((
u(x1)− u(x2)

)w(pst)

w(st)
+ u(x2)

)
w(st),

(54)

as w(pst) > w(p)w(st) is implied by subproportionality of w. Thus, prospects resolving at

the date of payment t are valued more highly than prospects with immediate resolution.

What happens if prospect risk is not resolved immediately but rather at some later time t1,

0 < t1 < t? After t1, only survival risk remains to be resolved. In this case, the prospect’s

present value amounts to

((
u(x1)− u(x2)

)w(pst1)

w(st1)
+ u(x2)

)
w(st1)w(st−t1). (55)

Subproportionality implies w(p) < w(pst1 )

w(st1 )
< w(pst)

w(st)
and, therefore, observed risk tolerance

is highest for resolution at payment time t. Moreover, the late-resolution discount weight

w(st) = w(st1 st−t1) is also greater than w(st1)w(st−t1) for any earlier t1, implying that late

resolution is always preferred.
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2. Examining the derivative of w(pst)
w(p) with respect to p yields

∂
(

w(pst)
w(p)

)
∂p

=
w(pst)

pw(p)

(
w′(pst)pst

w(pst)
− w′(p)p

w(p)

)
=

w(pst)

pw(p)

(
εw(pst)− εw(p)

)
<0,

(56)

as p > pst and the elasticity is increasing. Therefore, the wedge between late evaluation

and immediate evaluation decreases with p.

3. The derivative of w(pst)
w(st)

with respect to t yields

∂
(

w(pst)
w(st)

)
∂t

=
ln(s)w(pst)

w(st)

(
w′(pst)pst

w(pst)
− w′(st)st

w(st)

)
=

ln(s)w(pst)

w(st)

(
εw(pst)− εw(st)

)
>0,

(57)

as ln(s) < 0, st > pst and the elasticity is increasing. Therefore, the wedge between late

and immediate evaluation increases with time horizon t and, equivalently, with survival

risk 1− s. �
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Appendix B: Additional Materials

B.1 A Note on Sequential Evaluation

In his Proposition 1, Dillenberger (2010) shows that, under recursivity, negative certainty in-

dependence (NCI) and a weak preference for one-shot resolution of uncertainty (PORU) are

equivalent. The NCI axiom requires the following to hold: If a prospect P = (x1, r; x2) is weakly

preferred to a degenerate prospect D = (y, 1), then mixing both with any other prospect does

not result in the mixture of the degenerate prospect D being preferred to the mixture of P. This

axiom is weaker than the standard independence axiom and does not put any restrictions on the

reverse preference relation when a degenerate prospect is originally preferred to a nondegenerate

one. The latter case characterizes the typical Allais certainty effect. NCI allows for Allais-type

preference reversals but does not imply them. David Dillenberger’s Proposition 3 demonstrates

that NCI is generally incompatible with rank-dependent utility unless the probability weighting

function is linear, i.e. unless RDU collapses to EUT. An intuitive explanation for Dillenberger’s

Proposition 3 is that under RDU prospect valuation is sensitive to the rank order of the outcomes

and, therefore, mixtures with other prospects may affect the original rank order of outcomes

in P (and D). How does Dillenberger’s result relate to our claim that subproportional proba-

bility weights conjointly with recursivity imply a strong preference for one-shot resolution of

uncertainty?

The crucial insight is that for the class of prospects studied in this paper changes in rank

order do not occur and, hence, NCI is satisfied. To see this, assume that the prospect (x1, p; x2),

x1 > x2 ≥ 0, gets resolved in two stages
(
(x1, r; x2), q; (x2, 1)

)
such that p = qr. In the atemporal

case, when there is no additional survival risk, the two-stage prospect continues to be a strictly

two-outcome one and the only relevant mixtures are those involving x2. Suppose that P =

(x1, r; x2) % (y, 1) = D, with x1 > y > x2 and consider the following mixtures with (x2, 1− λ) for
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some λ ∈ (0, 1): P′ = (x1, λr; x2) and D′ = (y, λ; x2). The following relationships hold:

P % D ⇒ V(P) =
(

u(x1)− u(x2)
)

w(r) + u(x2) ≥ u(y) = V(D)

V(D′) = u(y)w(λ) + u(x2)
(

1− w(λ)
)

≤
((

u(x1)− u(x2)
)

w(r) + u(x2)

)
w(λ) + u(x2)

(
1− w(λ)

)
=
(

u(x2)− u(x1)
)

w(r)w(λ) + u(x2)

<
(

u(x2)− u(x1)
)

w(λr) + u(x2)

= V(P′)

(58)

because w(r)w(λ) < w(λr) for any λ ∈ (0, 1) (and hence also for λ = q) due to subproportional-

ity of w. Consequently, for mixtures with the smaller outcome x2, NCI, and therefore also PORU,

is strongly satisfied. If the mixing prospect may be any arbitrary prospect, in other words if

surprises are possible in the course of uncertainty resolution, this result does not hold generally.

