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Abstract

Many econometric and data-science applications require a reliable estimate of

the covariance matrix, such as Markowitz portfolio selection. When the number of

variables is of the same magnitude as the number of observations, this constitutes

a difficult estimation problem; the sample covariance matrix certainly will not do.

In this paper, we review our work in this area, going back 15+ years. We have

promoted various shrinkage estimators, which can be classified into linear and

nonlinear. Linear shrinkage is simpler to understand, to derive, and to implement.

But nonlinear shrinkage can deliver another level of performance improvement,

especially if overlaid with stylized facts such as time-varying co-volatility or factor

models.

KEY WORDS: Dynamic conditional correlations, factor models, large-dimensional
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1 Introduction

The covariance matrix is, arguably, the second most important object in all of statistics.

In practical applications, such as in Markowitz portfolio selection, the true covariance

matrix is typically unknown and must be estimated from data instead. It has long been

known — by academic researchers and practitioners alike — that the textbook estimator,

the sample covariance matrix, suffers from the curse of dimensionality. This curse is most

obvious when the matrix dimension exceeds the sample size — in which case the sample

covariance matrix is singular — but it is pervasive also otherwise, unless the matrix

dimension is negligible with respect to the sample size.

We have devoted more than fifteen years of our academic careers to shrinkage

estimation of large-dimensional covariance matrices; here, the term “large dimensional”

indicates a scenario where the matrix dimension is not negligible with respect to the

sample size or, in other words, where the matrix dimension and the sample size are of

the same magnitude.1 After three papers on linear shrinkage in the first decade of this

century, and a creative break, there have been an additional ten papers (by now) on

nonlinear shrinkage in the second decade. So perhaps the time has come to look back in

order to give an overview of our work, which we hope will serve as a useful starting point

to anyone who is new to the area, whether academic researcher or practitioner.

In a large(ish) collection of individual papers, there are bound to exist differences in

notation. In particular, we have used two conventions for denoting (matrix dimension,

sample size) over the years, namely (p, n) for papers in statistics journals and (N, T ) for

papers in finance journals. Since this review paper is for a finance journal, we shall use

the convention (N, T ). Needless to say, there are other differences in notation, but we

cannot point them out all one by one.

Another compromise that we will have to make is in terms of mathematical rigor.

Unlike in individual papers, there is no space to provide proofs in a review paper. And

to go one step beyond, it would also go too far to spell out the assumptions in detail for

every method, respectively approach. So we will take the liberty to be purposefully vague

about assumptions here and there and refer the reader to the corresponding paper(s) for

the details instead.

Last but not least, this review is necessarily restricted to our own papers. Estimation

of large-dimensional covariance matrices has become a very active research field and we

simply do not have the space here to provide a comprehensive review, which would take

an entire book, such as the work of Pourahmadi (2013).

1Our research does not address the scenario where the matrix dimension is vastly larger than the

sample size.
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The remainder of the paper is organized as follows. Section 2 presents linear shrinkage

to the identity matrix, which is the starting point of the journey. Section 3 adapts linear

shrinkage to a variety of custom-tailored targets. Section 4 generalizes linear shrinkage to

nonlinear shrinkage, which is more flexible and powerful. Section 5 presents an extension

to dynamic models. Section 6 presents an extension to factor models. Section 7 discusses

computational aspects. Finally, Section 8 concludes.

2 Linear Shrinkage to the Identity Matrix

In this section, and in the sections to come until further notice, the data are independent

and identically distributed (i.i.d.), collected in a T × N matrix XT , so that the rows of

the matrix correspond to observations and the columns correspond to variables. The true

(or population) covariance matrix is denoted by ΣT and assumed to be positive definite.

Even though the population covariance matrix is fixed in this section, we index it by T

for notational consistency with some subsequent sections, where the dimension of the

population covariance matrix will vary and go to infinity as a function of the sample

size T . To simplify the notation, we assume that all variables have mean zero. In this

way, the sample covariance matrix is given by

ST
..=

1

T
X ′

TXT ,

where the symbol ..= indicates that the left-hand side is defined to be equal to the right-

hand side.

Remark 2.1 (Demeaning the data). In many applications, variables do not have mean

zero, or at least it is not known whether they have mean zero. In such a setting, it is

more common to base the sample covariance matrix on the demeaned data instead; see

Section 7.

Remark 2.2 (Notational conventions). Population quantities are generally denoted by

Greek letters, with sample counterparts denoted by the corresponding Latin letter: for

example, ΣT and ST . Other estimators can be indicated by various superscripts: star ( ∗ )

for linear shrinkage, and for nonlinear shrinkage circle ( ◦ ) or bullet ( • ). They represent

bona fide estimators if they have a hat (ˆ) or tilde (˜) accent, but without that they are

an oracle, and thus not feasible in practice. This system allows us to present progressively

more sophisticated oracle estimators that are optimal in certain ways, and then obtain

feasible counterparts for them that have the same asymptotic properties.
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2.1 Finite-Sample Analysis

The sample covariance matrix ST is unbiased and the maximum likelihood estimator

under normality. There was a time when it was thought that such an estimator would

be ideal, or at least desirable. This line of thinking was changed by the seminal work

of Stein (1956) and James and Stein (1961) in the related context of the estimation of

a multivariate mean: In dimensions N > 3, a better estimator than the sample mean

can be constructed by shrinking the sample mean to a target vector, that is, by using a

linear combination of the sample mean and the target vector; the original proposal by

Charles Stein was to use the zero vector for the target. Better in which sense? In the

‘usual’ sense, that is, in the sense of the mean squared error (MSE), which is the most

widely used generic risk function in statistics. This is a classic example of a bias-variance

tradeoff. On the one hand, shrinking to a fixed (or structured) target introduces bias; on

the other hand, shrinking reduces variance. Stein’s genius was to recognize that using the

optimal shrinkage intensity reduces the MSE compared to the sample covariance matrix,

which is unbiased but exhibits high(er) variance.

Note that the optimal shrinkage intensity (that is, the weight given to the target

vector) depends on population quantities, but those can be estimated from the data in

practice. The work of Stein (1956) and James and Stein (1961) was so revolutionary that

it took a while for it to be digested and embraced by the academic community; this process

was aided by Efron and Morris (1973, 1975, 1977) who provided a more in-depth analysis

of Stein’s shrinkage method, which included the suggestion of alternative shrinkage

targets, and also empirical applications to real data. In particular, they suggested as

an alternative shrinkage target a multiple of the identity vector (of dimension N) rather

than the zero vector, where the multiplier was given as the mean of the N individual

sample means (which is equal to the grand mean of all the individual observations). This

alternative shrinkage target received a warmer welcome from applied researchers because

the effect of shrinkage was a more intuitive one: move the small sample means up and the

large sample means down (whereas shrinkage to the zero vector moves all sample means

towards zero, which means moving all sample means down in case they are all positive).

The motivation of Ledoit and Wolf (2004b) was very simple: extend Stein’s shrinkage

estimation of the mean vector to the estimation of the covariance matrix, keeping the

MSE risk function. To this end, denote by || · ||F the (scaled) Frobenius norm of a square

matrix; more specifically, for a N ×N matrix A, this norm is given by

||A||F ..=
√

〈A,A〉 ..=
√

Tr(A′A)/N =

√

√

√

√

1

N

N
∑

i=1

N
∑

j=1

a2ij , (2.1)

where aij denotes the (i, j) entry of A and Tr(·) denotes the trace of a square matrix.
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Note that the division by the dimension N inside the square root is not standard in the

definition of the Frobenius norm (which is just the generalization of the Euclidian norm

from a vector to a matrix), but we will use it for the purpose of the asymptotic analysis

below. The (scaled) Frobenius loss function is given by

LF(Σ̂T ,ΣT ) ..= ||Σ̂T − ΣT ||2F , (2.2)

where Σ̂T denotes a generic estimator of ΣT . Finally, the (scaled) MSE is given by

E
[

LF(Σ̂T ,ΣT )
]

= E
[

||Σ̂T − ΣT ||2F
]

. (2.3)

The class of estimators we considered was that of linear combinations of the identity

matrix, denoted by IT , and the sample covariance matrix, so that the optimization

problem became:

minρ1,ρ2 E
[

||Σ̂T − ΣT ||2F
]

(2.4)

s.t. Σ̂T = ρ1IT + ρ2ST (2.5)

The solution to this problem turns out to be

Σ∗

T
..=

β2
T

δ2T
µT IT +

α2
T

δ2T
ST , (2.6)

with µT
..= 〈ΣT , IT 〉, α2

T
..= ||ΣT −µT IT ||2F, β2

T
..= E[||ST −ΣT ||2F], and δ2T

..= ||ST −µT IT ||2F];
see Equation (2.1) for the definition of the operator 〈·, ·〉. Since it can be shown that

α2
T + β2

T = δ2T , the solution (2.6) can also be written as a convex linear combination of a

multiple of the identity matrix, µT IT , and ST , namely,

Σ∗

T = γ∗

TµT IT + (1− γ∗

T )ST with γ∗

T
..=

β2
T

δ2T
. (2.7)

In this way, the solution Σ∗

T can be interpreted as shrinking the sample covariance

matrix ST towards the shrinkage target µT IT with (shrinkage) intensity γ∗

T ∈ [0, 1]. The

multiplier µT in the shrinkage target makes intuitive sense: Since µT is equal to the

average diagonal entry of ΣT — that is, equal to the average of the individual variances

— it puts the shrinkage target on the right ‘scale’ for a convex linear combination with

the sample covariance matrix. For example, if all the variables are multiplied by two, the

shrinkage targets gets multiplied by four, just like the sample covariance matrix and also

the true covariance matrix.

