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Abstract

We investigate the effects of constraining leverage and shrinking covariance matrix in

constructing large portfolios, both theoretically and empirically. Considering a wide variety

of setups that involve conditioning or not conditioning the covariance matrix estimator on

the recent past (multivariate GARCH), smaller vs. larger universe of stocks, alternative

portfolio formation objectives (Global Minimum Variance vs. exposure to profitable factors),

and various transaction cost assumptions, we find that a judiciously-chosen shrinkage

method always outperforms an arbitrarily-determined leverage constraint. By extending the

mathematical connection between leverage and shrinkage from static to dynamic, we provide

a new theoretical explanation for our finding from the perspective of degrees of freedom. In

addition, both simulation and empirical analysis show that the DCC-NL estimator results in

risk reduction and efficiency increase in large portfolios as long as a small amount of leverage

is allowed, whereas tightening the leverage constraint often hurts a DCC-NL portfolio.

KEY WORDS: DCC; Nonlinear shrinkage; Leverage constraint; Large portfolios;

Risk reduction; Markowitz mean-variance efficiency.
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1 Introduction

It is well established that using sample covariance matrix is inappropriate in constructing

large unconstrained portfolios, which will lead to extreme positions and poor out-of-sample

performance. To improve the performance of portfolios, two different methods have been

proposed and become very popular. The first one is to directly constrain (e.g., DeMiguel et al.,

2009a; Jagannathan and Ma, 2003; Li, 2015) or shrink (e.g., DeMiguel et al., 2013; Kan and

Zhou, 2007; Tu and Zhou, 2011) the portfolio weights, and the second is to use a shrinkage

estimator of covariance matrix to indirectly constrain the portfolio weights (e.g., Ledoit and

Wolf, 2017).

There is a general perception that constraining the leverage is a simple alternative to

shrinking the covariance matrix. Studies share the same theoretical analysis on why the two

approaches are beneficial to large portfolios: the extreme sample covariances between stocks

that lead to extreme weights are usually caused by estimation errors (see footnote 8 in DeMiguel

et al., 2009b, for illustration); thus, imposing constraints on portfolio weights or shrinking the

sample covariances can reduce the sampling error and improve the out-of-sample performance.

While some people may have read this connection as a confirmation that “shrinkage is not

necessary”, it could equally be interpreted as saying that shrinkage works because we (meaning

the asset management and finance professors who impose leverage constraints) have been

effectively shrinking all along without even knowing it.

This paper aims at providing a comparative analysis of the two approaches and getting

the best of both worlds. In particular, we work in the realm of fully-invested portfolios, i.e.,

portfolios whose weights sum up to one, which is the default choice for the bulk of the asset

management industry (as opposed to weights summing to zero). Even though the weights sum

up to one, there is some leeway to take on some negative weights, and an interesting question

is how much. The major candidates are the strategy without any constraint on leverage,

the so-called “150/50” strategy (meaning that for $100 million of capital, the prime broker

enables you to go $150 million long if you go $50 million short at the same time, for a net

exposure to the stock market of $100 million, which is exactly equal to the capital invested), the

“130/30” strategy, and the “100/0” strategy (no short sales at all). For a more solid analysis,

we also consider a wide choice for the degree of the leverage constraint, with the gross-exposure

parameter continuously increasing from 1 (the “100/0” strategy) to 16 (the “1300/300” strategy).

Moreover, at the same time, instead of linearly shrinking the unconditional covariance matrix

as the previous literature, we allow each of the eigenvalues of the sample covariance matrix to

have its own shrinkage intensity, optimally determined under large-dimensional asymptotics,

while also incorporating Multivariate GARCH effects.

Our paper makes the following contributions to the literature that deals with risk reduction

and efficiency increase in large portfolios. First, we extend the mathematical equivalency of

imposing leverage constraints and shrinking covariances from the conventional static framework

to dynamic, where Multivariate GARCH effects are incorporated. Second, we find that a

judiciously-chosen shrinkage method on covariance matrix always outperforms the strategy
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of imposing an arbitrarily-determined constraint on leverage. We provide a new theoretical

explanation from the perspective of degrees of freedom to bridge the gap between theory and

practice. Third, we reveal the best of both shrinkage on covariances and constraint on weights

through Monte Carlo simulations and empirical exercises, which can provide enlightenments to

quantitative investors and analysts.

While if imposing leverage constraints and shrinking covariances are essentially equivalent,

then why is shrinkage still beneficial for portfolios with leverage constraints? The answer is

that constraining the leverage has only one degree of freedom, i.e., the amount of leverage

permitted; whereas shrinkage of the nonlinear kind — as utilized here — has as many degrees

of freedom as there are variables in the system, which is assumed to be a large number, and

these are individually optimized in an asymptotic sense as matrix dimension and sample size

go to infinity together. Thus, the influence of shrinkage is fine-tuned automatically, whereas

leverage applies uniformly across the board.1 The leverage constraint, therefore, is redundant

when the optimal shrinkage is provided by the nonlinear shrinkage method.

Our Monte Carlo simulation and empirical analysis demonstrate that loosening the leverage

constraint from zero leverage (100/0) to 130/30 or even 150/50 delivers better performance.

Moreover, we show that using a 1000-dimensional Multivariate GARCH model with built-in

nonlinear shrinkage is independently and additively beneficial. In addition, we find that as

long as there is some leverage — which can be done in many fully-invested funds as long

as the prime broker allows it —, then shrinkage starts to help, and implementing the most

advanced covariance matrix shrinkage formula helps even more. However, tightening the leverage

constraint often hurts the out-of-sample performance of a pure DCC-NL portfolio. Our findings

are stable in simulations, where both normally-distributed and t-distributed disturbance terms

are considered, as well as in empirical exercises, where both the “Global Minimum Variance”

(GMV) portfolio and the mean-variance efficient portfolio are constructed.

We know that since the groundbreaking work of Markowitz (1952), statistics and optimization

techniques have been used to develop diversified investment strategies that either: (i) minimize

risk, subject to exposure to the stock market (the GMV portfolio); or (ii) are efficient in terms

of risk-return trade-off (the mean-variance efficient portfolio). The first type is a purer test

of the covariance matrix estimator and the optimization program used, while the second one

requires, in addition, a good predictive model for expected returns, which is notoriously hard

to obtain. During the past decades, on the one hand, various attempts have been made to

deal with the parameter uncertainty and estimation risk in optimizing portfolios (e.g., Brandt

et al., 2009; Branger et al., 2019; Garlappi et al., 2007). On the other hand, hundreds of signals

have been proposed to predict expected returns (see Green et al., 2017; Harvey et al., 2016;

Hou et al., 2015, and the references therein). Given that the two streams of literature have

attracted a large amount of attention, we consider both exercises. Specifically, we use the signal

return-on-equity as a proxy for the expected return, which has been proven to have statistically

significant explanatory power for cross-sectional anomalies (Feng et al., 2020). For robustness

1Behr et al. (2013) extend the arbitrarily-chosen constraints on weights to flexible ex-ante constraints that

can better suit the data, but it is still infeasible to guarantee that all individual weights are optimally shrunk.
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check, we consider the widely-used signal earnings-to-price as an alternative proxy. We also

consider different setups for transaction costs.

Besides the vast literature on return predictive signals, our work is most closely related to

the literature that attempts to provide a unified analysis framework for constraints on weights

and advanced estimators for covariance matrix. Jagannathan and Ma (2003) find with the no-

short-sale constraint in place, global minimum variance portfolios constructed based on sample

covariance matrix perform as well as those constructed using the linear shrinkage estimator.

However, if a shrinkage estimator of the covariance matrix is used, the no-short-sale constraint

would then hurt the out-of-sample performance. They explain the similar performances and

the “either-or” dichotomy by the analogous mechanisms of constraining weights and shrinking

covariances. Brodie et al. (2009) and DeMiguel et al. (2009a) use the norm framework to unify

the shrinkage effects in weights and in covariance matrix. Britten-Jones (1999) converts the

portfolio selection problem to a regression problem. On this basis, Fan et al. (2012) and Li

(2015) show that constraining portfolio norms amounts to constraining estimation risks. Further,

Callot et al. (2020) use a nodewise regression approach to estimate the inverse covariance matrix

directly.

Note that shrinkage estimators of covariance matrix that have been compared with

constraints on portfolio weights are all linear ones, with the shrinkage target being a covariance

matrix implied by the Sharpe (1963) one-factor model proposed by Ledoit and Wolf (2003)

(DeMiguel et al., 2009a; Jagannathan and Ma, 2003; Li, 2015), an identity matrix proposed by

Ledoit and Wolf (2004b) (DeMiguel et al., 2009a), or a constant-correlation model proposed

by Ledoit and Wolf (2004a) (Li, 2015). The estimation is substantially equivalent to linearly

shrinking the sample eigenvalues towards a more centralized set of eigenvalues by a unified

shrinkage intensity. Ledoit and Wolf (2012) extend the linear shrinking to the nonlinear

transformation of the sample eigenvalues, and obtain the nonlinear shrinkage (NL) estimator

of the covariance matrix, which has been proven to have better out-of-sample performance

(Ledoit and Wolf, 2015, 2017). As the shrinkage mechanism is improved from a procedure with

an exogenous target and a unified intensity to an endogenous optimization algorithm, it is

important to compare its effect with that of imposing varying degrees of leverage constraint.

Further, Bollerslev et al. (2018) claim that the shrinkage intensity should be time-varying to

consider the dynamic variation of the covariances. Consistent with this idea, Engle et al. (2019)

propose the DCC-NL estimator of the covariance matrix, which uses the nonlinear shrinkage

estimator to replace the sample covariance matrix in the “correlation targeting” maximum

likelihood estimation of the dynamic conditional correlation (DCC) model. The DCC-NL

estimator of the covariance matrix turns out to perform better than previous estimators

based on conventional DCC model. Since the DCC model works in capturing the conditional

heteroscedasticity, which is totally different from the shrinkage mechanism, we conjecture that

the use of DCC model would also help improve the out-of-sample performance of portfolios

with leverage constraints.

