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Abstract

The goal of this paper is to assess, for the rst time, the empirical impact of

"Keynes’ beauty contest", or "higher order beliefs", on asset price volatil-

ity. The paper shows that heterogeneous expectations induce higher order

beliefs and that heterogeneous expectation asset pricing models theoreti-

cally generate more volatility than rational expectation models. The paper

also explains how, with some assumptions on the distribution of public and

private information, a model with higher order beliefs can be empirically

estimated. The model is then applied to annual data of the American stock

market. The results show that a model with higher order beliefs generates

a level of volatility in line with the price volatility observed on the market.

Keywords: Asset pricing; Excess volatility; Higher order beliefs.

JEL Classication: D84, G12, G14.



1 Introduction

In the past 25 years, nancial economists have spent a lot of time and

attention in assessing the empirical validity of rational expectation asset

pricing models. The common hypothesis of these models is that the stock

prices should reect the present value of rationally expected future payo!s.

Although the rational expectation hypothesis constitutes the basis of most

contemporary asset pricing models, its empirical support is rather weak.

The rst major critics against such models came from Shiller (1981) and

LeRoy and Porter (1981), who argued that the price volatility observed

on the market is too large to be justied by rational expectation models.

These two papers are at the origin of numerous other articles, which have

tried to explain this excess volatility puzzle in the framework of rational

expectations.

After some early technical improvements (see, e.g., Campbell and Schiller

1987 and 1988), research has concentrated on asset pricing models with

stochastic discount factors. The idea is to build an asset pricing model

with additional economic variables, which generate a time-varying discount

factor, and check if the additional variability brought by these new factors

can match the excess volatility.1 However, neither of these factors seems to

explain all of the excess volatility (Shiller 2003). Furthermore, recent studies,

which do not use the classical volatility test, have also found evidence against

rational expectations models (Zhong, Darrat and Anderson 2003).

Confronted with the apparent empirical failure of rational expectation

models, many researchers have argued that some “non-fundamental” factors

may be at the origin of price movements. Behavioral nance deals speci-

cally with such market “irregularities” and has put forward di!erent possible

explanations to the excess volatility puzzle.2 In particular, Campbell and

Cochrane (1999) propose a model with habit formation, which theoreti-

1Many factors have been proposed as possible source of excess volatility. The most

common are consumption and expected ination (see Wickens 2003 for a recent study

with these two variables). Other factors are, for example, tax rate changes, production

volatility changes or transaction costs changes.
2See Barberis and Thaler (2002) or Shiller (2003) for a survey of the answer that

behavioural nance gives to excess volatility in stock markets.
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cally generates excess volatility through changes in risk aversion. Barberis,

Huang and Santos (2001) introduce loss aversion to explain the puzzle. Af-

ter calibration, both models replicate several distinctive features of the stock

markets, such has, in particular, the observed volatility.

This paper explores another potential “non-fundamental” factor, namely

the impact of "Keynes’ beauty contest" on asset prices. The name of this

e!ect comes from Keynes’ famous metaphor, in which he suggests that, in

order to form their demand for an asset, investors not only forecast the fu-

ture payo!s but also try to guess other market participants’ forecasts and

others’ forecasts of others’ forecasts, etc (Keynes 1936). In this situation,

investors are said to have “higher order beliefs”. Townsend (1983), in a

general framework, and Basak (2000), in the context of stock markets, the-

oretically show that higher order beliefs induce higher price volatility than

rational expectations do.3 This additional volatility is caused by the fact

that investors react to variations generated by decisions of others and to

the noise in such decisions. This phenomenon is called endogenous uncer-

tainty by Kurz (1974). Bacchetta and van Wincoop (2004) also show that

higher order beliefs can induce a disconnection between the price and its

fundamental value.

Even if the role of higher order beliefs in explaining the excess volatility

puzzle is theoretically acknowledged, no empirical estimation of their e!ect

has been made yet. The aim this paper is to ll this gap and to quantify

the empirical impact of Keynes’ beauty contest on stock price volatility. To

pursue this empirical goal, we contribute to the theoretical literature by

elaborating a Heterogeneous Expectation Asset Pricing Model (HEAPM)

with constant relative risk aversion, time-varying discount rate and a time-

varying risk premium (cf. Section 2.1).4 We explain how the HEAPM

generates additional price volatility (cf Section 2.2). We then present a

3Miller (1977), Harrison and Kreps (1978), Morris (1996) or Wu and Guo (2004) also

show that higher order beliefs generate excess volatility, but they need to add the hypoth-

esis of limited short-selling to get this feature.
4Bacchetta and van Wincoop (2004) have independently derived a similar model but

with constant absolute risk aversion, constant discount rate and a constant risk premium.