An important feature of Σ∗

T is that it is positive definite, and thus invertible, even

when N > T (by contrast with the sample covariance matrix, which is rank-deficient and

thus not invertible, in this case). This is because Σ∗

T is a convex linear combination of a

matrix that is positive definite, µT IT , and another matrix that is positive semi-definite, ST ,

where the weight given to the target µT IT is positive (in all cases of practical relevance).
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2.2 Asymptotic Analysis

The optimal linear combination Σ∗

T depends, as to be expected, on unknown population

quantities and must therefore be thought of as an ideal (or ‘oracle’) but infeasible

estimator. But knowing its formula, it is not difficult to derive a feasible estimator that,

asymptotically, is just as good. When we say “asymptotically”, we must specify what

we mean by that. In most of our work, we have used large-dimensional (or Kolmogorov)

asymptotics, where the dimension, N , is allowed to go to infinity together with the sample

size, T . Since we are only interested in situations where N is of the same magnitude as T ,

and not in situations where N is vastly larger than T , we may assume without loss of

generality that N/T → c ∈ [0,∞), where c is called the limiting concentration (ratio).2

We further may assume without loss of generality that N is an implicit function of T ,

so that we can index all quantities simply by T , as before.

Based on Equation (2.7), we only need to estimate the three parameters µT , δ
2
T , and β2

T .

The respective solutions are as follows. First,

µ̂T
..= 〈ST , IT 〉 =

1

N

N
∑

i=1

sTii , (2.8)

where sTij denotes the (i, j) entry of ST . Second,

δ̂2T
..= ||ST − µ̂T IT ||2F . (2.9)

Third, denote by xT
t· the tth row of the T × N data matrix XT (‘converted’ to a proper

N × 1 vector), so that, in particular, it holds that

ST
..=

1

T
X ′

TXT =
1

T

T
∑

t=1

xT
t·(x

T
t·)

′ .

The estimator of β2
T is then given by

β̂2
T

..= min{β̃2
T , δ̂

2
T} with β̃2

T
..=

1

T

T
∑

t=1

||xT
t·(x

T
t·)

′ − ST ||2F , (2.10)

where the truncation of β̃T is used to ensure a proper convex linear combination in the

feasible shrinkage estimator

Σ̂∗

T
..= γ̂∗

T µ̂T IT + (1− γ̂∗

T )ST with γ̂∗

T
..=

β̂2
T

δ̂2T
. (2.11)

2Ledoit and Wolf (2004b) assume the weaker condition that there exist a finite constant K1 such

that N/T < K1 always, but there does not appear to be any practical benefit from having this weaker

condition.
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(Note that in practice this truncation rarely kicks in and γ∗

T < 1.)

Under a set of regularity conditions, one can show that the three estimators

(2.8)–(2.10) are consistent in quadratic mean, which implies that Σ̂∗

T is also a consistent

estimator of Σ∗

T in quadratic mean, namely that

E
[

||Σ̂∗

T − Σ∗

T ||2F
]

→ 0 . (2.12)

(The corresponding regularity conditions consist of moment conditions and certain

distributional assumptions that are weaker than assuming an elliptical distribution, let

alone a multivariate normal distribution.)

An implication of (2.12) is that the feasible estimator Σ̂∗

T has asymptotically the same

risk as the infeasible optimal linear combination Σ∗

T for estimating ΣT in the sense that

E
[

||Σ̂∗

T − ΣT ||2F
]

− E
[

||Σ∗

T − ΣT ||2F
]

→ 0 . (2.13)

Remark 2.3. It is important not to mistake consistent estimation of Σ∗

T — that is,

consistent estimation of the optimal linear combination (2.7) — for consistent estimation

of ΣT itself — that is, for consistent estimation of the true covariance matrix. The

latter, stronger result obtains in the special case when the limiting concentration ratio c

is zero, that is, when N/T → 0; this case includes traditional asymptotics where N is

fixed whereas T alone tends to infinity. In such a case, already the sample covariance

matrix ST is a consistent estimator, so nothing is gained by using a shrinkage estimator

instead, at least not asymptotically. On the other hand, consistency does not obtain in

general for the case c > 0, which is the relevant case in situations where N is not negligible

with respect to T . This should not be surprising, since one cannot expect to estimate

N(N + 1)/2 parameters (namely, the distinct entries of the symmetric matrix ΣT ) from

N × T random univariate realizations if these two numbers are of the same magnitude,

at least not in the absence of restrictive assumptions.

There is a different strand of literature, going back to at least Bickel and Levina

(2008b,a), that makes the strong (and unverifiable in practice) assumption that the true

covariance matrix ΣT is sparse. In such a restrictive setting, consistent estimation of ΣT

itself is possible even when c > 0.

The feasible estimator Σ̂∗

T shares with the optimal linear combination Σ∗

T the important

property of being positive definite and thus invertible (with probability one) even in the

case when N > T . Indeed, as can be seen from Equation (2.11), Σ̂∗

T is also a convex linear

combination of a positive definite (with probability one) matrix, µ̂T IT , and positive semi-

definite matrix, ST , where the weight given to the target µ̂T IT is positive (with probability

one).
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2.3 Simulation Evidence

In Ledoit and Wolf (2004b), we compared the finite-sample performance of the feasible

estimator Σ̂∗

T to that of three other estimators from the literature via Monte Carlo

simulations:

• an empirical Bayes estimator proposed by Haff (1980);

• the better performing estimator, for any given simulated data set, of Stein (1975)

and Haff (1982);

• and the minimax estimator derived independently by Stein (1982) and Dey and Srinivasan

(1985).

(These three estimators were derived under loss functions different from the Frobenius

loss; see Section 4.5. But at the beginning of the century, estimation of large-dimensional

covariance matrices was not an active field yet and so there were not many estimators to

choose from.)

Over a wide range of scenarios, all four estimators improved upon the sample

covariance matrix in terms of empirical MSE, and the shrinkage estimator Σ̂∗

T was overall

the best; in particular, our estimator improved upon the sample covariance matrix in every

single scenario. Moreover, as long as both N, T ≥ 20, the finite-sample performance was

already well approximated by asymptotic results.

2.4 Applications

The demand for a well-conditioned estimator of large-dimensional covariance matrices in

applied research is great, and far greater than we had originally imagined. Indeed, our

estimator has been used in a variety of different fields for a wide range of applications.

To list some representative examples only:

Acoustics Optimally removing noise from signals captured from an array of hydrophones

(Zhang et al., 2009).

Cancer Research Mapping out the influence of the human papillomavirus (HPV) on

gene expression (Pyeon et al., 2007).

Chemistry Estimating the temporal autocorrelation function (TACF) for fluorescence

correlation spectroscopy (Guo et al., 2012).

Civil Engineering Detecting and identifying vibration–based bridge damage through

random coefficient pooled (RCP) models (Michaelides et al., 2011).

Climatology Detecting trends in average global temperature through the optimal

fingerprinting method (Ribes et al., 2013).
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Electromagnetics Studying correlation between reverberation chamber measurements

collected at different stirrer positions (Pirkl et al., 2012)

Entertainment Technology Designing a video game controlled by performing tricks

on a skateboard (Anlauff et al., 2010).

Genetics Improving the accuracy of genomic-estimated-breeding-value (GEBV) predic-

tions with low-density markers (Endelman and Jannink, 2012).

Geology Modeling multiphase flow in subsurface petroleum reservoirs with the iterative

stochastic ensemble method (ISEM) on inverse problems (Elsheikh et al., 2013).

Image Recognition Detecting anomalous pixels in hyperspectral imagery (Bachega et al.,

2011).

Macro-finance Improved GLS regressions of stochastic discount factor models (Korniotis,

2008).

Neuroscience Calibrating brain-computer interfaces (Lotte and Guan, 2009).

Psychology Modeling co-morbidity patterns among mental disorders (Markon, 2010).

Road Safety Research Developing an emergency braking assistance system (Haufe et al.,

2011).

Signal Processing Adaptive ‘Capon’ beamforming to recover electronic signals imping-

ing upon an array of receptors (Abrahamsson et al., 2007).

Speech Recognition Automatic transcription of phone conversation records (Bell and King,

2009).

3 Linear Shrinkage to a Custom-Tailored Target

Our own motivation in deriving reliable estimators of large-dimensional covariance

matrices was mainly in the area of finance, namely for the application of Markowitz

portfolio selection. So why is finance largely missing in the previous list of fields? This is

because we devised some alternative estimators, at the same time already, that tend

to work even better for finance applications. These estimators recognize that financial

covariance matrices typically have some stylized features that can be exploited in devising

an improved shrinkage target compared to using (a multiple of) the identity matrix, which

is the natural choice for a generic target.

To build some motivation, what is a good shrinkage target? It should come as close

a possible to the true covariance matrix with as few parameters as possible. So it is a

‘balancing act’ between accuracy and parsimony. A good shrinkage target will benefit

from application-specific knowledge and thus involves some custom tailoring. If our goal

is to estimate the covariance matrix of a universe of stock returns, then we can exploit
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one of the following known features: first, stock returns have a factor-model structure,

at least to some extent; second, the average correlation is positive; third, the average

covariance is positive also. Depending on which feature we want to use, the resulting

shrinkage target will differ accordingly.