Thus, a key difference between our work and the previous literature is that we focus on the

most advanced estimator for covariance matrix, which not only applies the nonlinear shrinkage
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procedure to account for the individual shrinkage intensity, but also considers the dynamic

variation of the covariances using the GARCH model. On this basis, we perform a comparative

analysis and obtain new findings for the effects of shrinkage covariance matrix and leverage

constraint on risk reduction and efficiency increase.

The rest of the paper is organized as follows. Section 2 provides the methodologies and

the background, including the nonlinear shrinkage estimator of the covariance matrix, its

combination with the DCC model, and our theoretical findings in constructing leverage-

constrained GMV and mean-variance efficient portfolios. In Section 3, we use Monte Carlo

simulations to verify our theoretical results. In Section 4, we describe our data, report the

results for out-of-sample performance of the GMV and the mean-variance efficient portfolios,

and conduct robustness checks. Section 5 concludes.

2 Methodology and Background

2.1 Shrinkage and DCC

It is widely known that the sample covariance matrix performs poorly out-of-sample in large

dimensions due to overfitting. Without imposing any additional structure on the data, shrinkage

methods improve the estimation precision by rectifying the bias of the sample eigenvalues. The

basic idea behind shrinkage methods is to pull the extreme sample eigenvalues towards the grand

mean of all sample eigenvalues, since the smallest sample eigenvalues are biased downwards

and the largest ones upwards. Ledoit and Wolf (2003, 2004a,b) propose the linear shrinkage

estimators, which are the first-order approximation solutions to a nonlinear optimization

problem, as all sample eigenvalues adjust with the same shrinkage intensity. The nonlinear

shrinkage estimators proposed by Ledoit and Wolf (2012, 2015) allow the sample eigenvalues to

adjust with heterogeneous shrinkage intensities and should generally perform better than the

linear ones.

To determine the optimal shrinkage intensity for every sample eigenvalue (in regard to a

particular loss function), Ledoit and Wolf (2015) discretize the famous Marčenko and Pastur

(1967) equation and construct the QuEST (Quantized Eigenvalues Sampling Transform) function.

By numerically inverting the QuEST function, the consistent estimators for the population

eigenvalues can be obtained. Specifically, let (λ1, . . . , λN ) denote a set of eigenvalues of the

N × N sample covariance matrix S, sorted in descending order, and (u1, . . . ,uN ) be the

corresponding eigenvectors. Let QT,N (t) ..=
(
q1T,N (t), . . . , qNT,N (t)

)′
denote the QuEST function,

which turns the set of population eigenvalues t ..= (t1, . . . , tN ) into the set of sample eigenvalues.

Thus, given the set of sample eigenvalues, the population eigenvalues can be consistently

estimated by inverting the QuEST function:

τ̂ ..= argmin
t∈[0,+∞)N

1

N

N∑
i=1

(
qiT,N (t)− λi

)2
, (2.1)

5



Then, the nonlinear shrinkage estimator (denoted by NL) of the covariance matrix is

Σ̂ ..=
N∑
i=1

λ̂i (τ̂ ) · uiu′i , (2.2)

where λ̂i (τ̂ ) for i = 1, . . . , N denote the shrunk eigenvalues based on τ̂ . The basic idea of this

shrinkage formula is that

λ̂i (τ̂ ) ≈ u′i Σui , (2.3)

where Σ represents the unconditional population covariance matrix. The approximation is

valid asymptotically as matrix dimension and sample size go to infinity together in the manner

detailed by Ledoit and Wolf (2015). Equation (2.2)–(2.3) are very similar to λi = u′i Σui and

S =
∑N

i=1 λi · uiu′i: all we have done is replace the in-sample variance of a portfolio whose

weights are determined by eigenvector ui with the true variance of the same portfolio. This

is a substantial improvement because the fact that the eigenvectors (ui)i=1,...,N are extracted

from the same dataset as the eigenvalues (λi)i=1,...,N generates tremendous over-fitting bias.

In addition, to capture the volatility-clustering feature of asset returns, Engle (2002) uses

the Dynamic Conditional Correlation (DCC) model to describe the time-varying structure

in variances and covariances. Let Σt ..= (σijt) denote the conditional covariance matrix of

asset returns rt ..= (rit) (N -dimensional column vector) at time t, where t = 1, . . . , T . Let

Dt
..= diag

(
σ
1/2
11t . . . σ

1/2
NNt

)
denote the volatility matrix, Qt ..= (qijt) the pseudo-correlation

matrix, and Pt ..= (ρijt) the correlation matrix, satisfying

Pt ..= diag
(
q
−1/2
11t . . . q

−1/2
NNt

)
Qt diag

(
q
−1/2
11t . . . q

−1/2
NNt

)
. (2.4)

The DCC model is defined as

Σt = DtPtDt . (2.5)

A GARCH(1,1) model is used to describe the dynamic of every univariate volatility:

σ2ii,t = σ2ii,0 (1− αi − βi) + αi r
2
i,t−1 + βi σ

2
ii,t−1 , (2.6)

and the pseudo-correlation matrix Qt is specified as

Qt = Q̄(1− α− β) + α st−1s
′
t−1 + β Qt−1 , (2.7)

where αi, βi, α, and β are non-negative scalars satisfying αi + βi < 1 for every i ∈ {1, 2, . . . , N}
and α+ β < 1. σii,0 is the long-run volatility of asset return for individual i, st = D−1t rt is the

devolatilized returns at time t, and Q̄ is the long-run covariance matrix of st.

By combining the nonlinear shrinkage estimator of Q̄ with the DCC model, Engle et al.

(2019) propose the DCC-NL estimator of the covariance matrix. To avoid inverting matrices with

large dimensions, they also use the 2MSCLE method (Pakel et al., 2020) in estimating the DCC

model, which is the composite likelihood estimation bonding the individual likelihoods generated

by 2× 2 blocks of all contiguous pairs. To sum up, NL aims to improve the estimation precision

of covariance matrix by shrinking eigenvalues and thus reducing sampling errors. Meanwhile,
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DCC takes the conditional heteroscadasticity into consideration by dynamic modeling. In view

of these strengths, the DCC-NL estimator is supposed to have better out-of-sample performance

than the DCC estimator, the NL estimator, and the sample covariance matrix (denoted by S),

especially in large dimensions.

2.2 Constructing GMV Portfolios with Leverage Constraint

Based on the estimator Σ̂t of the time-varying covariance matrix Σt, constructing GMV portfolio

with gross-exposure constraints is equivalent to the following minimization problem given by

min
wt

w′tΣ̂twt (2.8)

subject to w′t1 = 1 and
N∑
i=1

|wi,t| ≤ γ.

The constraint
∑N

i=1 |wi,t| ≤ γ could be expressed as ‖wt‖1 ≤ γ. Note that γ ≥ 1, and the

constraint becomes weaker with the increase of γ. When γ = 1, the constraint is equivalent to

the extreme situation considered in Jagannathan and Ma (2003) that no short sales are allowed.

γ = 1.6 corresponds to fully-invested portfolios of the 130/30 type, and γ = 2 to 150/50. When

γ =∞, short exposure is unconstrained.

Define the Lagrangian as

L(wt, µ, λ) = w′tΣ̂twt − µ(w′t1− 1)− λ(γ − ‖wt‖1), (2.9)

and let gt be the subgradient vector of ‖wt‖1. Then, for wi,t 6= 0, the i-th element of gt is

unique, i.e., gi,t = sign(wi,t); for wi,t = 0, gi,t could be any values in [−1, 1].

Consequently, the Karush-Kuhn-Tucker (KKT) conditions for the above leverage-constrained

optimization problem (2.8) are
2Σ̂twt − µ1 + λgt = 0,

λ(γ − ‖wt‖1) = 0, λ ≥ 0,

‖wt‖1 ≤ γ, w′t1− 1 = 0,

(2.10)

where 1 is the column vector of ones, λ and µ are Lagrange multipliers. Denote a solution to

(2.10) as w∗t . The following result shows that constructing the leverage-constrained minimum

variance portfolio from the DCC estimator Σ̂t is equivalent to constructing a (unconstrained)

minimum variance portfolio from a shrunk version of Σ̂t.

Theorem 1. (i) Let Σ̃γ,t = Σ̂t + 1
2λ(g∗t1

′ + 1g∗
′
t ), where g∗t is the subgradient at w∗t , and λ is

the Lagrange multiplier defined in (2.10). Then Σ̃γ,t is positive definite if Σ̂t is a positive

definite DCC covariance matrix estimator.

(ii) The partial constrained portfolio optimization problem (2.8) is equivalent to the optimization

problem

min
w′t1=1

w′tΣ̃γ,twt (2.11)

with the regularized covariance matrix Σ̃γ,t.
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It can easily be seen that the approach of imposing constraints on leverage has only one

degree of freedom: the Lagrange multiplier λ (or, equivalently, the gross exposure constraint

γ, as these two are in one-to-one correspondance, holding everything else equal). It is not

obvious how to choose this parameter optimally if the goal is to maximize covariance matrix

accuracy, but we will leave this issue aside for a moment. By contrast, nonlinear shrinkage

has N degrees of freedom λ̂1 (τ̂ ) , . . . , λ̂N (τ̂ ), each one chosen optimally through an automatic

procedure under large-dimensional asymptotics. This ability to ‘locally fine-tune’ is a huge

advantage when population eigenvalues can be dispersed, clustered, or otherwise unruly, which

is the general case.