The only surprise that is still admissible is the occurrence of an outcome worse than x2, say z.

Define P′′ =
(

x1, λr; x2, λ(1− r); z
)

and D′′ = (y, λ; z).

V(D′′) = u(y)w(λ) + u(z)
(

1− w(λ)
)

≤
((

u(x1)− u(x2)
)

w(r) + u(x2)

)
w(λ) + u(z)

(
1− w(λ)

)
=
(

u(x1)− u(x2)
)

w(r)w(λ) +
(

u(x2)− u(z)
)

w(λ) + u(z)

<
(

u(x1)− u(x2)
)

w(λr) +
(

u(x2)− u(z)
)

w(λ) + u(z)

= V(P′′)

(59)

For u(z) = 0, this case is exactly the situation studied in this paper when survival risk comes

into play.
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B.2 Subproportionality

In this section we review a number of probability weighting functions that are either globally

or locally subproportional. We limit our attention to functional forms with at most two param-

eters. Recall that subproportionality is equivalent to increasing elasticity. Consequently, if the

elasticity is U-shaped, the function is supraproportional over the range of small probabilities and

subproportional over large probabilities. These functions still capture the certainty effect but not

necessarily general common-ratio violations. Many specifications used in the literature exhibit

such a characteristic. Some experimenters found reverse common-ratio violations which require

supraproportionality over the relevant probability range (see e.g. Blavatskyy (2010)). Ultimately,

it is an empirical issue whether locally or globally subproportional functions fit better.

Polynomials are linear in the parameters and, thus, generally less flexible than specifications

that are nonlinear in the parameters. Note that second-order polynomials demarcate the inter-

section of the class of quadratic utility and RDU (see also the discussion in Masatlioglu and

Raymond (2016)).

Gul (1991)’s theory of disappointment aversion, for example, implies a strictly convex sub-

proportional function in the context of RDU for two-outcome prospects. Another interesting

specimen is the probability weighting function discussed in Delquié and Cillo (2006). In the

context of RDU, their model of disappointment aversion generates a subproportional second-

order polynomial that is equivalent to the one implied by Köszegi and Rabin (2007)’s choice-

acclimating personal equilibrium, which provides an endogenous reference point (Masatlioglu

and Raymond, 2016). The same polynomial also emerges in Safra and Segal (1998)’s approach

to constant risk aversion. This concept captures the idea that a decision maker commits to a

choice long before uncertainty is resolved, and is, therefore, particularly plausible in the con-

text of our model. Under specific assumptions, Bordalo, Gennaioli, and Shleifer (2012) derive

(discontinuous) context-dependent probability distortions from their salience theory. While their

concave segment is supraproportional, the convex segment is subproportional, both of the Gul

(1991) variety with 0 < β < 1 and β > 1, respectively. The psychological mechanisms underlying

probability weighting, therefore, often imply at least some extent of subproportionality.

An intermediate case is the constant-sensitivity specification suggested by Abdellaoui, l’Haridon,

and Zank (2010) which is subproportional for large probabilities but exhibits constant elasticity

for small probabilities. Thus, risk tolerance increases with delay until it hits an upper bound,
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staying constant afterwards. Ultimately, it is an open question whether this feature is consistent

with actual behavior, which provides a fruitful avenue for future research. In particular, the

associated discount function is characterized by decreasing impatience for more imminent time

horizons, but constant impatience for more remote horizons. Thus, it constitutes an alternative

to the quasi-hyperbolic β-δ model.
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Table 4: Probability Weighting Functions

Probability weighting function w(p) Parameter range Elasticity∗ Shape∗∗ Reference

pα α > 1 constant convex
Luce, Mellers, and Chang
(1993)

p
2−p - increasing convex Yaari (1987)

exp
(
− β(− ln(p))α

)
0 < α < 1, β > 0

increasing, con-
cave/convex

regressive Prelec (1998)