In Ledoit and Wolf (2003), we used the first feature in form of the capital asset pricing

model (CAPM) dating back to Sharpe (1964) and Lintner (1965). According to this

model,

xti = αi + βixt0 + uti i = 1, . . . , N, t = 1, . . . , T, (3.1)

where xti is the return on stock i in period t, αi and βi are parameters specific to stock i,

xt0 is the market return in period t, and uti is an error term that satisfies E(uti|xt0) = 0

and E(utiutj) = 0 for i 6= j. Model (3.1) implies that ΣT = ΦT with

ΦT
..= σT

00βTβ
′

T +∆T , (3.2)

where σT
00

..= Var(xt0), βT
..= (β1, . . . , βN )

′, and ∆T is a diagonal matrix with typical entry

δTii
..= Var(uti). The matrix ΦT is unknown in practice but it can be estimated as

FT
..= σ̂T

00β̂T β̂
′

T + ∆̂T , (3.3)

where σ̂T
00 is the sample variance of the {xt0}, β̂T is obtained through estimating

model (3.1) by ordinary least squares (OLS) one stock at a time, and a typical diagonal

entry of ∆̂T is given by δ̂Tii , taken to be the sample variance of the OLS residuals {ûti}.
If one believes in the CAPM, Ft is the ‘perfect’ estimator of Σt: Just like the sample

covariance matrix ST , it is (asymptotically) unbiased, but it only has 2N + 1, rather

than N(N + 1)/2, parameters and therefore contains much less estimation error (that is,

variance). The problem is that no one believes in the CAPM anymore, at least not as a

‘perfect’ model. Indeed, the CAPM serves as useful approximation, but its assumptions

do not hold exactly true; in particular, for many pairs of stocks (i, j), there is evidence

that E(utiutj) 6= 0; for example, for pairs of stocks belonging to the same industry. The

idea of Ledoit and Wolf (2003) was, therefore, to use FT as a shrinkage target ‘only’,

that is, to use a convex linear combination γTFT + (1 − γT )ST as the estimator of ΣT .

Intuitively, the closer FT is to the true ΣT , the larger should be the shrinkage intensity γT .

Clearly, this approach can also be used with other (feasible) shrinkage targets. In

Ledoit and Wolf (2004a), we used the second feature mentioned above, namely the fact

that the average correlation of stock returns is positive. The infeasible (or population)

target is given by ΦT with typical entry φT
ij =

√

σT
iiσ

T
jjρT , where ρT is a common

correlation, that is, Cor(xti, xtj) ≡ ρT ; here, the symbol ≡ indicates that the left-hand side

is constantly equal to the right-hand side. The feasible shrinkage target is then given by

FT with typical entry fT
ij

..=
√

σ̂T
ii σ̂

T
jj ρ̂T , (3.4)
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where σ̂T
ii is the sample variance of the {xti} and ρ̂T is the average of the N(N−1) sample

correlations between {xti} and {xtj}, for 1 ≤ i 6= j ≤ N . Note that for this shrinkage

target, N + 1 parameters need to be estimated.

Using the third feature mentioned above, namely the fact that the average covariance

of stock returns is also positive, suggests a shrinkage target ΦT that has a common

variance σ2 on the diagonal and a common covariance η on the off-diagonal. The feasible

shrinkage target is then given by

FT with fT
ii

..= σ̂2
T and fT

ij
..= η̂T , (3.5)

where σ̂2
T is the average of the N sample variances of the {xti}, for i = 1, . . . , N ,

and η̂T is the average of the N(N − 1) sample covariances between {xti} and {xtj},
for 1 ≤ i 6= j ≤ N . Note that for this shrinkage target, only two parameters need to

be estimated. Obviously, the two-parameter shrinkage target (3.5) is a generalization

of the generic target used in Equation (2.11), which has the same value σ̂2
T on the

diagonal but sets the off-diagonal entries to η̂T ..= 0. Therefore, the generic shrinkage

target seems less appropriate for a covariance matrix of a universe of stock returns. The

target (3.5) was first suggested by Ledoit (1995, Appendix B.1), then was also proposed

by Schäfer and Strimmer (2005) in a different context related to genomics, and has been

used by Wolf and Wunderli (2012) to estimate the covariance matrix of a universe of

hedge fund returns.

3.1 Finite-Sample Analysis

Again, we based the optimal solution on the (scaled) Frobenius loss function, so that the

minimization problem became

minγT E
[

||Σ̂T − ΣT ||2F
]

(3.6)

s.t. Σ̂T = γTFT + (1− γT )ST (3.7)

Assuming that E(FT ) = ΦT , the solution to this problem turns out to be

γ∗

T
..=

∑N
i=1

∑N
j=1

[

Var(sTij)− Cov(fT
ij , s

T
ij)
]

∑N
i=1

∑N
j=1

[

Var(fT
ij − sTij) + (φT

ij − σT
ij)
] , (3.8)

resulting in the optimal linear combination

Σ∗

T
..= γ∗

TFT + (1− γ∗

T )ST . (3.9)

(More generally, one needs to replace φT
ij with E

(

fT
ij

)

in (3.8) if E(FT ) 6= ΦT , but

doing so does not affect our asymptotic analysis below as long as E(FT ) = ΦT holds true

asymptotically.)
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This optimal linear combination Σ∗

T can be interpreted as an oracle (and thus

infeasible) empirical Bayes estimator, in the sense that the shrinkage target FT can be

thought of as a data-dependent prior. Importantly, this prior is computed from the same

set of data as the sample covariance matrix ST itself, and this fact should be reflected in

the optimal shrinkage intensity γ∗

T ; this is indeed the case as will be explained below.

3.2 Asymptotic Analysis

Again, the optimal linear combination Σ∗

T depends on unknown population quantities

and must be estimated in practice to obtain a feasible estimator. Unfortunately, in

this more general setting, we have not been able to derive a consistent estimator under

large-dimensional asymptotics and, therefore, had to settle for standard (or traditional)

asymptotics where N remains fixed and only T tends to infinity. Such a setting is

not entirely satisfactory on theoretical grounds but it can (and does) still yield feasible

estimators that perform well in practice.

Under traditional asymptotics, and the mild assumption that ΦT 6= ΣT , it can be

shown that

γ∗

T =
1

T

πT − ρT
νT

+O

(

1

T 2

)

(3.10)

with πT
..=

N
∑

i=1

N
∑

j=1

AsyVar
(
√
TsTij

)

, (3.11)

ρT ..=
N
∑

i=1

N
∑

j=1

AsyCov
(
√
TfT

ij ,
√
TsTij

)

, (3.12)

and νT ..=
N
∑

i=1

N
∑

j=1

(

φT
ij − σT

ij

)2
, (3.13)

where AsyVar(·) stands for asymptotic variance and AsyCov(·) stands for asymptotic

covariance, tacitly assuming a set of regularity conditions to ensure that these quantities

exist.3

It is instructive to briefly study the influence of the three terms that co-determine the

optimal shrinkage intensity γ∗

T , up to higher-order terms.

First, the term πT measures the estimation uncertainty in the sample covariance

matrix ST ; ceteris paribus, the larger this estimation uncertainty, the larger should

be the shrinkage intensity. Second, the term ρT measures the (‘combined’) covariance

3Consider an estimator θ̂T of a parameter θ that satisfies
√
T (θ̂T − θ)

d→ N(0, σ2), where
d→ denotes

convergence in distribution. Then, in our parlance, AsyVar(
√
T θ̂T ) = σ2; and analogously for the

definition of the operator AsyCov(·, ·).
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between the data-dependent shrinkage target FT and ST ;
4 ceteris paribus, the larger the

covariance between FT and ST , the smaller should be the shrinkage intensity, because a

large covariance implies that FT provides little independent information about ΣT relative

to ST . Third, the term νT measures how close the population version of the shrinkage

target, ΦT , is to the population covariance matrix, ΣT ; ceteris paribus, the closer the two

are to each other, the larger should be the shrinkage intensity.

Given formula (3.10), the estimation of the optimal shrinkage intensity γ∗

T is

straightforward: estimate the three terms πT , ρT , and νT separately, and ignore higher-

order terms.

First, a consistent estimator of πT is standard and given by

π̂T
..=

N
∑

i=1

N
∑

j=1

π̂T
ij with π̂T

ij
..=

1

T

T
∑

t=1

[

xT
tix

T
tj − sTij

]2

.

(Note that this estimator is numerically equal to the estimator β̃T of Equation (2.10).)

Second, a consistent estimator of ρT depends on the choice of shrinkage target FT

and thus requires a case-by-case analysis. We provide the corresponding details for

the choices (3.3) and (3.4) in Ledoit and Wolf (2003, Lemma 2) and Ledoit and Wolf

(2004a, Appendix B), respectively. Some details for the choice (3.5) can be found in

Schäfer and Strimmer (2005, Appendix A).

Third, a consistent estimator of νT is simply given by

ν̂T ..=
N
∑

i=1

N
∑

j=1

(

fT
ij − sTij

)2
,

and thus does not require any extra work.

In this way, we get an estimator of the optimal shrinkage intensity as

γ̂∗

T
..= min

{

max
{

γ̃∗

T , 0
}

, 1
}

with γ̃∗

T
..=

1

T

π̂T − ρ̂T
ν̂T

, (3.14)

where the truncation of γ̃∗

T is used to ensure a proper convex linear combination in the

feasible shrinkage estimator

Σ̂∗

T
..= γ̂∗

TFT + (1− γ̂∗

T )ST . (3.15)

(Note that in practice this truncation rarely kicks in.)

The methodology for estimating γ̂∗

T is completely generic and can be easily adapted

to other shrinkage targets as well. The only ‘hard’ work to be done is to find a consistent

4The inclusion of this term explicitly accounts for the fact that the shrinkage target is computed from

the same set of data as ST and was ignored in related work by Frost and Savarino (1986), for example.
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estimator of the term ρT , which requires a case-by-case analysis. For example, consider

a setting where we want to estimate the covariance matrix of a universe of assets that

belong to two different asset classes, such as stocks and bonds. Then a sensible population

shrinkage target ΦT would be one having five parameters: two common variances (one

for each asset class), two common within-covariances (one for each asset class), and

one common across-covariance; the feasible shrinkage target FT can be estimated in the

obvious way and the estimator γ̂∗

T of corresponding optimal shrinkage intensity γT can be

derived using the methodology described above.

3.3 Simulation Evidence

In Ledoit and Wolf (2004a), we carried out a ‘hybrid’ empirical analysis that was part

real-life back-testing and part simulation study. The idea was to emulate a portfolio

manager who has a certain amount of skill in predicting future stock returns. The setting

was one of a manager trying to outperform a given index subject to a constraint on

the tracking error, which can be formulated as a Markowitz portfolio selection problem

requiring a good estimator of the covariance matrix of the stock returns in practice. For

the forecasts of the manager, we took the actual stock returns (in the upcoming, ‘future’

period) and added a certain amount of noise to them in order to match a desired level

of skill. The performance measure was the information ratio of the excess returns of the

portfolio (that is, the returns in excess of the index returns).