Biais, Bossaerts and Spatt (2003) use a set-up similar to Bacchetta and van Wincoop

(2004) for a one-period asset pricing model.
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framework based on public and private information about future dividend,

which allows the empirical estimation of the HEAPM (cf. Section 3). We

show, in this context, how the price can be used as a public signal by market

participants. We then estimate the HEAPM with American stock market

data for a period between 1871 and 2003. The main result of this paper

is that the volatility implied by the HEAPM seems to correspond to the

one observed on the market (cf. Sections 6 and 7). In that sense, higher

order beliefs might be a plausible explanation to the excess volatility puzzle.

We nally present some additional empirical results on how the investors

incorporate public and private information into their expectations.

2 An heterogeneous expectation asset pricing model

2.1 The model

As suggested by Keynes (1936), when agents have heterogeneous expecta-

tions about asset’s future payo!s, the demand for asset of each agent will

not only reect his own expectations, but also his beliefs about other agents’

expectations. This can be formally shown in a simple asset pricing model.

Consider an overlapping generation economy where, at time !, a new gen-

eration of investors, indexed on the unit interval [0; 1], enters the market.5

At the beginning of period !, each investor chooses a portfolio, which maxi-

mizes the expected utility of her future wealth ("!+1). In the second period

(period ! + 1), she sells this portfolio to the next generation of investors.6

Each investor can either invest in a risky asset or in a risk free bond. We

5The choice of an overlapping generation model with very short-lived agents is an

important characteristic of this model. This hypothesis has been made for two reasons:

rstly, it signicantly simplies the solution for the price equation, and secondly, as shown

by Allen, Morris and Shin (2003), the e!ect of higher order beliefs on the price is bigger

when investors have a short investment horizon. Thus, short-lived agents allow us high-

lighting the e!ects of higher order beliefs on the price. Note that this assumption nds its

justication in Section 3 and does not have any implications for the results of this section.
6Two hypotheses are implicit in this model: 1) the investors live only two periods and

2) they consume only in the second period. Even though these hypotheses are clearly

restrictive, they are not implausible for an economy where markets are mainly driven by

traders who are regularly assessed on the basis of their portfolio wealth.
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assume that investors have power utility # ("!+1) = ("
1!"!
!+1 ! 1)$(1! %#),

where %# is the constant relative risk aversion of investor &.
7 We also assume

that, at the end of period !, each investor is replaced by a new investor with

the same relative risk aversion. Finally, we assume that asset returns are

log normal.

The solution to the individual maximization problem described above is

(see e.g. Campbell and Viceira 2002, p. 29):

'#$! =
(#! [)!+1]! )

%
!+1 +

1
2*
2
#$&"+1

%#*
2
#$&"+1

(1)

where '#$! is the fraction of wealth that investor & puts into the risky

asset at time !, (#! [)!+1] is the log return of the risky asset on the next

period expected by investor & at time !, )%!+1 is the risk free log return on the

next period and *2#$&"+1 is the asset return volatility at time ! + 1 expected

by investor & at time ! . Note that this model allows for heterogeneous

expectations about return and volatility among the investors.

Assuming that the relative risk aversion coe"cient, the expected return

and the expected volatility are jointly independent for each investor, the

aggregating of Equation (1) over all the agent gives:

'! =
1

%

µ
1

+!+1
(̄!

h
)!+1 ! )

%
!+1

i
+
1

2

¶
(2)

where (̄! =
R 1
0 (

#
!,& is the average expectation over all the investors, '!

is the average fraction of wealth invested in the risky asset, % =
³R 1
0
1
"!
,&
´!1

is the inverse of the average of the inverse of the relative risk aversion coef-

cient and +!+1 =
µR 1

0
1

'2!#$"+1
,&

¶!1
the inverse of the average of the inverse

of the asset return expected volatility. For simplicity, we will called % the

average relative risk aversion and +!+1 the average asset return expected

volatility.

From Equation (2), we can recover the asset price by using the following

rst order Taylor approximation of the asset log return (see e.g. Campbell

and Shiller 1988):

7The advantages of using power utility rather than exponential utility or quadratic

utility are discussed by Cambpell and Viceira (2002), p. 24.
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)!+1 = log
-!+1 +.!+1

-!
= /+ 01!+1 + (1! 0) ,!+1 ! 1!

where -! is the asset price at the beginning of period ! (and 1! its loga-

rithm), .!+1 is the dividend distributed at the end of period ! (and ,!+1 its

logarithm), and / and 0 are parameters. Plugging this approximation into

Equation (2) yields:

1! = (̄!

h
01!+1 + (1! 0) ,!+1 ! )

%
!+1

i
!
µ
%'! !