2.3 Constructing Mean-Variance Portfolios with Leverage Constraint

Given the estimator of the covariance matrix Σ̂t and the gross-exposure parameter γ, the

Markowitz mean-variance efficient portfolio based on a return predictive signal mt
..=

(m1t, . . . ,mNt)
′ is formulated as:

min
wt

wt
′Σ̂twt (2.12)

subject to wt
′1 = 1 , (2.13)

wt
′mt = bt and (2.14)

N∑
i=1

|wi,t| ≤ γ, (2.15)

where bt is a selected target exposure to the signal mt. In our empirical study, bt is determined

by the sorting portfolios. In particular,

bt = wQ′tmt (2.16)

where wQt is the weight vector of quantile-based portfolios. Let {(1), (2), . . . ,

(N)} be the permutation of {1, 2, . . . , N} that results in descending order of scores for the

signal mt. Then, wQ
(1)
t = . . . = wQ

(d)
t

..= 1/d and wQ
(d+1)
t = . . . = wQ

(N)
t

..= 0, where d is the

largest integer that is smaller than or equal to the ratio of portfolio size N to the number of

quantiles B. We consider quintiles (B = 5) in our empirical analysis.

Denote the solution to problem (2.12) as w∗b,t, then we could obtain the following theorem

similar to Theorem 1.

Theorem 2. The partial constrained portfolio optimization problem (2.12) is equivalent to the

optimization problem

min
wt

w′tΣ̃γ,twt (2.17)

subject to w′t1 = 1 and wt
′mt = bt.

with the regularized covariance matrix Σ̃γ,t. Here Σ̃γ,t = Σ̂t + 1
2λ(g∗b,t1

′ + 1g∗
′
b,t), g∗b,t is the

subgradient at w∗b,t, and λ is the Lagrange multiplier.
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3 Monte Carlo Simulations

3.1 Data Generating Process

In the last section, we demonstrate that imposing the gross-exposure constraint on portfolio

weights is equivalent to using the shrinkage estimator when the time-varying structure of the

covariance matrix is captured by the DCC model. Moreover, we consider varying levels of

constraint on the gross-exposure instead of imposing the nonnegative constraints on all weights.

In this section, we use Monte Carlo simulations to verify our theoretical results and to

quantify the finite sample performance with varying levels of leverage constraint and different

covariance matrix estimators. We generate Monte Carlo data that can simulate the real data

the best.

First, we estimate the unconditional covariance matrix from the most liquid stocks

(N = 500, 1000) in the CRSP database based on the nonlinear shrinkage method using five

years of daily data from 2010 to 2014. This matrix will be regarded as the true unconditional

covariance matrix.

Second, we simulate the DCC time series with parameters α = 0.05 and β = 0.93 for

(2.7), and with parameters αi = 0.05 and βi = 0.90 for all individual stocks i = 1, . . . , N for

(2.6). The disturbance terms are drawn from a multivariate standard normal distribution or a

multivariate Student t-distribution with 5 degrees of freedom. For each simulation, we thereby

generate an T ×N ×N time-varying covariance matrix and correspondingly an T ×N matrix

of simulated returns, where the time length T is fixed at 1250. We repeat each simulation for

100 times.

3.2 Simulation Results

We consider four different estimators for the covariance matrix, including the sample covariance

matrix (S), the nonlinear shrinkage estimator (NL) proposed by Ledoit and Wolf (2012, 2015),

the covariance matrix estimator based on DCC model (Engle, 2002), and the DCC-NL estimator

proposed by Engle et al. (2019). For each covariance matrix estimator, we allow a wide choice of

the leverage-constraint parameter γ, ranging from 1 to 16. Here we construct GMV portfolios

based on (2.8).

Following Fan et al. (2012), we calculate three different risks to evaluate the performance.

First, the oracle risk (denoted by Rorc) corresponding to the oracle portfolio, based on the true

time-varying covariance matrix, is obtained by (3.1). Second, the empirical risk (denoted by

Remp) corresponding to the empirical portfolio, based on the estimated time-varying covariance

matrix, is obtained by (3.2). The empirical risk, however, is not the actual risk of the empirical

portfolio, since it relies on the estimated covariance matrix. Replacing the estimated covariance

matrix by the true covariance matrix, we get the actual risk (denoted by Ract, (3.3)), which is

crucial for comparing the finite sample performance of different portfolios.

Rorc = w′tΣtwt (3.1)

Remp = ŵ′tΣ̂tŵt (3.2)
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Ract = ŵ′tΣtŵt (3.3)

Figures 1-4 show Rorc, Remp, and Ract for four different covariance matrix estimators, each

with varying constraints on the gross-exposure, where Figure 1 and Figure 3 are for the cases

of N = 500, and Figure 2 and Figure 4 are for the cases of N = 1000. For Figures 1-2,

the disturbance terms of the simulated data are drawn from a multivariate standard normal

distribution, while for Figures 3-4, they are drawn from a multivariate “Student” t-distribution

with 5 degrees of freedom. In all cases, the sample size is fixed at T = 1250. It is intuitive to

see from Equations (3.1) to (3.3) that the gap between the actual and the oracle risks is caused

by the estimation errors in weights or the wrong constraints, whereas the differences between

the actual and the empirical risks are because of the estimation errors in the covariance matrix

estimators.

The curve of the oracle risk shared by the four graphs in each figure indicates that the

theoretical risk decreases sharply with the increase of the gross-exposure parameter γ before

γ reaches 2, when the constraints on gross-exposure form the 150/50 strategy. This provides

theoretical evidence supporting the outstanding performance of the 150/50 strategy. The sums

of the absolute weights for oracle portfolios are 5.76 (5.75) and 5.85 (5.84), for N = 500 and

N = 1000, respectively, in the cases with normally-distributed (t-distributed) disturbance terms,

implying the corresponding exact inflection points on the curves of oracle risk.

The estimation of the covariance matrix becomes more and more difficult with the increase of

γ and N , especially if no-shrinkage-involved covariance matrix estimator is used at the meantime.

When N = 500, the gap between the actual and the empirical risks first becomes wider as γ

increases, and then remains constant. In addition, the actual-empirical gap is noticeably larger

for no-shrinkage-involved covariance matrix estimators. The difference between the actual

and the oracle risks show very similar properties, except that it is much smaller when DCC

model is used, suggesting the effectiveness of DCC model in forecasting and accordingly in

reducing the actual risk. In the cases of N = 1000, the actual risks are remarkably larger

when the constraints on the gross-exposure are weak and S or DCC estimator is used at the

same time: the curves of actual risks turn up when γ > 4, making the actual-empirical gap

and the actual-oracle gap increase. These findings all help confirm the positive effects of the

shrinkage and the leverage constraint on reducing risks. However, in comparison with the

consistent positive effects of the shrinkage, leverage constraint helps reduce portfolio risks only

in moderate degree.

To better analyze the actual risks of portfolios constructed based on different covariance

matrix estimators, we show them in Figure 5 (for normally-distributed disturbance terms)

and Figure 6 (for t-distributed disturbance terms). On the one hand, for varying leverage

constraints, it is always the DCC-NL estimator that brings the lowest risk. On the other hand,

with the relaxation of the leverage constraint (the increase of γ), the actual risk first decreases

and then increases (for S and DCC) or remains constant (for NL and DCC-NL). The actual

risk is the lowest when γ is between 2 and 5. When γ < 5 (the leverage constraint is effective),

the performance of estimators mainly depends on whether the DCC is used, whereas when

γ > 5, the difference in performance largely depends on whether the shrinkage is used. Overall,
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the DCC model, the shrinkage method, and the imposing of an appropriate leverage constraint

all help reduce risks, and the effects increase with N .

We also present a subset of the simulation results in Table 1 (for normally-distributed

disturbance terms) and Table 2 (for t-distributed disturbance terms). Specifically, the tables

present the performance of the GMV portfolios based on various covariance matrix estimators

with gross-exposure parameter γ =∞, 2, 1.6, and 1, corresponding to four specific strategies,

which are no constraint on weights, the 150/50 strategy, the 130/30 strategy, and the no-short-

sale constraint. Results shown in Panels A, B are for portfolios with N = 500 and N = 1000,

respectively.

Besides the aforementioned revelations, Tables 1-2 indicate that portfolios constructed using

the DCC-NL estimator without imposing any leverage constraint have the minimum actual

risks. This should not be surprising since the data-generating process is based on DCC model

and the ex post standard deviation calculated is based on the real covariance matrix. The

moderate leverage constraint with parameter γ = 2 or γ = 1.6 helps reduce the actual risks

remarkably when no shrinkage is used in the estimation of the covariance matrix, but they are

not as effective as using the DCC-NL estimator. Moreover, in line with the results shown in

Figure 5 and Figure 6, the DCC-NL estimator is always suggested, even when an appropriate

leverage constraint is imposed.

The numbers in the last two columns indicate that both the shrinkage and the leverage

constraint largely reduce the standard deviations and the total short positions of weights. The

oracle total short position, based on the true covariance matrix, approximately equals 237.9%

(237.6%) when N = 500, and equals 242.3% (242.1%) when N = 1000, for normally-distributed

(t-distributed) disturbance terms. As a result, the 130/30 strategy and 150/50 strategy are

not diversified enough, leading to their underperformance compared to using the DCC-NL

estimator without imposing any leverage constraint.

3.3 Combining Shrinkage with Leverage Constraint

As a final lesson, there are circumstances where the leverage constraint is externally imposed:

for example, by the regulatory authorities, by the financing conditions extended by prime

brokers, or by risk-management commitments advertized to fund investors in the marketing

materials at the initial asset-gathering stage. In such cases, Tables 1–2 show that there is

still incremental benefit to using DCC-NL, even after the leverage constraint has already been

imposed. Indeed, for every panel and every value of the gross exposure constraint γ:

1. the conditional covariance matrix (DCC) is better than the unconditional one (S);

2. the shrunk conditional covariance matrix (DCC-NL) is better than the plain one (DCC).