We compared four estimators of the covariance matrix: the sample covariance matrix,

linear shrinkage to the single-factor matrix (3.3), linear shrinkage to the constant-

correlation matrix (3.4), and an estimator based on a five-factor model where the

factors were the first five principal components of the sample covariance matrix; this

last estimator is in the spirit of Connor and Korajczyk (1988, 1993). We also considered

five different portfolio sizes N ∈ {30, 50, 100, 225, 500}.
All three improved estimators of the covariance matrix dominated the sample

covariance matrix, but there was no clear winner among the three. If anything, shrinkage

to the constant-correlation matrix was best for portfolio sizes N ≤ 100, whereas shrinkage

to the single-factor matrix was best for portfolio sizes N ≥ 225.

3.4 Applications

There are plenty of applications of linear shrinkage to the single-factor matrix or the

constant-correlation matrix, going back to the empirical analysis we provided already

in Ledoit and Wolf (2003). Most applications are in the context of Markowitz portfolio

selection and are too numerous to list them all. We think it is fair to say that, for
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quite some time, no one was able to outperform linear shrinkage by alternative methods.

For example, DeMiguel et al. (2009) proposed the methodology of norm-constraining

(that is, using an upper bound on the norm of a portfolio weight vector, such as on the

gross exposure) to construct improved portfolios, as an alternative to Markowitz portfolio

selection based on an improved estimator of the covariance matrix of asset returns. In a

backtest exercise involving a universe of 500 randomized stocks, the various portfolios they

proposed all (weakly) underperformed the Markowitz portfolio based on the estimator of

the covariance matrix obtained by shrinkage to the single-factor matrix.5

An application outside of Markowitz portfolio selection involves the famous distance

test by Hansen and Jagannathan (1997) for the evaluation of stochastic discount factors.

Unfortunately, the test in its originally suggested form is quite liberal in finite samples,

meaning that the probability of rejecting a true null hypothesis can be far above the

nominal significance level. The main reason for this fact is that the test statistic needs an

estimator of the inverse of a certain covariance matrix, and using the standard estimator

based on the sample covariance matrix does not work well. Ren and Shimotsu (2009)

showed that if instead one uses an estimator based on shrinkage to the single-factor

model, the size-distortion problems of the test are greatly alleviated.

Yet another application uses shrinkage to the single-factor matrix for improved

estimation of a covariance matrix in order to whiten and demean data, as one of many

‘wheels’ in the estimation of a multivariate GARCH model; see Broda and Paolella (2009).

4 Nonlinear Shrinkage

Linear shrinkage to a custom-tailored target is one way of generalizing and improving the

generic method of linear shrinkage to (a multiple of) the identity matrix. But it requires

a judicious choice of the shrinkage target, which must be based on known features of the

true covariance matrix for the application at hand.

Is it possible to generalize and improve linear shrinkage to (a multiple of) the identity

matrix in the absence of such knowledge? In other words, can we be totally ignorant

about the true covariance matrix and still do better than generic linear shrinkage?

The intuitive way of interpreting the optimal linear combination (2.7) is the one of

moving each entry of the sample covariance matrix ST to the shrinkage target µT IT with

common intensity γ∗

T . A generalization that comes immediately to mind would be to use

different intensities for different entries; for example, entries of ST that have relatively

5Backtest exercises involving (smaller) universes of portfolios as assets, such as ten industry portfolios

or 25 Fama-French portfolios yielded inconclusive results, with neither methodology dominating the

other.
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more (less) sampling error should be moved more (less) to the corresponding entries of

µT IT . But there are two problems with this idea. First, the number of distinct entries

of ST is of the order N2 and so one would have to consider a large and rapidly growing

number of different shrinkage intensities. Second, and more importantly, if different

shrinkage intensities are used on the different entries of ST , there is no (easy) way of

ensuring that the resulting shrinkage estimator will be positive semi-definite, let alone

positive definite. Therefore, we needed another starting point in order to generalize linear

shrinkage to the identity matrix.

The proper starting point turned out to be the spectral decomposition of the sample

covariance matrix, which is given by ST = UTΛTU
′

T . Here, ΛT
..= Diag(λT,1, . . . , λT,N)

is a diagonal matrix6 whose diagonal entries are the sample eigenvalues λT,i, and

UT
..= [uT,1, . . . , uT,N ] is a orthogonal matrix whose columns are the sample eigenvectors

uT,i. This starting point provides an alternative interpretation of the optimal linear

combination (2.7) which we already pointed out in Ledoit and Wolf (2004b): One can

also express this linear combination as

Σ∗

T
..= UT∆

∗

TU
′

T with ∆∗

T
..= Diag(δ∗T,1, . . . , δ

∗

T,N ) and δ∗T,i
..= γ∗

TµT + (1− γ∗

T )λT,i . (4.1)

Therefore, Σ∗

T has the same eigenvectors as ST but replaces the sample eigenvalues λT,i

with convex linear combinations γ∗

TµT+(1−γ∗

T )λT,i. This means that shrinking the entries

of ST to the entries of the target µT IT with common intensity γ∗

T is equivalent to keeping

the eigenvectors of ST and shrinking its eigenvalues to the target µT (which is actually

equal to the mean of the population eigenvalues) with the same common intensity γ∗

T .

The generalization is now obvious: use different shrinkage intensities for different sample

eigenvalues; or, equivalently, move a given sample eigenvalue by an ‘individual’ amount,

up or down! (This approach allows for individual shrinkage intensities to be negative,

that is, to move sample eigenvalues away from the target µT .) Clearly, this more general

approach will be at least as good as using a common shrinkage intensity, at least as long

as the distinct intensities are chosen ‘suitably’. What is more, this approach will lead to

a positive-definite estimator as long as all the transformed eigenvalues are positive.

Interestingly, this approach fits into the following class of estimators already

introduced by Stein (1975, 1986):

Σ̂T
..= UT∆TU

′

T with ∆T
..= Diag(δT,1, . . . , δT,N ) . (4.2)

6In slight abuse of notation, we will use the operator Diag(·) for two different purpose. On the one

hand, for a N × 1 vector vector a ..= (a1, . . . , aN )′, Diag(a1, . . . , aN ) denotes a N × N diagonal matrix

whose diagonal is the vector a. On the other hand, for a N ×N matrix A with typical entry aij , Diag(A)

denotes the N × 1 vector (a11, . . . , aNN )′.
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Here, ∆T is an unrestricted diagonal matrix, apart from assuming that min{δT,i} ≥ 0

so that the estimator Σ̂T will be positive semi-definite. Imposing the stronger assumption

min{δT,i} > 0 ensures that the estimator Σ̂T will be positive definite. Note that the

specific shrinkage formula injected by Stein into (4.2) differs from our own choices

reviewed in this paper; see Ledoit and Wolf (2018, p. 3810) for a more detailed comparison

between the shrinkage formulas.

One nice property of this class is that it only contains estimators that are rotation-

equivariant. Let WT be a rotation matrix, that is, an orthogonal matrix with determinant

one. Also, let Σ̂T (·) denote a generic estimator of the covariance matrix ΣT . An estimator

is said to be rotation-equivariant if it satisfies

Σ̂T (WTXT ) = WT Σ̂T (XT )W
′

T ,

that is, rotating the data results in an according rotation of the estimator. In the absence

of any a priori knowledge on the structure of ΣT , rotation-equivariance is a natural and

desirable property of a covariance matrix estimator. Intuitively, we have to retain the

sample eigenvectors because we have no idea in which direction to rotate them (with the

goal of bringing them closer to their population counterparts), unless we make strong

structural assumptions like sparsity.

4.1 Finite-Sample Analysis

It had been our original plan to do as before with linear shrinkage, that is, minimize

the Frobenius risk in the class of considered estimators to find the optimal one in finite

samples. However, it turned out that, in this setting, we could do even better, namely,

minimize the actual Frobenius loss in the class of considered estimators. Needless to say,

an estimator that minimizes the loss also minimizes the risk.

The optimization problem thus became:

min∆T
||UT∆TU

′

T − ΣT ||2F (4.3)

s.t. ∆T = Diag(δT,1, . . . , δT,N ) (4.4)

The optimal solution to this problem turns out to be

∆◦

T
..= Diag(δ◦T,1, . . . , δ

◦

T,N ) with δ◦T,i
..= u′

T,iΣTuT,i . (4.5)

The optimal diagonal entries δ◦T,i, unsurprisingly, are not equal to the sample eigenvalues,

since then we would recuperate the sample covariance matrix as the estimator. But,

surprisingly perhaps, the optimal diagonal entries are also not equal to the population

eigenvalues; this is because the population eigenvalues are a perfect match for the
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population eigenvectors — which combination would recuperate the true covariance

matrix — but not for the sample eigenvectors. The problem is that in practice we

only get to observe the sample eigenvectors but not the population eigenvectors. The

optimal diagonal entries δ◦T,i combine sample and population information, namely how

the ith sample eigenvector uT,i relates to the population covariance matrix ΣT .

Remark 4.1 (Relation to PCA). Another way to look at the optimal entry δ◦T,i is that

it is equal to the variance of the ith principal component, where the principal components

are derived from the sample covariance matrix, as is customary in practice. By being

able to consistently estimate the quantities δ◦T,i, one can carry out improved principal

component analysis (PCA) in situations where N is of the same magnitude as T . Because

of space constraints, we will not address this topic any further here; the interested reader

is referred to Ledoit and Wolf (2015, Section 4) for the corresponding details.