α = 1, β > 1 constant convex Prelec (1998)1

exp
(
− β

α (1− pα)
)

α, β > 0 increasing
concave, re-
gressive

Prelec (1998)7

(1− α ln p)−
β
α α, β > 0 increasing regressive Prelec (1998)

pα

(pα+(1−p)α)1/α 0.279 < α < 1 U-shaped regressive Tversky and Kahneman (1992)
βpα

βpα+(1−p)α 0 < α < 1, β > 0 U-shaped regressive Goldstein and Einhorn (1987)
0 < α < 1, β = 1 U-shaped regressive Karmarkar (1979)

α = 1, β < 1
increasing, con-
vex

convex
Rachlin, Raineri, and Cross
(1991)

see text see text
Bordalo, Gennaioli, and
Shleifer (2012)2

p+αp(1−p)
1+(α+β)p(1−p) α > 0, β > 0 U-shaped regressive Walther (2003){

β1−α pα if (i) 0 ≤ p ≤ β
1− (1− β)1−α(1− p)α if (ii) β < p ≤ 1

0 < α, β < 1
(i) constant, (ii)
increasing

regressive
Abdellaoui, l’Haridon, and
Zank (2010)3

p
1+(1−p)β

β > 1
increasing, con-
vex

convex Gul (1991)6

p− αp + αp2 0 < α < 1
increasing, con-
cave

convex
Masatlioglu and Raymond
(2016); Delquié and Cillo
(2006); Safra and Segal (1998)4

p + 3−3β
α2−α+1 (αp− (α + 1)p2 + p3) 0 < α, β < 1 U-shaped regressive Rieger and Wang (2006)

p− αp(1− p) + βp(1− p)(1− 2p) α depends on β variety variety Blavatskyy (2014)5
0 for p = 0
β + αp for 0 < p < 1
1 for p = 1

0 < β < 1, 0 <
α ≤ 1− β

increasing, con-
cave

regressive
Bell (1985); Cohen (1992);
Chateauneuf, Eichberger, and
Grant (2007)

∗ Increasing elasticity is equivalent to subproportionality. ∗∗ An inverse-S shape means that both tails are overweighted, i.e. that the weighting function is regressive.
(1) Equivalent to power specification w(p) = pβ.
(2) The weighting function consists of a concave and a convex segment with a jump discontinuity in between (see text).
(3) For α > 1, β = 1 constant elasticity, convex; for α < 1, β = 0 increasing elasticity, convex.
(4) Special case of Blavatskyy (2014) with β = 0.
(5) Specific parameter constellations with β > 0 generate regressive with U-shaped elasticity.
(6) Identical to Rachlin, Raineri, and Cross (1991).
(7) The full specification of the conditional invariant form also contains the power function (see row 1) as a special case (Prelec (1998), Proposition 4).
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B.3 The Case of Ambiguity

In real-world settings probabilities are rarely known to the decision maker. With the exception of

some games of chance, such as tossing a coin or playing roulette, the decision maker has to assess

the likelihoods of ambiguous events. Our model is cast in terms of objectively given probabilities,

however. Thus, the question arises whether our results are portable to the domain of ambiguity.

In this domain, the following framework is usually applied: S is a set of exhaustive and

mutually exclusive states of nature. One of these states s ∈ S will obtain, but the decision maker

is unsure which one it will be. Subsets of S are called events and denoted by A. Prospects, often

termed acts, are described as P = (x1, A1; ...; xm, Am), which yield the monetary outcome if the

event Ai contains the true state of nature. Outcomes are rank ordered xi, x1 > x2 > ... > xm and

(A1, A2, ..., Am) is a partition of the state space. To accommodate ambiguity, RDU is generalized

to Choquet Expected Utility Theory (Schmeidler, 1989), which features a weighting function

W(A). W is a capacity satisfying W(�) = 0, W(S) = 1, and monotonicity with respect to set

inclusion, i.e. A ⊂ B =⇒W(A) ≤W(B). Decision weights πi are constructed analogously to the

case of risk:

πi =

 W(A1) for i = 1,

W
(⋃i

k=1 Ak

)
−W

(⋃i−1
k=1 Ak

)
for 1 < i ≤ m.