Here we measure ‘better’ as having lower standard deviation of the returns on the

Global Minimum Variance portfolio. Note, however, that the gains from shrinkage become

monotonically weaker as the gross exposure constraint γ becomes more binding. This is because

the leverage constraint applies a ‘brute-force’ one-size-fits-all over-shrinkage that leaves little
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room for the benefits of a locally adaptive optimal nonlinear shrinkage formula to express

themselves.

4 Empirical Results

4.1 Data

We examine the effects of the leverage constraint, the shrinkage estimation in covariance matrix,

and the use of DCC model to capture the heteroscedasticity on the out-of-sample performance

of the minimum variance portfolio and the mean-variance efficient portfolio. We use the same

portfolio-construction rules as in Ledoit et al. (2019), but we impose gross-exposure constraints

on portfolio weights.

Specifically, we focus on stocks traded on the NYSE, AMEX, and NASDAQ, with daily

return data for all the immediately preceding 1250 days as well as the upcoming 21 days,

and with correlations not exceeding 0.952. The daily return data we use, which covers the

period from 01/01/1980 to 12/31/2018, are from the Center for Research in Security Prices

(CRSP) database. The out-of-sample period is from 01/08/1986 to 12/31/2018. We update

the portfolios every 21 consecutive trading days, and thus form 396 investment dates from

01/08/1986 to 12/31/2018. At every investment date h, the covariance matrix is estimated

based on the most recent 1250 daily returns (roughly equals five years).

For both the minimum variance portfolio and the efficient mean-variance portfolio, we

consider two different portfolio sizes N = 500, 1000. For a given combination (h,N), in the set

of stocks that satisfy the above conditions, we pick the largest N stocks (as measured by their

market capitalization on investment date h) as our investment universe.

The covariance matrix estimators we consider here include the sample covariance matrix

(S), the nonlinear shrinkage estimator (NL) (Ledoit and Wolf, 2015), the covariance matrix

estimator based on DCC model (Engle, 2002), and the DCC-NL estimator (Engle et al., 2019).

To consider the effects of the leverage constraint and the shrinkage covariance matrix estimator

together, we establish portfolios with a varying gross-exposure parameter γ, based on each

covariance matrix estimator for each portfolio type and portfolio size.

4.2 Main Results

4.2.1 Results for GMV portfolios

Table 3 presents the out-of-sample performance measures of the GMV portfolios with a varying

gross-exposure parameter γ =∞, 2, 1.6, and 1 for each covariance matrix estimator. Specifically,

we report the annualized average return (AvR), computed by the average out-of-sample returns

multiply by 252, annualized standard deviations (StdR), computed by the standard deviation

of the out-of-sample returns multiply by
√

252, and Information Ratios (IR), which is the ratio

of AvR to StdR.

2The sample correlations are calculated based on the daily returns over the past 1250 days. We remove the

stock with the lower volume in a pair on the investment date if the correlation of the two exceeds 0.95.
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On the one hand, DCC-NL performs the best among four covariance matrix estimators

considered in all cases with different leverage constraints. Judging by the StdR of GMV

portfolios, the outperformance of DCC-NL is most obvious when N = 1000 and no leverage

constraint is imposed: it reduces the out-of-sample standard deviation by 5.38 percentage points

compared to the sample covariance matrix.

As the leverage constraint becomes tighter, the relative outperformance of NL declines,

while that of the DCC improves. The decline in the outperformance of NL is consistent with

the observations in Jagannathan and Ma (2003). According to them, imposing constraints on

portfolio weights has a shrinkage-like effect, and thus it hurts the performance of the shrinkage

estimator of covariance matrix. Nevertheless, the DCC-NL estimator is always preferred: it

delivers the smallest out-of-sample standard deviation even when an appropriate leverage

constraint is imposed. We use the prewhitened HACPW method described in Ledoit and Wolf

(2011) to test if the outperformance of DCC-NL over DCC in terms of out-of-sample standard

deviation is significant in cases with different leverage constraints. The results show that the

outperformance is always significant at the 0.01 level, except when no leverage is allowed.

On the other hand, the moderate constraints with γ = 2, or γ = 1.6 outperform the extreme

no-short-sale constraint with γ = 1 and the no constraint with γ =∞ if no shrinkage is used in

the covariance matrix. For example, when N = 1000, if sample covariance matrix is used, the

50% short-sale constraint (γ = 2) reduces the out-of-sample standard deviation by 4.27 and

1.67 percentage points compared to the no-constraint strategy and the no-short-sale strategy,

respectively. However, the effect of imposing a leverage constraint is limited and becomes

insiginificant if the nonlinear shrinkage estimator is used.

As expected, the effect of using DCC-NL estimator is better than the combined effect of

using DCC and imposing an appropriate leverage constraint. Specifically, when N = 1000, the

GMV portfolios constructed using the DCC-NL estimator without any leverage constraint and

the GMV portfolios constructed using the DCC estimator with the constraint of γ = 1.6 have

annualized out-of-sample standard deviations of 8.16 percent and 8.35 percent, respectively,

both reducing the 13.54 percent from using the sample covariance matrix by over 5 percentage

points.

Figure 7 reveals the change of the out-of-sample risks with the continuous increase in the

parameter γ. The out-of-sample risks first decline and then increase for all portfolios constructed

based on different covariance matrix estimators and for both cases with 500 and 1000 stocks.

The optimal choice that corresponds to the lowest risk is around γ = 2 (the 150/50 strategy)

for portfolios with 500 stocks and around γ = 1.6 (the 130/30 strategy) for portfolios with 1000

stocks, where in both cases the DCC-NL estimator is suggested.

Taken together, the DCC-NL estimator achieves the best performance in all cases no matter

whether a leverage constraint is imposed; imposing the 30% to 50% constraint on leverage also

improves portfolio performance, but not as effective as using DCC-NL estimator.
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4.2.2 Results for Mean-Variance Efficient portfolios

Table 4 presents results for the Markowitz mean-variance efficient portfolios constructed based

on the signal return-on-equity (ROE), which is a well-known profitability factor that can

indicate the growth potential of a firm (Haugen and Baker, 1996) and has been proven to have

statistically significant explanatory power for cross-sectional anomalies (Feng et al., 2020; Hou

et al., 2015). We calculate ROE by the income before extraordinary divided by 1-quarter-lagged

book equity. Judging by the Information Ratios and the corresponding significant test3, the

DCC-NL estimator still performs the best among all covariance matrix estimators and its

outperformance over DCC is statistically significant when the leverage constraint is not too

strong. When N = 1000 and no constraint imposed on weights, the Markowitz portfolio

constructed using the DCC-NL estimator has a Information Ratio of 1.79, almost double that

from using the sample covariance matrix. When no shrinkage is in the covariance matrix, the

130/30 and 150/50 strategies outperform the strategy without any constraint on weights or

with the extreme no-short-sale constraint.

Moreover, it is not difficult to find that the effect of directly using the nonlinear shrinkage

estimator exceeds that of imposing the 30% or 50% leverage constraint, both of which outperform

imposing the nonnegative constraint on weights, while both are inferior to using the DCC-NL

estimator without any constraint. These findings again support our conjecture that imposing

constraints on portfolio weights has a shrinkage-like effect, no matter whether the DCC model

is used for considering the dynamics in covariances and variances. But unlike the nonlinear

shrinkage technique, it is difficult to achieve the optimal shrinkage level for the leverage

constraint with one degree of freedom.

4.3 Portfolio Weights

For each investment period, we compute the minimum weight (MinW), the maximum weight

(MaxW), the standard deviation of weights (StdW) and the total short positions in weights

(ShortW) across the N stocks of the portfolio. We present the average values over the 396

investment dates from 01/08/1986 to 12/31/2018 for the four characteristics of portfolio weights

in Tables 3-4.

We find that portfolios constructed based on the sample covariance matrix have the smallest

minimum weight and the largest total short position, while portfolios constructed based on the

DCC estimator have the largest maximum weight, and portfolios constructed based on the NL

estimator have the smallest maximum weight and the smallest standard deviation in weights.

If no leverage constraint is in place, the total short positions are always large, especially

when N is large and no shrinkage is used in the estimation of the covariance matrix. For

example, when N = 1000, the total short position of GMV portfolio reaches 337.03 percent if

the DCC estimator is used, and this number even comes up to 558.05 if the sample covariance

matrix is used. For Markowitz portfolios, the corresponding short positions are even larger,

3We use the prewhitened HACPW method described in Ledoit and Wolf (2008) to test if the outperformance

of DCC-NL over DCC in terms of out-of-sample Information Ratio is significant.
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with 361.70 percent for the DCC estimator and 571.36 percent for the sample covariance matrix.

The total short position and the turnover of portfolios are largely reduced by the use of the

nonlinear shrinkage estimators and the introduction of leverage constraints. This should not be

surprising considering how the nonlinear shrinkage method works in improving the estimation

precision of covariance matrix.

4.4 Robustness Checks

4.4.1 Alternative Predictors

For robustness check, we consider the Markowitz mean-variance efficient portfolios with an

alternative signal. Instead of using the signal ROE, now we focus on a factor that can not

only indicate growth potential but also reflect price level. We follow Basu (1983) and use

earnings-to-price (E/P), measured as income before extraordinary divided by the market

capitalization.