The finite-sample optimal ‘estimator’ is then given by

Σ◦

T
..= UT∆

◦

TUT with ∆◦

T as defined in (4.5) . (4.6)

An important feature of Σ◦

T is that it is positive definite, and thus invertible, even in the

case when N > T . This is because δ◦T,i > 0, for i = 1, . . . , N .

We actually already mentioned the entries δ◦T,i in Ledoit and Wolf (2004b, p. 374),

but without formally proving their finite-sample optimality. Also, at that time we had

no idea how to carry out asymptotic analysis in order to find a related feasible estimator;

we had to discover, and extend, a whole new machinery to this end, as outlined below.

4.2 Asymptotic Analysis

The ‘estimator’ (4.6) is not feasible in practice (hence the use of the single quotation

marks), since the optimal diagonal entries δ◦T,i depend on the very object that we want

to estimate: the true covariance matrix ΣT .

What complicates matters compared to linear shrinkage is that the number of

parameters is not fixed but is equal to N and thus tends to infinity. Therefore, it is

useful to rephrase the estimation problem in order to only have a single, dimension-free

‘object’ to estimate. The proper object to think about is a function that transforms the

sample eigenvalues to the diagonal entries of the matrix ∆◦

T ; clearly, such a function does

not depend on the number of diagonal entries, N , and is thus dimension-free. For full

flexibility, we do not want to impose any restriction on such a function, other than that

the output must be positive in order to obtain a positive-definite and thus invertible

matrix. For the purpose of asymptotic analysis, the function may depend on the sample
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size T but converges to a (non-stochastic) limit, as T tends to infinity. The goal is then

to find the optimal limiting function, and estimate it consistently from the observed data.

Since any meaningful estimator depends on the data, we must also allow for the functions

used in practice to be data-dependent (or stochastic).

The class of estimators we consider is therefore given by

Σ̂T
..= UT ∆̂TUT with ∆̂T

..= Diag(δ̂T,1, . . . , δ̂T,N ) , (4.7)

where δ̂T,i ..= φ̂T (λN,i) and φ̂T : R → R+ is a real univariate function, called the shrinkage

function, allowed to depend on the observed data through ST . We further assume that,

as T tends to infinity, φ̂T converges to a non-stochastic limiting shrinkage function φ.

The goal is to find the ‘optimal’ φ.

In order to accomplish this goal, we had to invoke some heavy-duty machinery from a

research field called random matrix theory (RMT), which dates back to the seminal works

of Wigner (1955) and Marčenko and Pastur (1967). This field studies large-sample, or

asymptotic, properties of various features of sample covariance matrices, with a major

focus on the sample eigenvalues. Under a rather lengthy set of regularity conditions, it can

be shown that the sample eigenvalues are non-stochastic in the limit. More particularly, as

the dimension N and the sample size T tend to infinity together, with their concentration

ratio N/T converging to a limit c ∈ (0, 1) ∪ (1,∞),7 the empirical distribution of the

sample eigenvalues converges almost surely to a non-stochastic limit distribution F . If

c < 1, this limit distribution is continuous with positive support; if c > 1, it is a ‘mixture’

distribution with a discrete part at {0} and a continuous part with positive support. The

limit distribution F is completely characterized by two inputs only: first, the limiting

concentration ratio c and, second, the limiting distribution of the population eigenvalues,

commonly called H, whose existence (and certain properties thereof) are part of the

assumed set of regularity conditions; for example, see Ledoit and Wolf (2015, Section 2.1)

for a detailed listing of this set. This characterization is known as the fundamental

equation of random matrix theory, originally due to Marčenko and Pastur (1967) and

later restated in an alternative expression by Silverstein (1995).

A key step in finding the optimal limiting shrinkage function φ was the realization

that the loss function

LF(Σ̂T ,ΣT ) ..= ||Σ̂T − ΣT ||2F
is non-stochastic in the limit for estimators Σ̂T in the class (4.7). That is, under the

assumed set of regularity conditions, LF(Σ̂T ,ΣT ) converges almost surely to a non-

7For certain technical reasons, the value c = 1 is ruled out in many relevant results from RMT. But

Monte Carlo studies show that our nonlinear shrinkage estimator also works well in practice for scenarios

with N/T = 1.
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stochastic limiting expression, as T goes to infinity.8 This limiting expression, as to be

expected, depends on the limiting shrinkage function φ and can be minimized with respect

to it. The corresponding minimizer is then the optimal φ, which we shall henceforth

denote as φ•. Over the years, we have established different formulas for φ•; they are all

equivalent and just look different, since they are based on different mathematical tools,

respectively, ingredients. For the sake of space, we shall limit ourselves here to the formula

given in Ledoit and Wolf (2020):

φ•(x) ..=















1
π(c− 1)Hf (0)

if x = 0 and c > 1

x
[

πcxf(x)
]2

+
[

1− c− πcxHf (x)
]2 otherwise

(4.8)

There are three ingredients in this formula that need to be explained: f , f , and the

operator H. First, f(x) for x > 0 denotes the density of F on (0,+∞); second, f is the

density of F ..= (1 − c)1[0,+∞) + cF , which is continuous everywhere when c > 1; third,

for a real function g, Hg denotes its Hilbert transform, defined as

∀x ∈ R Hg(x) ..=
1

π
PV

∫ +∞

−∞

g(t)
dt

t− x
. (4.9)

Here, PV denotes the Cauchy Principal Value, which is used to evaluate the singular

integral in the following way:

PV

∫ +∞

−∞

g(t)
dt

t− x
..= lim

ε→0+

[
∫ x−ε

−∞

g(t)
dt

t− x
+

∫ +∞

x+ε

g(t)
dt

t− x

]

. (4.10)

Recourse to the Cauchy Principal Value is needed because the Cauchy kernel is singular,

as a consequence of which the integral does not converge in the usual sense.

Equation (4.8), in a different mathematical expression, was first discovered by

Ledoit and Péché (2011, Theorem 3), based on a generalization of the fundamental

equation of random matrix theory. The formula here is the first one expressed without

any reference to complex numbers; previous (mathematically equivalent) formulas used

the complex-valued Stieltjes transform instead of the Hilbert transform; for example, see

Ledoit and Wolf (2015, Equation (3.6)).

The corresponding oracle ‘estimator’ of ΣT is then given by

Σ•

T
..= UT∆

•

TU
′

T with ∆•

T
..= Diag

(

φ•(λT,1), . . . , φ
•(λT,N)

)

, (4.11)

8In finite-sample analysis, it is common to go from the loss to the risk function, by taking expectations,

and thereby to move from a stochastic expression to a non-stochastic expression that is to be minimized.

But under large-dimensional RMT asymptotics this is not necessary, since the loss is already non-

stochastic in the limit; in other words, in the limit, the loss is equal to the risk.
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where the quantities
(

φ•(λT,1), . . . , φ
•(λT,N)

)

represent large-dimensional asymptotic

counterparts to the finite-sample optimal quantities (δ◦T,1, . . . , δ
◦

T,1

)

of Equation (4.5).

What have we gained by moving from the finite-sample optimal estimator Σ◦

T to the

oracle estimator Σ•

T ? Nothing in the sense of feasibility, since the oracle estimator is

also infeasible in practice, as it also depends on unknown population quantities, such as

the density f . But unlike Σ◦

T , the oracle estimator serves as a useful starting point for

deriving a feasible estimator; this is because it is possible to consistently estimate the

oracle shrinkage function φ• of Equation (4.8).

Indeed, a consistent estimator of c, by definition, is given by ĉT ..= N/T . This leaves

us with the task of finding consistent estimators of f , f , and their two respective Hilbert

transforms. (As a technical detail, these estimators need to be uniformly consistent.) In

Ledoit and Wolf (2020), we detail how this task can be accomplished by means of kernel

estimation.9 The feasible nonlinear shrinkage estimator of ΣT is then given by

Σ̂•

T
..= UT ∆̂

•

TU
′

T with ∆̂•

T
..= Diag

(

φ̂•

T (λT,1), . . . , φ̂
•

T (λT,N)
)

, (4.12)

where

φ̂•

T (x)
..=















1
π(ĉT − 1)ĤT,f (0)

if x = 0 and ĉT > 1

x
[

πĉTxf̂T (x)
]2

+
[

1− ĉT − πĉTxĤT,f (x)
]2 otherwise

(4.13)

Here, ĤT,f denotes the kernel estimator of Hf and analogously for ĤT,f .

Crucially, the feasible estimator Σ̂•

T is asymptotically just as good as the infeasible

oracle Σ•

T , in the sense that it also minimizes the non-stochastic limit of the loss function

LF(Σ̂T ,ΣT ) with respect to Σ̂T (in the class of rotation-equivariant estimators considered),

namely,

LF(Σ̂
•

T ,ΣT )− LF(Σ
•

T ,ΣT )
p→ 0 .

Remark 4.2 (Other estimation strategies). The title of our paper Ledoit and Wolf (2020)

stems from the fact that the outlined method is the first to ‘directly’ estimate the oracle

shrinkage function φ• with the analytical formula (4.13).

In the earlier works Ledoit and Wolf (2012, 2015), we had proposed alternative,

‘indirect’ estimation strategies that work as follows: first, estimate H, the limiting

distribution of the population eigenvalues; second, use the resulting estimator ĤT together

with the estimator ĉT ..= N/T to estimate F via the previously mentioned fundamental

equation of RMT; third, use the resulting estimator F̂T to back out estimators of the

various features of F that appear in the alternative formulas for φ• used in those previous

9 This idea goes back to Jing et al. (2010), although they only considered estimation of f .
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papers. The most demanding step in practice is the first one, the estimation of H, since

it involves a large-dimensional optimization problem that has no analytical solution and

must be solved by large-scale optimization software instead. Therefore, these alternative

strategies can also be characterized as numerical strategies.