(60)

As before, the prospect’s value is represented by

V(P) =
m

∑
i

u(xi)πi . (61)

There is a large literature in the psychology of judgment which suggests that, generally, peo-

ple tend to overweight the likelihood of rare events and underweight the likelihood of probable

events. A prominent example are the frequency estimates for causes of death reported in Tver-

sky and Koehler (1994). The same pattern of behavior has been found in experimental research

on decisions under ambiguity (Tversky and Wakker, 1995; Gonzalez and Wu, 1999; Kilka and

Weber, 2001; Abdellaoui, Vossmann, and Weber, 2005). In the literature, this pattern of over-

weighting and underweighting is discussed under the heading of subadditivity, a consequence

of diminishing sensitivity towards probabilities when moving away from certainty and impossi-

bility (Einhorn and Hogarth, 1985; Fox and See, 1993; Wakker, 2004).29 Formally, subadditivity

29Subadditivity also drives the famous Allais common consequence effect (Wu and Gonzalez, 1998).
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comprises two conditions, lower subadditivity SA and upper subadditivity SA:

SA : W(A) ≥W(A ∪ B)−W(B), (62)

SA : 1−W(S− A) ≥W(A ∪ B)−W(B), (63)

provided that A∩ B = � and W(A∪ B) and W(B) are bounded away from 1 and 0, respectively.30

Experimental studies suggest that subadditivity is more pronounced under ambiguity than

under risk, which induced Tversky and Fox (1995) to suggest a two-stage model, formalized

in Wakker (2004): Consider an ambiguous prospect (x, A) that pays x in the event that A oc-

curs and zero otherwise. Furthermore, assume that its value can be represented by V((x, A)) =

u(x)W(A). Elicit the matching probability p̂(A) such that the decision maker is indifferent be-

tween the risky prospect (x, p̂) and the ambiguous prospect (x; A). Then W(A) can be decom-

posed as

W(A) = w( p̂(A)), (64)

where w is the probability weighting function for risk. This decomposition has been used in a

number of experimental studies (Abdellaoui, Vossmann, and Weber, 2005; Baillon, 2008; Baillon,

Huang, Selim, and Wakker, 2016). The probability weighting function w for decisions under

ambiguity has been found to differ from the pure risk case in that it is more strongly subadditive

(Abdellaoui, Baillon, Placido, and Wakker, 2011), with the degree of departure from the risk case

depending on the source of uncertainty, i.e. the concrete decision context (i.e. whether ambiguity

concerns the composition of Ellsberg urns, the temperature in a specific city the following day,

the movement of a specific stock index, etc.).

The crucial link to our analysis is that subadditivity is implied by strong regressiveness of

the probability weighting function (for a proof see Prelec (1998), Footnote 10). Therefore, all

our predictions also apply to the case of ambiguity. We use these insights to develop a graphical

representation of such a two-stage model which serves as basis for illustrating the effects of delay

on behavior under ambiguity.

The curves in Figure 5 are constructed in the following way: In these graphs, probabilities

p are in principle objectively given but the decision maker does not know them with precision,

for example empirically observed frequencies of specific events. The decision maker judges the

30An example involving decision weights akin to our approach can be found in Chateauneuf, Eichberger, and Grant
(2007).
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Figure 5: Ambiguous Probabilities
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Panel a: The dashed curve corresponds to subjective probabilities p̂ assumed to follow the regularity p̂ = 0.1 + 0.7p,
where p denotes empirical frequency. w(p) is Prelec’s functional specification with α = 0.64 and β = 1.03 applied to
p̂ (solid curve). Panel b: The solid curve depicts w̃( p̂) constructed according to Equation 11 with s = 0.8 and t = 2.

likelihoods p̂ of these events (or reports choice-based probabilities). These probabilities are repre-

sented by the dashed lines in Figure 5, which mimic typical findings on the relationship between

subjective judgments p̂ and observed frequencies p (e.g. Fox and Tversky (1998), Figure 5). Ap-

plying w with parameters found in the literature (Abdellaoui, Baillon, Placido, and Wakker, 2011)

to p̂ renders the probability weighting curve w(p) as a function of observed frequencies (solid

curves in the figure). Panel a shows atemporal preferences, whereas Panel b depicts the case

of delaying payoffs by 2 periods. As one can see, the resulting probability weighting curves for

ambiguity are much less strongly curved than in the risky situation displayed in Figure 1, in

fact, they closely resemble neo-additive curves. This analysis underscores the usefulness of neo-

additive specifications. Qualitatively the same implications for behavior over delayed prospects

arise.
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