Table 5 presents the results for the Markowitz mean-variance efficient portfolios constructed

based on the E/P signal, from which we draw similar conclusions to our main findings

aforementioned. First, the DCC-NL estimator still performs the best among all estimators we

considered, though its advantage over DCC is significant only when no constraint is imposed on

weights. Second, the moderate constraints with γ = 2 and γ = 1.6 lead to better out-of-sample

performance than no constraint or the extreme no-short-sale constraint when no shrinkage is in

the covariance matrix. Third, the effect of using NL estimator is more remarkable than that

of imposing the 30% or 50% leverage constraint. When N = 1000, the use of NL estimator

and the imposing of the 50% leverage constraint raise the Information Ratio of the portfolio

constructed from 1.03 to 1.74 and 1.62, respectively. Finally, the effect of using nonlinear

shrinkage estimators gradually fades out as the intensity of the leverage constraint increases.

The advantage of using nonlinear shrinkage estimators culminates when no constraint is imposed:

the NL estimator and the DCC-NL estimator increase the Information Ratio based on sample

covariance matrix by more than 70 percent and 90 percent, respectively.

4.4.2 Transaction Cost

Transaction cost is an important issue in practical implementations (Mei and Nogales, 2018; Mei

et al., 2016). In Table 6, we present results for the Markowitz mean-variance efficient portfolios

constructed based on the ROE signal, when the transaction cost is considered. Referring to

Avramovic and Mackintosh (2013) and Webster et al. (2015), we set the bid-ask spread to be

three or five basis-points to embody the transaction cost.

Unsurprisingly, the Information Ratio becomes lower with the increase of transaction costs.

Features suggested by the pattern of Information Ratios are consistent with our main results.

The DCC-NL estimator generates the best out-of-sample performance among the four covariance

matrix estimators in all cases. The advantage of the DCC-NL estimator is most remarkable

when no leverage constraint is imposed. When N = 500 and the bid-ask spread is 3 basis-points,

using DCC-NL estimator increases the Information Ratio of using S estimator from 0.94 to 1.23,

15



if no constraint is imposed on weights. When constraints are imposed, the DCC-NL estimator

still helps increase the Information Ratio. Moreover, owing to the parsimony of the shrinkage

method in turnover, the outperformance of the DCC-NL (NL) estimator over the DCC (S)

estimator becomes more significant and robust than when the transaction cost is ignored.

4.5 Combining Shrinkage with Leverage Constraint in Practice

In the process of researching the comparison of leverage vs. shrinkage, it so happens that

we have also gathered evidence as to whether there are any benefits from combining both

techniques. The question is: benefits to whom?

With respect to a leverage-constrained portfolio, upgrading from the sample covariance

matrix to the DCC-NL estimator (while preserving the leverage constraint) yields benefits

almost as across-the-board as in the Monte-Carlo simulations analyzed in Section 3.3. The

pattern identified earlier still holds: shrinkage has more room for improvement if leverage is

less binding of a constraint.

With respect to a pure DCC-NL portfolio, gradually tightening the leverage constraint often

hurts, but not always, and may even help at the beginning. Thus, there are circumstances

where imposing γ = 2, which corresponds to a 150/50 portfolio, actually results in better

performance:

• Global Minimum Variance Portfolio, 500-stock universe

• Global Minimum Variance Portfolio, 1,000-stock universe

• ROE-optimized portfolio, 5bp transaction cost, 1,000-stock universe

In most other cases, moving from an absence of leverage constraint to a 150/50 portfolio

generated very little loss. Thus, taking into account the practicalities of the problem, it seems

that 150/50 is the ‘sweet spot’ where leverage does not start to hurt (much), provided we have

a good nonlinear shrinkage estimator of the conditional covariance matrix such as DCC-NL.

5 Conclusion

Leverage constraints are often used by quantitative investors. Besides the nonnegative constraint,

strategies limiting the total short position to be at most 30% and 50% of the portfolio value are

implementable in practice: the so-called 130/30 strategy and 150/50 strategy. Previous research

find that imposing the nonnegative constraint on weights can reduce the risks of the optimal

portfolios constructed and explain it by the shrinkage-like effect. We extend the nonnegative

constraint to different degrees of leverage constraints so that the prevalent 130/30 strategy and

150/50 strategy are also contained. On the other hand, we focus on the DCC-NL estimator

to consider the dynamics and the estimation precision of covariance matrix at the same time,

where NL represents the nonlinear shrinkage, which is an improvement to the linear shrinkage

estimator considered in previous literature.

We provide mathematical connection between imposing the gross-exposure constraint and

using the shrinkage covariance matrix estimator in a dynamic framework. Moreover, we give
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theoretical insights into the finding that using the nonlinear shrinkage estimator outperforms

imposing an arbitrarily-chosen leverage constraint. We demonstrate through Monte Carlo

simulations and empirical studies that portfolios constructed based on the DCC-NL estimator

are well diversified, even when leverage constraints are imposed. The 30% to 50% leverage

constraint is better than the no-short-sale constraint and the no constraint when no shrinkage is

used in the covariance matrix estimation. The good out-of-sample performance of the DCC-NL

estimator is attributed to both the use of a DCC model, which captures the dynamic structure

in variances and covariances, and the introduction of an appropriate shrinkage, which reduces

the sampling errors in the estimation of covariance matrix.

Based on daily return data from stocks traded on the NYSE, AMEX, and NASDAQ, we

construct the global minimum variance portfolios and the Markowitz mean-variance efficient

portfolios based on return predictive signals with portfolio sizes N = 500 and 1000. The

empirical results show that though imposing an appropriate leverage constraint has a similar

effect as using the nonlinear shrinkage covariance matrix estimator in reducing risks, the latter

always perform better, and using the DCC-NL estimator helps even more. The effects of DCC

and NL both increase in portfolio size, and the latter decreases as the leverage constraint

becomes tighter. Moreover, we find that using the DCC-NL estimator improves the out-of-

sample performance even when a moderate leverage constraint is imposed, but the leverage

constraint often hurts a pure DCC-NL portfolio. Finally, using the NL estimator, the DCC

model, and an appropriate leverage constraint all help improve the out-of-sample performance,

but only NL and leverage constraint help reduce the standard deviation of weights and the

turnover of portfolios.

In our main study, we use the return-on-equity as a proxy for the mean return to construct

the mean-variance efficient portfolio. For robustness check, we consider the earnings-to-price as

an alternative proxy and also take the effect of transaction costs into consideration by assuming

the bid-ask spread to be 3 or 5 basis-points. Neither of these changes affects the robustness of

our findings.
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Table 1: Actual Risk of Portfolio and Standard Deviation and Total Short Position of Weights.

Panel A: N = 500 Panel B: N = 1000

Σ̂ StdR StdW ShortW StdR StdW ShortW

γ =∞

S 5.53 1.45 222.75 6.63 0.75 239.63

NL 5.01 1.13 166.32 3.92 0.54 161.28

DCC 5.11 1.31 195.77 6.43 0.68 209.17

DCC-NL 4.40 1.11 155.17 3.69 0.54 149.89

γ = 2

S 6.75 0.81 47.88 5.88 0.43 48.76

NL 6.74 0.77 47.84 5.85 0.41 48.74

DCC 5.14 0.73 45.90 4.63 0.40 47.74

DCC-NL 5.11 0.73 45.86 4.57 0.40 47.71

γ = 1.6

S 7.48 0.78 29.31 6.86 0.43 29.57

NL 7.50 0.75 29.29 6.80 0.41 29.57

DCC 5.62 0.69 28.33 5.13 0.39 29.16

DCC-NL 5.59 0.69 28.30 5.11 0.39 29.13

γ = 1

S 9.66 0.78 0.00 9.76 0.45 0.00

NL 9.64 0.75 0.00 9.80 0.44 0.00

DCC 7.59 0.62 0.00 7.33 0.37 0.00

DCC-NL 7.58 0.62 0.00 7.32 0.37 0.00

Notes: This table shows the simulation results for the empirical GMV portfolios constructed

based on different covariance matrix estimators and facing various degrees of leverage constraints.

The disturbance terms of the simulated data are drawn from a multivariate standard normal

distribution. The covariance matrix is estimated using the most recent 1250 daily returns based

on six different methods, which are the sample covariance matrix (S), the nonlinear shrinkage

estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator (Engle, 2002), and the DCC-NL

estimator (Engle et al., 2019). γ = ∞, 2, 1.6, 1 stands for an increasing restriction with the

proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. The standard deviation of

return (StdR) is calculated using the true covariance matrix, and thus it represents the actual

risk. The standard deviation of weights (StdW) and the total short position of weights (ShortW)

of the empirical portfolios are also reported. Panel A and Panel B show results for portfolios

with 500 and 1000 stocks, respectively.
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Table 2: Actual Risk of Portfolio and Standard Deviation and Total Short Position of Weights.

Panel A: N = 500 Panel B: N = 1000

Σ̂ StdR StdW ShortW StdR StdW ShortW

γ =∞

S 5.54 1.42 216.01 6.48 0.74 235.76

NL 5.01 1.12 164.14 3.84 0.54 160.09

DCC 5.07 1.25 183.60 6.24 0.67 207.46

DCC-NL 4.37 1.07 148.57 3.65 0.53 147.35

γ = 2

S 7.05 0.78 46.75 5.92 0.42 48.27

NL 7.04 0.75 46.63 5.90 0.40 48.19

DCC 5.01 0.70 44.10 4.47 0.39 46.76

DCC-NL 4.98 0.70 44.08 4.42 0.38 46.71

γ = 1.6

S 8.09 0.75 28.75 6.86 0.41 29.30

NL 8.12 0.72 28.72 6.89 0.40 29.29

DCC 5.51 0.66 27.53 4.97 0.37 28.57

DCC-NL 5.48 0.66 27.48 4.94 0.37 28.56

γ = 1

S 10.90 0.73 0.00 10.60 0.42 0.00

NL 10.90 0.71 0.00 10.63 0.41 0.00

DCC 7.62 0.59 0.00 7.20 0.35 0.00

DCC-NL 7.61 0.59 0.00 7.19 0.35 0.00

Notes: This table shows the simulation results for the empirical GMV portfolios constructed

based on different covariance matrix estimators and facing various degrees of leverage constraints.