Such numerical strategies work well in practice but they are cumbersome to

implement10 and take a lot of computational time. On the other hand, the analytical

strategy is very easy to implement (in 20+ lines of Matlab code) and, basically, as fast

as linear shrinkage. In addition, and importantly in the age of Big Data, the analytical

strategy can easily handle dimensions of N = 10, 000 and more, whereas the numerical

strategies cannot handle dimensions much larger than N = 1, 000.

A completely different strategy to consistently estimate the oracle, based on repeated

sample splitting, has been suggested by Abadir et al. (2014) and Lam (2016); this

strategy is of completely numerical nature and bypasses estimation of the oracle shrinkage

function φ• entirely. Like our analytical strategy, it is easy to implement, but like our

numerical strategies, it takes a lot of computational time and cannot handle dimensions

much larger than N = 1, 000.

It will be useful to compare nonlinear shrinkage to generic linear shrinkage, that is, linear

shrinkage to (a multiple of) the identity matrix. The essential distinction is that linear

shrinkage is a global operator: all sample eigenvalues are moved towards their grand mean,

with common intensity; on the other hand, nonlinear shrinkage is a local operator: some

of the sample eigenvalues might be moved away from their grand mean, towards local

‘centers of attraction’. Nevertheless, nonlinear shrinkage still reduces the overall spread

compared to the sample eigenvalues.

Figure 1 provides a graphical illustration of these contrasting behaviors; in order

to eliminate ‘noise differences’ and to focus only on ‘systematic differences’, both N

and T have been chosen rather large. In this example, the average eigenvalue is equal

to 1.25. Sample eigenvalues below the average but above 1 are ‘shrunk’ downwards

because they are attracted by the cluster to their immediate left; this is because these

sample eigenvalues generally correspond to a population eigenvalue of 0.8. Similarly,

sample eigenvalues above the average but below 1.75 are ‘shrunk’ upwards because

they are attracted by the cluster to their immediate right; this is because these sample

eigenvalues generally correspond to a population eigenvalue of 2. Linear shrinkage, being

a global operator, is not equipped to sense a disturbance in the force: It applies the same

shrinkage intensity across the board and shrinks all sample eigenvalues towards the grand

mean of 1.25.

10In fact, we had to write a separate paper to detail the implementation; see Ledoit and Wolf (2017b).
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Figure 1: Local attraction effect. 2, 500 population eigenvalues are equal to 0.8, and

1, 500 are equal to 2, so that N = 4, 000. The sample size is T = 18, 000. At the bottom

of the figure is a histogram displaying the location of the sample eigenvalues.

Generally speaking, when the population eigenvalues are tightly clustered in a bulk,

the optimal nonlinear shrinkage is nearly linear; however, when the population eigenvalues

are dispersed, lumpy, or otherwise unruly, the optimal nonlinear shrinkage can be highly

nonlinear.

4.3 Simulation Evidence

Over the years, we have proposed three different strategies to carry out nonlinear

shrinkage: the two numerical (or indirect) strategies of Ledoit and Wolf (2012, 2015)

and the analytical (or direct) strategy of Ledoit and Wolf (2020). Of the two numerical

strategies, the first one should by now be considered obsolete for two reasons: first,

it can only handle the case N < T and, second, it is somewhat less stable then the

second strategy, which we coined QuEST (acronym for Quantized Eigenvalues Sampling

Transform).

Extensive Monte Carlo studies in Ledoit and Wolf (2012, 2015) revealed that nonlinear

shrinkage generally outperforms linear shrinkage, and often by a large margin. There are

two exceptions of different nature. The first exception is the case when linear shrinkage is

already optimal, that is, when the oracle shrinkage function φ• is (nearly) a linear function;

for example, this is the case when the population eigenvalues are (nearly) identical. This

is as to be expected: ‘fitting’ a nonlinear function to a linear relationship cannot perform
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as well as fitting a linear function, which is what linear shrinkage does. The good news is

that the performance difference is generally negligible, unless also the second exception

holds true. This second exception is the case when N and T are ‘not large’. This is as to

be expected as well: successfully fitting a nonlinear function requires a certain amount

of data. It is impossible to give a perfect rule in this regard, since the performance

difference also depends on the distribution of the population eigenvalues; but, as a rule

of thumb, one generally needs both N and T to be above 50 for nonlinear shrinkage to

outperform linear shrinkage when φ• is ‘markedly’ nonlinear, on the one hand, and for

nonlinear shrinkage to be, basically, as good as linear shrinkage when φ• is (nearly) linear,

on the other hand. As a consequence, when both N and T are above 50, then, as a rule of

thumb, there is basically nothing to lose but potentially a lot to gain by upgrading from

linear to nonlinear shrinkage. Therefore, for large data sets, nonlinear shrinkage should

become the new ‘generic’ estimator of a covariance matrix.

Nevertheless, until recently, there were two reasons why applied researchers might have

shied away from using nonlinear shrinkage. First, QuEST is a highly complex strategy

and the corresponding code far from easy to understand and digest; for most people,

it is like using a black box, which might make them uncomfortable. Second, the method

is slow to run and cannot handle dimensions much above N = 1, 000. As discussed

in Remark 4.2, the analytical strategy of Ledoit and Wolf (2020) fixes both problems.

In terms of accuracy, extensive Monte Carlo studies in Ledoit and Wolf (2020) showed

that the analytical strategy is, for all practical purposes, as accurate as the numerical

QuEST strategy. So, finally, there is nonlinear shrinkage for the (educated) masses!

4.4 Applications

Nonlinear shrinkage has not been around as long as generic linear shrinkage and thus,

unsurprisingly, it has not been applied as widely yet. Nevertheless, we can list some

examples already and trust that many more will follow in the future, especially given the

recent addition of the analytical strategy to our toolbox:

Chemometrics Multivariate analysis of variance and principal component analysis

(Engel et al., 2017).

Finance Markowitz portfolio selection (Agrawal et al., 2019; Choi et al., 2019; Moura et al.,

2019; Trucios et al., 2019).

Neuroscience Likelihood estimation of drug occupancy for brain PET studies (Schain et al.,

2018).

Signal Processing Developing detection mechanisms for high-dimensional signals (Robinson,

2019).
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A major application of interest to us was, again, Markowitz portfolio selection. Needless

to say, one can argue that the generic (scaled) Frobenius loss function LF of (2.2) may

not be ideally suited for this specific problem. The good news is that another loss

function that is custom-tailored to the problem of portfolio selection yields the same

oracle shrinkage function φ• of (4.8) and, therefore, also the same feasible nonlinear

shrinkage estimator S•

T of (4.12).

This loss function, proposed by Engle et al. (2019, Definition 1) and called the

minimum variance (MV) loss (function), is given by

LMV

(

Σ̂T ,ΣT

)

..=
Tr
(

Σ̂−1
T ΣT Σ̂

−1
T

)/

N
[

Tr
(

Σ̂−1
T

)/

N
]2 − 1

Tr
(

Σ−1
T

)

/N
. (4.14)

Roughly speaking, LMV represents the true variance of the linear combination of the

original variables that has the minimum estimated variance, under a generic linear

constraint, after suitable normalization. Further justification for the minimum variance

loss function is given in Engle and Colacito (2006) and Ledoit and Wolf (2017a).

Remark 4.3 (Related loss function). In Ledoit and Wolf (2017a, Definition 1) we used

a related loss function that actually depended on a given signal mT , that is, a given

estimator of the vector of expected returns of the assets in the underlying investment

universe. For the mathematical analysis, we then needed to make certain distributional

assumptions on the signal mT . But, again, we recovered the same oracle shrinkage

function φ• of (4.8) and, therefore, also the same feasible nonlinear shrinkage estimator

S•

T of (4.12).

In Ledoit and Wolf (2017a), we compared the nonlinear shrinkage estimator S•

T to a

variety of other covariance matrix estimators from the literature for the purpose of

Markowitz portfolio selection, using backtest exercises with real-life stock return data;

we used both daily and monthly return data. We also included some other strategies that

do not rely on a (sophisticated) estimator of the covariance matrix, such as the equal-

weighted portfolio or a norm-constrained portfolio. Just like the nonlinear shrinkage

estimator, also all the other strategies are based on the assumption that return data are

i.i.d. over time. In our analysis, nonlinear shrinkage was the clear overall winner and,

in particular, dominated generic linear shrinkage.

4.5 Different Oracle Shrinkage Formulas

We have seen that the oracle shrinkage formula φ⊙ of (4.8) holds for two different loss

functions: the Frobenius loss LF of (2.2) and the minimum variance loss LMV of (4.14).

To allow for a pun, this coincidence is somewhat of a coincidence: We certainly did not
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expect that these two different loss functions would lead to the same oracle shrinkage

formula.

Another loss function, which is important for historic reasons but perhaps less relevant

from a perspective of applications, is Stein’s loss defined as

LSt(Σ̂T ,ΣT ) ..=
1

N
Tr
(

Σ−1
T Σ̂T

)

− 1

N
log

[

det
(

Σ−1
T Σ̂T

)]

− 1 . (4.15)

Yet another loss function one can consider is symmetrized Stein’s loss, defined as

LS-St(Σ̂T ,ΣT ) ..=
1

2N
Tr
(

Σ−1
T Σ̂T + ΣT Σ̂

−1
T

)

− 1 . (4.16)

These two loss functions yield oracle shrinkage formulas different from (4.8), and also

different from each other; for the sake of space, the interested reader is referred to

Ledoit and Wolf (2018) for the details.

5 Extension to Dynamic Models

So far, we have used the assumption that the T observations (that is, the rows of the

matrix XT ) are i.i.d. Of course, such an assumption does not necessarily hold for financial

return data, at least at shorter frequencies, such as at the daily frequency. It is, therefore,

of interest to (try to) use a model that allows for a time-varying nature of the conditional

covariance matrix. In other words, it is of interest to use a dynamic model instead of a

static model. Arguably, the most popular class of such dynamic models are multivariate

GARCH models; for example, see Bauwens et al. (2006) for a review.