The disturbance terms of the simulated data are drawn from a multivariate t-distribution with 5

degrees of freedom. The covariance matrix is estimated using the most recent 1250 daily returns

based on six different methods, which are the sample covariance matrix (S), the nonlinear

shrinkage estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator (Engle, 2002), and the

DCC-NL estimator (Engle et al., 2019). γ = ∞, 2, 1.6, 1 stands for an increasing restriction with

the proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. The standard deviation

of return (StdR) is calculated using the true covariance matrix, and thus it represents the actual

risk. The standard deviation of weights (StdW) and the total short position of weights (ShortW)

of the empirical portfolios are also reported. Panel A and Panel B show results for portfolios

with 500 and 1000 stocks, respectively.
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Table 3: Out-of-sample Performance, Characteristics of Weights and Average Turnover of the

Global Minimum Variance Portfolio.

Σ̂ AvR StdR IR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

γ =∞

S 10.23 10.78 0.95 -6.22 10.22 1.73 255.37 6.50
NL 10.63 9.75 1.09 -2.84 4.88 1.00 140.40 2.35

DCC 13.22 10.44 1.27 -4.29 16.16 1.61 180.43 4.11
DCC-NL 12.94 9.55*** 1.35 -2.26 14.70 1.27 110.21 2.04

γ = 2

S 10.78 9.99 1.08 -3.83 10.13 1.15 82.71 3.19
NL 10.69 9.86 1.08 -2.81 5.65 0.85 66.30 1.39

DCC 12.22 9.82 1.24 -2.94 17.32 1.34 68.78 2.88
DCC-NL 12.38 9.52*** 1.30 -2.09 16.26 1.23 58.87 1.36

γ = 1.6

S 10.71 10.11 1.06 -3.46 10.76 1.09 54.55 2.80
NL 10.77 10.06 1.07 -2.85 6.27 0.83 48.11 1.39

DCC 12.02 9.78 1.23 -2.66 18.44 1.35 50.12 2.76
DCC-NL 12.24 9.59*** 1.28 -1.99 17.67 1.27 41.18 1.29

γ = 1

S 10.67 11.34 0.94 0.00 13.08 1.02 0.00 2.36
NL 10.97 11.34 0.97 0.00 8.25 0.81 0.00 0.36

DCC 11.13 10.19 1.09 0.00 24.72 1.52 0.00 1.29
DCC-NL 11.24 10.17 1.10 0.00 24.61 1.51 0.00 0.17

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 10.16 13.54 0.75 -7.28 9.72 1.69 558.05 12.62
NL 10.64 8.81 1.21 -1.44 2.44 0.49 142.97 3.26

DCC 10.28 10.51 0.98 -4.46 19.55 1.37 337.03 7.42
DCC-NL 11.26 8.16*** 1.38 -1.15 16.12 0.79 97.57 2.73

γ = 2

S 10.78 9.27 1.16 -2.71 8.38 0.70 90.91 3.56
NL 10.67 9.13 1.17 -1.65 3.19 0.43 67.58 1.69

DCC 10.71 8.52 1.26 -2.06 21.18 0.97 82.00 3.30
DCC-NL 11.24 8.11*** 1.39 -1.13 18.08 0.82 56.67 1.66

γ = 1.6

S 10.95 9.37 1.17 -2.40 8.88 0.66 54.55 2.96
NL 10.92 9.41 1.16 -1.78 3.62 0.44 49.40 1.65

DCC 10.90 8.35 1.31 -1.74 22.64 0.98 52.96 2.96
DCC-NL 11.23 8.10*** 1.39 -1.09 20.17 0.88 38.75 1.48

γ = 1

S 12.02 10.94 1.10 0.00 11.82 0.67 0.00 2.47
NL 12.04 10.98 1.10 0.00 5.53 0.46 0.00 0.55

DCC 9.96 8.62 1.16 0.00 31.61 1.23 0.00 1.42
DCC-NL 9.66 8.53*** 1.13 0.00 30.88 1.22 0.00 0.22

Notes: This table shows the empirical results for the GMV portfolios constructed based on

different covariance matrix estimators and facing various degrees of leverage constraints. The

covariance matrix is estimated using the most recent 1250 daily returns based on four different

methods, which are the sample covariance matrix (S), the nonlinear shrinkage estimator (NL)

(Ledoit and Wolf, 2015), the DCC estimator (Engle, 2002), and the DCC-NL estimator (Engle

et al., 2019). γ = ∞, 2, 1.6, 1 stands for an increasing restriction with the proportion of short-sale

not exceeding ∞, 50%, 30%, 0, respectively. We hold the portfolios for 21 days and record their

daily returns. We report their out-of-sample annualized average return (AvR), annualized

standard deviations (StdR), and Information Ratios (IR). Four characteristics of portfolio

weights, including the minimum weight (MinW), the maximum weight (MaxW), the standard

deviation of weights (StdW), and the total short positions of weights (ShortW), and the average

turnover (AvT) of portfolios are also reported. All numbers shown are in percentage except

those for Information Ratios. Panel A and Panel B show results for portfolios with 500 and

1000 stocks, respectively. In the rows labeled DCC and DCC-NL, significant outperformance

of one of the two portfolios over the other in terms of StdR is denoted by asterisks: *** ,** ,*

denote significance at the 0.01, 0.05, 0.1 levels, respectively.
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Table 4: Out-of-sample Performance, Characteristics of Weights and Average Turnover of the

Markowitz Portfolio Constructed based on the ROE Signal.

Σ̂ AvR StdR IR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

γ =∞

S 12.79 11.03 1.16 -6.53 10.39 1.79 267.08 6.72
NL 13.77 10.00 1.38 -3.07 5.04 1.05 150.65 2.50

DCC 15.36 10.73 1.43 -4.69 16.35 1.68 195.82 4.27
DCC-NL 15.27 9.78 1.56*** -2.65 14.86 1.32 122.55 2.19

γ = 2

S 12.97 10.23 1.27 -3.73 10.15 1.07 50.00 2.67
NL 13.32 10.22 1.30 -3.00 6.17 0.86 50.00 1.12

DCC 14.18 10.05 1.41 -3.10 18.36 1.35 50.00 2.55
DCC-NL 14.42 9.81 1.47** -2.48 17.41 1.29 50.00 1.20

γ = 1.6

S 12.63 10.56 1.20 -3.38 11.06 1.06 30.00 2.35
NL 12.98 10.57 1.23 -3.00 7.11 0.85 30.00 1.14

DCC 13.61 10.17 1.34 -2.79 19.62 1.36 30.00 2.40
DCC-NL 13.84 10.01 1.38** -2.39 19.09 1.33 30.00 1.13

γ = 1

S 12.74 12.30 1.04 0.00 14.90 1.14 0.00 2.30
NL 12.83 12.33 1.04 0.00 10.79 0.94 0.00 0.32

DCC 12.14 11.41 1.06 0.00 22.75 1.47 0.00 1.14
DCC-NL 12.08 11.41 1.06 0.00 22.68 1.47 0.00 0.15

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 13.05 13.82 0.94 -7.57 9.80 1.73 571.36 12.88
NL 14.57 9.02 1.62 -1.55 2.48 0.51 151.45 3.39

DCC 13.46 10.95 1.23 -4.83 19.52 1.42 361.70 7.82
DCC-NL 15.00 8.37 1.79*** -1.45 16.67 0.83 110.62 2.89

γ = 2

S 13.36 9.36 1.43 -2.50 8.52 0.64 50.00 2.86
NL 13.74 9.46 1.45 -1.77 3.53 0.44 50.00 1.36

DCC 14.12 8.59 1.64 -1.98 21.72 0.96 50.00 2.69
DCC-NL 14.34 8.33 1.72** -1.47 19.77 0.88 49.99 1.41

γ = 1.6

S 13.20 9.72 1.36 -2.22 9.32 0.64 30.00 2.48
NL 13.55 9.82 1.38 -1.92 4.17 0.45 30.00 1.35

DCC 13.75 8.61 1.60 -1.81 23.19 0.99 30.00 2.54
DCC-NL 13.73 8.45 1.62 -1.45 22.04 0.95 30.00 1.25

γ = 1

S 14.14 11.66 1.21 0.00 12.68 0.73 0.00 2.42
NL 13.77 11.77 1.17 0.00 7.17 0.53 0.00 0.49

DCC 12.03 10.06 1.20 0.00 25.05 1.07 0.00 1.24
DCC-NL 11.95 9.97 1.20 0.00 24.97 1.07 0.00 0.17

Notes: This table shows the empirical results for the Markowitz Portfolios constructed based on

the signal Return-on-Equity (ROE), using different covariance matrix estimators and facing

various degrees of leverage constraints. The covariance matrix is estimated using the most recent

1250 daily returns based on four different methods, which are the sample covariance matrix (S),

the nonlinear shrinkage estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator (Engle,

2002), and the DCC-NL estimator (Engle et al., 2019). γ = ∞, 2, 1.6, 1 stands for an increasing

restriction with the proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. We

hold the portfolios for 21 days and record their daily returns. We report their out-of-sample

annualized average return (AvR), annualized standard deviations (StdR), and Information

Ratios (IR). Four characteristics of portfolio weights, including the minimum weight (MinW),

the maximum weight (MaxW), the standard deviation of weights (StdW), and the total short

positions of weights (ShortW), and the average turnover (AvT) of portfolios are also reported.

All numbers shown are in percentage except those for Information Ratios. Panel A and Panel B

show results for portfolios with 500 and 1000 stocks, respectively. In the rows labeled DCC and

DCC-NL, significant outperformance of one of the two portfolios over the other in terms of IR

is denoted by asterisks: *** ,** ,* denote significance at the 0.01, 0.05, 0.1 levels, respectively.
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Table 5: Out-of-sample Performance, Characteristics of Weights and Average Turnover of the

Markowitz Portfolio Constructed based on the E/P Signal.

Σ̂ AvR StdR IR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

γ =∞

S 13.86 10.89 1.27 -6.46 10.49 1.77 263.44 6.73
NL 14.64 9.90 1.48 -3.06 5.36 1.04 148.22 2.47

DCC 16.37 10.58 1.55 -4.82 16.27 1.66 192.81 4.24
DCC-NL 16.23 9.69 1.68*** -2.67 14.67 1.30 120.38 2.16

γ = 2

S 13.96 10.14 1.38 -3.65 10.67 1.07 50.00 2.67
NL 14.30 10.16 1.41 -2.94 6.80 0.85 50.00 1.13

DCC 15.52 9.91 1.57 -3.13 18.23 1.34 50.00 2.55
DCC-NL 15.49 9.72 1.59 -2.47 17.16 1.27 50.00 1.20

γ = 1.6

S 14.07 10.46 1.35 -3.31 11.76 1.06 30.00 2.36
NL 14.46 10.51 1.38 -2.91 7.97 0.86 30.00 1.15

DCC 15.16 10.04 1.51 -2.83 19.63 1.36 30.00 2.41
DCC-NL 15.11 9.92 1.52 -2.39 18.97 1.32 30.00 1.13

γ = 1

S 15.50 12.66 1.22 0.00 16.42 1.20 0.00 2.34
NL 15.61 12.80 1.22 0.00 12.52 1.00 0.00 0.32

DCC 15.04 11.67 1.29 0.00 23.66 1.51 0.00 1.15
DCC-NL 15.02 11.59 1.30 0.00 23.50 1.51 0.00 0.15

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 14.04 13.65 1.03 -7.65 10.09 1.72 567.54 12.84
NL 15.51 8.93 1.74 -1.51 2.63 0.51 149.02 3.35

DCC 14.74 10.77 1.37 -5.04 19.48 1.40 355.07 7.71
DCC-NL 15.94 8.27 1.93*** -1.42 16.46 0.82 107.99 2.85

γ = 2

S 15.02 9.28 1.62 -2.50 9.03 0.64 50.00 2.87
NL 15.13 9.40 1.61 -1.76 3.78 0.43 50.00 1.38

DCC 15.77 8.51 1.85 -2.06 21.64 0.95 50.00 2.72
DCC-NL 15.67 8.25 1.90 -1.45 19.45 0.87 49.99 1.43

γ = 1.6

S 15.38 9.66 1.59 -2.17 9.95 0.64 30.00 2.51
NL 15.43 9.80 1.57 -1.88 4.53 0.44 30.00 1.37

DCC 15.42 8.53 1.81 -1.81 23.19 0.99 30.00 2.56
DCC-NL 15.31 8.36 1.83 -1.41 21.81 0.94 30.00 1.26

γ = 1

S 17.49 12.01 1.46 0.00 13.84 0.75 0.00 2.45
NL 17.47 12.18 1.43 0.00 8.19 0.55 0.00 0.50

DCC 15.12 10.27 1.47 0.00 26.05 1.10 0.00 1.28
DCC-NL 14.98 10.18 1.47 0.00 25.70 1.10 0.00 0.17

Notes: This table shows the empirical results for the Markowitz Portfolios constructed based on

a Value Signal (E/P), using different covariance matrix estimators and facing various degrees of

leverage constraints. The covariance matrix is estimated using the most recent 1250 daily returns

based on four different methods, which are the sample covariance matrix (S), the nonlinear

shrinkage estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator (Engle, 2002), and the

DCC-NL estimator (Engle et al., 2019). γ = ∞, 2, 1.6, 1 stands for an increasing restriction

with the proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. We hold the

portfolios for 21 days and record their daily returns. We report their out-of-sample annualized

average return (AvR), annualized standard deviations (StdR), and Information Ratios (IR).

Four characteristics of portfolio weights, including the minimum weight (MinW), the maximum

weight (MaxW), the standard deviation of weights (StdW), and the total short positions of

weights (ShortW), and the average turnover (AvT) of portfolios are also reported. All numbers

shown are in percentage except those for Information Ratios. Panel A and Panel B show results

for portfolios with 500 and 1000 stocks, respectively. In the rows labeled DCC and DCC-NL,

significant outperformance of one of the two portfolios over the other in terms of IR is denoted

by asterisks: *** ,** ,* denote significance at the 0.01, 0.05, 0.1 levels, respectively.
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Table 6: Out-of-sample Performance of the Markowitz Portfolio Constructed based on the ROE

Signal with Transaction Costs Considered.

Spread = 3 basis-points Spread = 5 basis-points

Σ̂ AvR StdR IR AvR StdR IR

Panel A: 500 stocks contained in the portfolio

γ =∞

S 10.37 11.04 0.94 8.75 11.07 0.79
NL 10.45 10.03 1.04 8.23 10.10 0.82

DCC 11.40 10.77 1.06 8.77 10.87 0.81
DCC-NL 12.06 9.81 1.23*** 9.92 9.88 1.00***

γ = 2

S 9.59 10.26 0.93 7.33 10.33 0.71
NL 10.49 10.23 1.03 8.61 10.28 0.84

DCC 10.84 10.08 1.08 8.61 10.14 0.85
DCC-NL 11.56 9.83 1.18*** 9.66 9.88 0.98***

γ = 1.6

S 9.36 10.58 0.88 7.18 10.64 0.68
NL 10.14 10.59 0.96 8.25 10.63 0.78

DCC 10.32 10.20 1.01 8.13 10.26 0.79
DCC-NL 11.01 10.03 1.10*** 9.13 10.08 0.91***

γ = 1

S 9.49 12.32 0.77 7.33 12.37 0.59
NL 10.29 12.34 0.83 8.59 12.37 0.69

DCC 9.30 11.43 0.81 7.41 11.47 0.65
DCC-NL 9.60 11.42 0.84*** 7.95 11.45 0.69***

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 8.75 11.07 0.79 5.31 13.97 0.38
NL 8.23 10.10 0.82 4.81 9.40 0.51

DCC 8.77 10.87 0.81 1.05 11.45 0.09
DCC-NL 9.92 9.88 1.00*** 5.54 8.75 0.63***

γ = 2

S 7.33 10.33 0.71 3.91 9.69 0.40
NL 8.61 10.28 0.84 5.19 9.72 0.53

DCC 8.61 10.14 0.85 4.78 8.94 0.53
DCC-NL 9.66 9.88 0.98*** 5.76 8.64 0.67***

γ = 1.6

S 7.18 10.64 0.68 3.98 10.02 0.40
NL 8.25 10.63 0.78 5.00 10.08 0.50

DCC 8.13 10.26 0.79 4.49 8.96 0.50
DCC-NL 9.13 10.08 0.91*** 5.25 8.75 0.60***

γ = 1

S 7.33 12.37 0.59 4.95 11.91 0.42
NL 8.59 12.37 0.69 5.74 11.96 0.48

DCC 7.41 11.47 0.65 3.55 10.30 0.34
DCC-NL 7.95 11.45 0.69*** 4.11 10.18 0.40***

Notes: This table shows the empirical results for the Markowitz Portfolios constructed based on

the signal Return-on-Equity (ROE), using different covariance matrix estimators and facing

various degrees of leverage constraints when transaction costs are considered. The covariance

matrix is estimated using the most recent 1250 daily returns based on four different methods,

which are the sample covariance matrix (S), the nonlinear shrinkage estimator (NL) (Ledoit

and Wolf, 2015), the DCC estimator (Engle, 2002), and the DCC-NL estimator (Engle et al.,

2019). γ = ∞, 2, 1.6, 1 stands for an increasing restriction with the proportion of short-sale not

exceeding ∞, 50%, 30%, 0, respectively. We hold the portfolios for 21 days and record their daily

returns. We report their out-of-sample annualized average return (AvR), annualized standard

deviations (StdR), and Information Ratios (IR). AvR and StdR are shown in percentage. Panel