Unfortunately, these models suffer from the curse of dimensionality: Since they can

be quite complex and contain a large number of parameters, they do not work well, or

cannot be even estimated to begin with, when the number of assets is large, such as

N = 1, 000; indeed, in basically all prior applications in the literature, the number of

assets had been at most N = 100 and often even been in the single digits. Consequently,

we wondered whether we could use (non)linear shrinkage in a suitable way to ‘robustify’

a multivariate GARCH model against large dimensions and make it work well for, at

least, N = 1, 000 assets. The challenge was clear: All our shrinkage methods had been

designed for a static setting, where the conditional covariance matrix does not change over

time; so how could we possibly use them gainfully in a dynamic setting? The key was to

find a multivariate GARCH model that has as one of its components a large-dimensional

covariance matrix that is static (or time-invariant). A suitable model turned out to be

the Dynamic Conditional Correlation (DCC) model of Engle (2002); more precisely, a

certain version of this model based on correlation targeting. Some notation is needed

first:
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• rti: observed return for asset i at date t, stacked into rt ..= (rt1, . . . , rtN)
′

• d2ti
..= Var(rti|Ft−1): conditional variance of the ith return at date t

• Dt is the N -dimensional diagonal matrix whose ith diagonal entry is dti

• Ht
..= Cov(rt|Ft−1): conditional covariance matrix at date t; thus Diag(Ht) = D2

t

• sti ..= rti/dti: devolatized return, stacked into st ..= (st1, . . . , stN)
′

• Rt
..= Cor(rt|Ft−1) = Cov(st|Ft−1): conditional correlation matrix at date t

• C ..= E(Rt) = Cor(rt) = Cov(st): unconditional correlation matrix

Here, Ft−1 denotes the information set available at time t− 1; also, it is tacitly assumed

that the model yields a stationary return series {rt}, so that unconditional moments,

such as E(Rt), are time-invariant.

The key part of this model is the evolution of the conditional pseudo correlation

matrix of the asset returns rt over time:

Qt = (1− α− β)C + α st−1s
′

t−1 + β Qt−1 . (5.1)

Here, (α, β) are the DCC parameters, which are analogous to related parameters in a

univariate GARCH(1,1) model, and assumed to satisfy 0 ≤ α + β < 1, which is needed

for a stationary model. The key feature of model (5.1) is that the implied unconditional

covariance matrix of Qt is guaranteed to be equal to C, no matter what the values of (α, β)

are. This is just the property of correlation targeting: The model is set up in such a way

that it targets the true quantity (in terms of the unconditional covariance matrix).

The matrix Qt can be interpreted as a conditional pseudo correlation matrix, or a

conditional covariance matrix of devolatized residuals. It cannot be used directly because

its diagonal entries, although generally close to one, are not exactly equal to one. From

this representation, one obtains the conditional correlation matrix and the conditional

covariance matrix as

Rt
..= Diag(Qt)

−1/2Qt Diag(Qt)
−1/2 , (5.2)

Ht
..= DtRtDt , (5.3)

and the data-generating process is driven by the multivariate normal law11

rt|Ft−1 ∼ N (0, Ht) . (5.4)

How can model (5.1) be estimated in practice? In the first step, one needs to estimate the

vector st−1, which is done by dividing the individual asset returns at time t− 1 by their

11One can also try to model the time-varying conditional mean of rt instead of setting it equal to zero,

but doing so makes virtually no difference in practice in terms of estimating (α, β).
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estimated conditional standard deviations,12 resulting in a vector ŝt−1. In the second step,

one needs to estimate the correlation targeting matrix C. In the third step, one estimates

the DCC parameters (α, β) based on the feasible relation

Qt = (1− α− β)Ĉ + α ŝt−1ŝ
′

t−1 + β Qt−1 , (5.5)

using maximum likelihood. The curse of dimensionality arises in both step 2 and step 3.

Shrinkage estimation helps with step 2. The problem here is that C is a N×N matrix,

which can be large-dimensional. The original proposal of Engle (2002) was to use the

sample correlation matrix of the ‘feasible’ devolatized return series {ŝt}; this approach

works well for dimensions N ≤ 100, but not for dimensions N = 1, 000 and above.

A superior approach in large dimensions is to use a shrinkage estimator on the return

series {ŝt}; linear shrinkage to (a multiple of) the identity already works well but nonlinear

shrinkage works even better. Note that the resulting estimator needs to be post-processed

along the lines of (5.2) to produce a proper correlation matrix Ĉ.

Having estimators ŝt−1 and Ĉ, one can now estimate the DCC parameters (α, β) based

on the feasible relation (5.5). The natural approach is to use maximum likelihood, based

on assumption (5.4). This becomes a computational problem in large dimensions, since

full (or exact) maximum likelihood cannot be carried out with current computational

power for dimensions much above N = 100. The solution of Pakel et al. (2019) is to use

a composite likelihood instead which, in a nutshell, combines likelihoods over many small

subsets of the data (such as neighboring pairs of assets) in one ‘joint’ likelihood; doing so

results in a likelihood function that can be maximized with respect to (α, β) in a manner

that is computationally feasible.

The resulting DCC-NL estimation strategy of Engle et al. (2019) unfolds in a three-

stage process:

1. For each asset, fit a univariate GARCH(1,1) model and use the fitted models to

devolatize the return series {rt} to obtain the series {ŝt}.
2. Estimate the unconditional correlation matrix C by applying nonlinear shrinkage

(with post-processing) to the series {ŝt} and use the resulting estimator Ĉ for

correlation targeting.

3. Maximize the composite likelihood (over all neighboring pairs of assets) to estimate

the two DCC parameters (α, β).

In Engle et al. (2019), we studied the properties of the DCC-NL estimator when used for

the purpose of Markowitz portfolio selection, using backtest exercises with real-life stock

12The methodology is flexible in this regard, the most popular approach being to use individual

GARCH(1,1) models, one model for each asset.
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return data; we used daily return data only. We could not compare DCC-NL to other

multivariate GARCH models from the literature, since none of them (currently) work for

dimensions well above N = 100. But we did compare DCC-NL to DCC-S, which uses

the sample covariance matrix of the series {ŝt} to estimate C, and to DCC-Lin, which

uses linear shrinkage applied to the series {ŝt}. We found that for N = 100, all three

methods performed about equally well but that for N = 500 and N = 1, 000, DCC-Lin

and DCC-NL outperformed DCC-S by a considerable margin, with DCC-NL being the

clear winner; more specifically, the improvement of DCC-NL over DCC-Lin was of the

same magnitude as the improvement of DCC-Lin over DCC-S.13

As a further application, in Ledoit et al. (2019), we showed how to use the DCC-NL

estimator to construct more powerful tests for cross-sectional anomalies, that is, more

powerful tests to establish the validity of a so-called return anomaly (also called factor

or return-predictive signal) whose goal it is to explain the cross-section of expected stock

returns. Traditional tests construct dollar-neutral long-short portfolios that load on

the return anomaly under study by sorting the stocks into quantiles according to their

anomaly scores; if such a zero-cost portfolio can be shown to deliver a positive expected

return with statistical significance, the anomaly under study is established as ‘successful’

or ‘for real’. The problem is that such quantile-based sorting portfolios completely

ignore the covariance matrix of the stock returns. More efficient dollar-neutral long-short

portfolios can be constructed by incorporating an accurate estimator of this covariance

matrix in the spirit of Markowitz portfolio selection; in practice, we proposed the use of

the DCC-NL estimator to this end. In an empirical analysis using 60+ suggested return

anomalies from the literature, we showed that using such “efficient sorting” portfolios

yields much more powerful tests compared to the status quo of portfolios based on sorting

into quantiles.

6 Extension to Factor Models

Factor models have a long history in finance, with a wide range of applications in both

theory and practice. Examples of theoretical applications are asset pricing models, such

as the CAPM and the Arbitrage Pricing Theory (APT) of Ross (1976), and various fund-

separation theorems. In practice, factor models are used, among others, to evaluate the

performance of portfolio managers, to assess return anomalies, to predict returns, and to

13We also included the (second-generation) RiskMetrics 2006 model in the study, which also estimates

time-varying covariance matrices and is computationally feasible for dimensions up to N = 1, 000; see

Zumbach (2007). Unfortunately, this model performed poorly and cannot be recommended for the

purpose of Markowitz portfolio selection.
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construct portfolios; for example, see Meucci (2005) and Chincarini and Kim (2006).

It is, therefore, also of interest to (try to) use factor models to estimate the covariance

matrix of a large universe of asset returns, in particular stock returns. We have already

described one such approach, namely linear shrinkage to the single-factor model; see

Section 3. But this approach would be hard to extend to using more than one factor or

to a dynamic setting where the conditional covariance matrix varies over time. A more

flexible approach, explored in De Nard et al. (2020), is to use shrinkage estimation for

the residual covariance matrix of a general factor model.

There are many different ‘versions’ of factor models: factors can be observed or

latent; factors loadings can be fixed or vary over time; factor models can be exact or

approximate; and the conditional covariance matrix of the residuals can be fixed or vary

over time. We do not have the space here to describe all versions in detail, which was

done in De Nard et al. (2020), and so we shall focus on the two models that were the

most promising in the end.

The basic model assumption is that, for every asset i = 1, . . . , N ,

rti = αi + β′

ift + uti , (6.1)

where ft ..= (ft1, . . . , ftK)
′ is a vector of returns on K observed (or explicit) factors,

βi
..= (βi1, . . . , βiK)

′ is a vector of time-invariant factor loadings, and uti is an error term

that satisfies E(uti|ft) = 0.

Let Σf,t
..= Cov(ft|Ft−1) and Σu,t

..= Cov(ut|Ft−1), with ut
..= (ut1, . . . , utN)

′. Our

models assume Σf,t ≡ Σf , that is, the conditional covariance matrix of the factor returns

is time-invariant; on the other hand, regarding Σu,t we allow for both the time-invariant

(or static) and the time-varying (or dynamic) case.14

Using again the notation Ht
..= Cov(rt|Ft−1), and denoting by B he K × N matrix

whose ith column is the vector βi, model (6.1) in conjunction with our stated assumption

implies that

Ht = B′ΣfB + Σu,t , (6.2)

which specializes to

Ht ≡ H ..= B′ΣfB + Σu (6.3)

under the additional assumption Σu,t ≡ Σu.

In practice, we need to estimate three ingredients: B, Σf , and Σu,t, respectively, Σu.

For every asset i = 1, . . . , N , we estimate model (6.1) by a time-series regression using

OLS, resulting in estimators α̂i and β̂i and in residuals {ûti}. The estimator of B, denoted

by B̂, is then the K ×N matrix whose ith column is the vector β̂i.

14We also tried models with Σf,t time-varying but the performance was not better.
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The estimator of Σf , denoted by Σ̂f , is the sample covariance matrix of the factor

returns {ft}. We only consider factor models where K is in the single digits; therefore,

there is nothing to gain here by using a more sophisticated shrinkage estimator instead.

Let ût
..= (ût1, . . . , ûtN)

′. In general, we estimate Σu,t by applying DCC-NL to the

residuals {ût} and denote the resulting estimator by Σ̂u,t; in the specialized case Σu,t ≡ Σu,

we estimate Σu by applying nonlinear shrinkage to the residuals {ût} and denote the

resulting estimator by Σ̂u. Doing so results in the estimator

Ĥt
..= B̂′Σ̂f B̂ + Σ̂u,t , (6.4)

which specializes to

Ĥt ≡ Ĥ ..= B̂′Σ̂f B̂ + Σ̂u (6.5)

under the additional assumption Σu,t ≡ Σu.

Remark 6.1 (Comparison with more traditional estimators). For the special case (6.3),

we can compare our estimator (6.5) with more traditional approaches. The earliest

approach in the literature was to assume an exact factor model (EFM), which corresponds

to assuming that Σu is a diagonal matrix. In this setting, it is customary to take Σ̂u as the

diagonal matrix based on the sample covariance matrix of the residuals {ût}, that is, start
with sample covariance matrix and then set all off-diagonal entry to zero. The problem

with this approach is that the assumption of an exact factor model is often violated in

practice and thus the resulting estimator Σ̂f can suffer from severe biases, leading to to

unsatisfactory performance.

In this day and age, the assumption of an approximate factor model (AFM) is more

common, which corresponds to assuming that Σu is a sparse matrix. In this setting, one

obtains an estimator of Σu by applying some sort of thresholding scheme to the sample

covariance matrix of the residuals {ût}; for example, this is the underlying idea of the

POET covariance matrix estimator of Fan et al. (2013).15 Whether such an approach

works better in practice than using nonlinear shrinkage on the residuals {ût} is really an

empirical question in the end.

In De Nard et al. (2020), we we studied the properties of a variety of covariance matrix

estimators when used for the purpose of Markowitz portfolio selection, using backtest

exercises with real-life stock return data; we used daily return data only. Broadly

speaking, these estimators can be categorized into a two-by-two table: static versus

dynamic estimators16 and structure-free versus factor-model-based estimators. Most

15Note that the POET estimator is based on unobserved (or latent) factors, which are estimated by

PCA in practice, rather than on observed factors, such as Fama-French factors.
16A static estimator assumes the conditional covariance matrix is time-invariant whereas a dynamic

estimator assumes that it is time-varying.
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empirical studies only compare estimators from one of the four categories; to the best

of our knowledge, our paper is the first one that includes (sophisticated) estimators

from all four categories. We found that dynamic estimators performed better than static

estimators; in particular, the best structure-free estimator was DCC-NL. In terms of factor

models, approximate factor models, unsurprisingly, performed better than exact factor

models. The overall best estimator, which we call AFM-DCC-NL, was estimator (6.4).

A recurring problem with factor models is how many (and which) factors to

include, that is, the proper choice of K. We restricted attention to the five factors

of Fama and French (2015), so the nature of the factors was given. As to be expected, an

exact factor model worked better when using all five factors as opposed to using the first

factor (that is, the market factor) only. An important advantage of the AFM-DCC-NL

estimator is that it worked just as well when using the first factor only as when using

all five factors. Apparently, DCC-NL is able to recover ‘left-over’ factor structure in the

residual covariance matrix in an automated way, and only the (dominant) market factor

needs to be accounted for explicitly. This is good news, in particular for managers who

want to invest outside of the US, where the extra four Fama-French factors are not always

available and the market factor can be easily constructed, if need be.

Concerning the final sentence of Remark 6.1, both POET and estimator (6.5), which

we call AFM-NL, are static estimators. Using K = 5 factors, where the factors for

POET are the first five principal components of the sample covariance matrix of the stock

returns and the factors for AFM-NL are the five Fama-French factors, the performance of

AFM-NL was somewhat better. The interesting find was that, similar to AFM-DCC-NL,

the performance of AFM-NL was just as good when using the single market factor only,

whereas the performance of POET is known to suffer if not enough factors are included.

(We only tried using K = 5 principals components for POET in our empirical analysis;

following the recommendations of Fan et al. (2013), we did not try using (the first) K = 1

principal component only.)

Therefore, one can conclude that both AFM-NL and AFM-DCC-NL are robust to

the number of factors chosen, as long as the market factor is included, which is a desirable

property not commonly shared by other factor models.

7 Computational Aspects & Code

To simplify the notation, we have assumed so that all variables have mean zero. In this

way, the sample covariance matrix is given by

ST
..=

1

T
X ′

TXT .
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In many applications, variables do not have mean zero, or at least it is not known whether

they have mean zero. In such a setting, it is more common to base the sample covariance

matrix on the demeaned data instead. To this end, denote by xT
·i the ith column of the

matrix XT and by x̄T
·i

..= T−1
∑

t x
T
ti its mean; denote further by YT the T × N matrix

with typical entry yTti
..= xT

ti− x̄T
·i . With this notation, the sample covariance matrix based

on the demeaned data is given by

S̃T
..=

1

T − 1
Y ′

TYT .

One then simply replaces ST with S̃T and T with T − 1 in all the previous descriptions

and computations in practice.

Another way to look at this issue is from a coding perspective. In any code, there needs

to be a variable for “sample covariance matrix”; in the case of demeaning, this variable

needs to be assigned the value S̃T and otherwise the value ST . Also, there needs to be

variable for “sample size”; in the case of demeaning, this variable needs to be assigned the

value T − 1 and otherwise the value T . The importance of this latter adjustment of the

‘effective’ sample size in the case of demeaning becomes especially clear when N > T . In

this scenario, the number of zero sample eigenvalues is equal to N−T without demeaning

but equal to N − (T − 1) = N − T + 1 with demeaning; correctly keeping track of this

number is important for certain aspects of coding, at least for nonlinear shrinkage.

As a more general situation, consider the setting where the data constitute OLS

residuals based on a linear model with K regressors (including a possible constant). In

such a setting, T has to be replaced with T −K as the ‘effective’ sample size. (Note that

simple demeaning corresponds to using OLS residuals based on a linear model with the

constant as the only regressor, in which case K = 1.)

Speaking of code, our various estimators range from trivial-to-code, such as generic

linear shrinkage, to super-hard-to-code, such as the QuEST version of nonlinear shrinkage.

But free programming code in Matlab for most of the estimators reviewed in this paper

can be downloaded at www.econ.uzh.ch/en/people/faculty/wolf/publications.html under

the header “Programming Code”. There also exists an R package nlshrink, available

at cran.r-project.org/web/packages/, which implements the QuEST version of nonlinear

shrinkage, though note that this package was not written by us.

8 Conclusion

Estimation of large-dimensional covariance matrices is an important problem with

applications in many applied fields, one of them being finance. With the amount of data

ever increasing in the age of Big Data, this problem will only become more important
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over time. In this paper, we have reviewed our own work in this area, stretching back

15+ years. In various shapes and forms, what we have been promoting is shrinkage

estimation of covariance matrices.

In early work, which can be classified as linear shrinkage, this amounts to taking a

convex linear combination of the sample covariance matrix and a target matrix; here, the

target matrix can either be completely generic and taken to be (a multiple of) the identity

matrix, or it can incorporate application-specific structure, such as a factor model. At

any rate, the target matrix always contains a (relatively) small number of parameters and

thus little estimation error, albeit generally a bias, and thus constitutes a ‘counterpart’

to the sample covariance matrix which is unbiased but contains a large number of free

parameters. Linear shrinkage works by providing a bias-variance tradeoff: optimally

combining two ‘extremes’ works better than either one of them. This insight goes back

to the genius of Charles Stein, who proposed such linear shrinkage estimation for the

mean vector; we just adapted his line of thinking to the covariance matrix instead.

Later work considered an extension to nonlinear shrinkage, which does not operate

on the sample covariance matrix as a whole but on its eigenvalues instead, while keeping

its eigenvectors. By allowing an arbitrary, or nonlinear, transformation of the sample

eigenvalues, one can do much better than linear shrinkage to (a multiple of) the identity

matrix. The idea of nonlinear shrinkage also goes back to Charles Stein but, at the time,

he lacked the mathematical machinery to solve the problem in a satisfactory fashion.

This machinery is called random matrix theory and has been developed by a number of

probability theorists and statisticians over the last 60+ years. Their collective work has

enabled us to bring nonlinear shrinkage to its fruition.

In its basic form, nonlinear shrinkage is a also a generic estimator that does not

incorporate any particular structure. In many finance applications, certain structure is

‘known’, such as time-varying co-volatility or a factor model. In our most recent work,

we have shown how to overlay such structure on nonlinear shrinkage in order to improve

performance even further.

We hope that we have assembled, over time, a large and useful toolbox that will

help applied researchers in many fields, particularly in finance, to solve real-life problems.

Let they, and time, be our judge.
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