A and Panel B show results for portfolios with 500 and 1000 stocks, respectively. The left and

right panels show results under the assumptions of 3 basis-points and 5 basis-points bid-ask

spreads, respectively. In the rows labeled DCC and DCC-NL, significant outperformance of one

of the two portfolios over the other in terms of IR is denoted by asterisks: *** ,** ,* denote

significance at the 0.01, 0.05, 0.1 levels, respectively.
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Figure 1: Comparisons of the oracle risks, the average actual risks, and the average empirical

risks of the 100 simulated GMV portfolios constructed based on different covariance matrix

estimators (S, NL, DCC, DCC-NL) and facing various degrees of leverage constraints (the

intensity of the constraint declines with the increase of parameter γ). N = 500, and the

disturbance terms are drawn from a multivariate standard normal distribution.
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Figure 2: Comparisons of the oracle risks, the average actual risks, and the average empirical

risks of the 100 simulated GMV portfolios constructed based on different covariance matrix

estimators (S, NL, DCC, DCC-NL) and facing various degrees of leverage constraints (the

intensity of the constraint declines with the increase of parameter γ). N = 1000, and the

disturbance terms are drawn from a multivariate standard normal distribution.
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Figure 3: Comparisons of the oracle risks, the average actual risks, and the average empirical

risks of the 100 simulated GMV portfolios constructed based on different covariance matrix

estimators (S, NL, DCC, DCC-NL) and facing various degrees of leverage constraints (the

intensity of the constraint declines with the increase of parameter γ). N = 500, and the

disturbance terms are drawn from a multivariate t-distribution with 5 degrees of freedom.
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Figure 4: Comparisons of the oracle risks, the average actual risks, and the average empirical

risks of the 100 simulated GMV portfolios constructed based on different covariance matrix

estimators (S, NL, DCC, DCC-NL) and facing various degrees of leverage constraints (the

intensity of the constraint declines with the increase of parameter γ). N = 1000, and the

disturbance terms are drawn from a multivariate t-distribution with 5 degrees of freedom.
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Figure 5: Comparisons of the average actual risks of the 100 simulated GMV portfolios

constructed based on different covariance matrix estimators (S, NL, DCC, DCC-NL) and facing

various degrees of leverage constraints (the intensity of the constraint declines with the increase

of parameter γ). The disturbance terms of the simulated data are drawn from a multivariate

standard normal distribution.
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Figure 6: Comparisons of the average actual risks of the 100 simulated GMV portfolios

constructed based on different covariance matrix estimators (S, NL, DCC, DCC-NL) and facing

various degrees of leverage constraints (the intensity of the constraint declines with the increase

of parameter γ). The disturbance terms of the simulated data are drawn from a multivariate

t-distribution with 5 degrees of freedom.
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Figure 7: Comparisons of the out-of-sample risks of the GMV portfolios constructed based on

different covariance matrix estimators (S, NL, DCC, DCC-NL) and facing various degrees of

leverage constraints (the intensity of the constraint declines with the increase of parameter γ).
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A Theoretical Justifications

Proof of Theorem 1 (i). Note that the matrix Σ̃γ,t is obviously symmetric and the solution to

problem (2.8) is denoted by w∗t . For any vector x,

x′Σ̃γ,tx = x′Σ̂tx+
1

2
λ(x′g∗t 1

′x+ x′1g∗
′

t x)

= x′Σ̂tx+ λ(x′g∗t )(1
′x). (1.1)

Based on the KKT conditions in (2.10), 2Σ̂tw
∗
t − µ1 + λg∗t = 0. Therefore,

λ(x′g∗t )(1
′x) = −2(x′1)(x′Σ̂tw

∗
t ) + µ(x′1)2. (1.2)

Note that

|(x′1)(x′Σ̂tw
∗
t )| = |(x′1)(x′Σ̂

1
2
t )(Σ̂

1
2
t w
∗
t )| ≤ |(x′1)(x′Σ̂tx)

1
2 (w∗

′

t Σ̂tw
∗
t )

1
2 |,

where the equality holds because of the positive definiteness of the DCC estimator Σ̂t, and the inequality

could be obtained by Cauchy-Schwartz inequality.

In addition, because the DCC estimator Σ̂t is positive definite under some conditions, we have

0 < w∗
′

t Σ̂tw
∗
t =

1

2
µw∗

′

t 1− 1

2
λw∗

′

t gt =
1

2
µ− 1

2
λ‖w∗t ‖1 ≤

1

2
µ.

Hence,

|(x′1)(x′Σ̂tw
∗
t )| ≤ |x′1|(x′Σ̂tx)

1
2 (

1

2
µ)

1
2 . (1.3)

Combining (1.1)-(1.3), we have

x′Σ̃γ,tx = x′Σ̂tx− 2(x′1)(x′Σ̂tw
∗
t ) + µ(x′1)2

≥ x′Σ̂tx− 2|(x′1)(x′Σ̂tw
∗
t )|+ µ(x′1)2

≥ x′Σ̂tx− 2|x′1|(x′Σ̂tx)
1
2 (

1

2
µ)

1
2 + µ(x′1)2

= (a− b)2 + b2, (1.4)

where a = (x′Σ̂tx)
1
2 , and b = ( 1

2µ)
1
2 |x′1|.

Moreover, (a−b)2+b2 is always nonnegative and is zero if and only if a = b and b = 0 hold simultaneously.

However, a = (x′Σ̂tx)
1
2 > 0 because Σ̂t is positive definite. Therefore, for any vector x, x′Σ̃γ,tx > 0

holds. This indicates the positive definiteness of Σ̃γ,t.

Proof of Theorem 1 (ii). Firstly, the optimization problem (2.11) with equality constraint could be

solved through the Lagrange multiplier method. Construct the Lagrangian

L(wt, µγ) = w′tΣ̃γ,twt − µγ(w′t1− 1),

then the solution wopt
t to this minimization problem should satisfy2Σ̃γ,tw

opt
t − µγ1 = 0,

wopt′

t 1− 1 = 0.

Because Σ̃γ,t is invertible, then the solution to this problem is given by

wopt
t =

Σ̃−1γ,t1

1′Σ̃−1γ,t1
. (1.5)

28



By the Lagrange multiplier method, problem (2.8) is to minimize

L(wt, µ, λ) = w′tΣ̂twt − µ(w′t1− 1)− λ(γ − ‖wt‖1).

Based on the fact that g∗
′

t w
∗
t = ‖w∗t ‖1 and KKT conditions in (2.10), we have

Σ̃γ,tw
∗
t = Σ̂tw

∗
t +

1

2
λg∗t 1

′w∗t +
1

2
λ1g∗

′

t w
∗
t

= Σ̂tw
∗
t +

1

2
λg∗t +

1

2
λ‖w∗t ‖11

=
1

2
(λγ + µ)1.

Hence, the solution to problem (2.8) w∗t = 1
2 (λγ+µ)Σ̃−1γ,t1. Moreover, because of the constraint w′t1 = 1,

solving for λγ + µ yields λγ + µ = 2
1′Σ̃−1

γ,t1
. This fact indicates that

w∗t = wopt
t .

Therefore, it implies the equivalence of the partial constrained optimization problem and the

(unconstrained) optimization problem with regularized covariance matrix estimator.

Proof of Theorem 2. Firstly, the optimization problem (2.17) with equality constraint could be solved

through the Lagrange multiplier method. Construct the Lagrangian

L(wt, µ1γ , µ2γ) = w′tΣ̃γ,twt − µ1γ(w′t1− 1)− µ2γ(w′tmt − bt),

then the solution wopt
b,t to this minimization problem should satisfy2Σ̃γ,tw

opt
b,t − µ1γ1− µ2γmt = 0,

wopt′

b,t 1− 1 = 0, wopt′

b,t mt − bt = 0.

Therefore, wopt
b,t = µ1cΣ̃

−1
γ,t1 + µ2γΣ̃

−1
γ,tmt = Σ̃−1γ,t (1,mt)

(
µ1γ

µ2γ

)
.

The above equations also imply that

1 =
1

2
µ1γ1

′Σ̃−1γ,t1 +
1

2
µ2γ1

′Σ̃−1γ,tmt,

bt =
1

2
µ1γm

′
tΣ̃
−1
γ,t1 +

1

2
µ2γm

′
tΣ̃
−1
γ,tmt,

or (
1
bt

)
=

1

2
(1,mt)

′Σ̃−1γ,t (1,mt)

(
µ1γ

µ2γ

)
.

Solving for (µ1γ , µ2γ)′ yields (
µ1γ

µ2γ

)
= 2

[
(1,mt)

′Σ̃−1γ,t (1,mt)
](

1
bt

)
.

Therefore, the solution to this problem is given by

wopt
b,t = Σ̃−1γ,t (1,mt)

[
(1,mt)

′Σ̃−1γ,t (1,mt)
](

1
bt

)
. (1.6)

By the Lagrange multiplier method, problem (2.12) is to minimize

L(wt, µ1, µ2, λ) = w′tΣ̂twt − µ1(w′t1− 1)− µ2(w′tmt − bt)− λ(γ − ‖wt‖1).
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So, the KKT conditions are
2Σ̂twt − µ11− µ2mt + λgt = 0,

λ(γ − ‖wt‖1) = 0, λ ≥ 0,

‖wt‖1 ≤ γ, w′t1− 1 = 0, w′tmt − bt = 0.

(1.7)

Based on the fact that g∗
′

b,tw
∗
b,t = ‖w∗b,t‖1 and KKT conditions in (1.7), we have

Σ̃γ,tw
∗
b,t = Σ̂tw

∗
b,t +

1

2
λg∗b,t1

′w∗b,t +
1

2
λ1g∗

′

b,tw
∗
b,t

= Σ̂tw
∗
b,t +

1

2
λg∗b,t +

1

2
λ‖w∗b,t‖11

=
1

2
(λγ + µ1)1 +

1

2
µ2mt.

It then follows that w∗b,t = 1
2 Σ̃
−1
γ,t [(λγ + µ1)1 + µ2mt]. The constraints also imply that

1 =
1

2
(λγ + µ1)1′Σ̃−1γ,t1 +

1

2
µ21

′Σ̃−1γ,tmt,

bt =
1

2
(λγ + µ1)m′tΣ̃

−1
γ,t1 +

1

2
µ2m

′
tΣ̃
−1
γ,tmt,

or (
1
bt

)
=

1

2
(1,mt)

′Σ̃−1γ,t (1,mt)

(
λγ + µ1

µ2

)
.

Solving for (λγ + µ1, µ2)′ yields(
λγ + µ1

µ2

)
= 2

[
(1,mt)

′Σ̃−1γ,t (1,mt)
](

1
bt

)
.

Hence,

w∗b,t = Σ̃−1γ,t (1,mt)
[
(1,mt)

′Σ̃−1γ,t (1,mt)
](

1
bt

)
. (1.8)

We can then conclude that wopt
b,t = w∗b,t. This completes the proof.
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