1

2

¶
+!+1 + / (3)

The rst part of the right hand side of Equation (3) tells us that the

price is a function of the average expected asset return. The second part

can be understood as a time-varying risk premium, which increases with the

average expected asset return volatility, the average fraction invested in the

risky asset and the average relative risk aversion.

As the price and the dividend are usually non stationary variables, we

can rewrite Equation (3) in terms of the price-to-dividend (P/D) ratio 2! =

1! ! ,! :8

2! = (̄! [02!+1 + 3!+1]! 4!+!+1 + / (4)

where 3!+1 = !,!+1 ! )
%
!+1 is the "adjusted dividend growth rate" and

4! = %'! !
1
2 . By solving this equation forward, we get the nal equation:

2! =
"X

(=0

0((̄(+1!

£
3!+(+1 ! 4!+(+!+(+1

¤
+ 51 (5)

where 51 = )
1!* and (̄

(
! [6!+(] = (̄!

£
(̄!+1

£
7 7 7 (̄!+( [6!+(]

¤¤
is the average

expectation of order 8 of the variable 6!+(, which is the average expectation

at time ! of the average expectation at time !+1 of the average expectation at

time !+2, etc.. of the variable 6!+(. Equation (5) is called the Heterogeneous

Expectation Asset Price Model (HEAPM).

Equation (5) is the formal counterpart of Keynes’ beauty contest metaphor.

Indeed, the investor & will have the following expectation for the future P/D

ratio:
8The P/D ratio is a stationary variable in the sample used for this paper (cf. Section

5.2)
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(#! [2!+1] =
"X

(=0

0((#!

h
(̄(+1!+1

£
3!+(+2 ! 4!+(+1+!+(+2

¤i
+ 51 (6)

This equation shows that, in order to forecast the P/D ratio, investor &

will use her expectation of the average of the other agents’ expectations. In

particular, in this model, the investor must guess the average expectation

of the future adjusted dividend growth, of the future risk free return, of

the future asset return volatility and of the future fraction invested in the

risky asset. Thus, forecasting the price implies forecasting others’ forecasts.

This shows that, on a market with heterogeneous expectations, higher order

beliefs do theoretically play a role in the explanation of the price.

2.2 HEAPM as a possible solution to the volatility puzzle

One consequence of the HEAPM is that it induces a higher price volatility

than the traditional rational expectation model. To see that, let us rst

dene the rational expectation P/D ratio as:

2#! = (!
£
02#!+1 + 3!+1

¤
! 4!*

2
&"+1 + / (7)

where (! is the traditional rational expectation operator and *2&"+1 is

the rational expectation of the asset return volatility. This equation is the

equivalent of Equation (4) when the investors have an identical expectation

and when this expectation is rational. We can dene 9 #! and :
#
! such that:

(#! [02!+1 + 3!+1] = (!
£
02#!+1 + 3!+1

¤
+ 9 #!

*2#$&"+1 = *2&"+1
¡
1 + :#!

¢

where 9 #! and :
#
! represents the deviation of individual &’s expectation

from the rational expectation (in terms of volatility for :#!). Aggregating the

previous equations over all individuals yields:

(̄! [02!+1 + 3!+1] = (!
£
02#!+1 + 3!+1

¤
+ 9̄!

+!+1 = *2&"+1 (1 + :̄!)
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where 9̄! and :̄! correspond to the average deviation from the rational

expectation. Combining Equation (4), (7) and the two previous equations

gives:

2! = 2
#
! + 9̄! ! 4!*

2
&"+1 :̄! (8)

If we take the unconditional variance of this expression, we have:

; (2!) = ; (2
#
! ) + ;

³
9̄! ! 4!*

2
&"+1 :̄!

´
+ 2<=>

³
2#! ? 9̄! ! 4!*

2
&"+1 :̄!

´

As the rational P/D ratio 2#! is independent from the average deviations

from the rational expectation 9̄! and :̄!, the covariance term is equal to zero

and we have:

; (2!) = ; (2
#
! ) + ;

³
9̄! ! 4!*

2
&"+1 :̄!

´
" ; (2#! )

Thus, if the average expectation of asset returns or its average expected

volatility diverge from the rational expectation and if this di!erence varies in

time, the HEAPM implies a volatility, which is higher than with the rational

expectation model. This could constitute a theoretical explanation to the

excess volatility puzzle. The question is now to determine if this explanation

is empirically relevant.

3 The HEAPM with private and public informa-

tion

Unfortunately, the validity of the HEAPM in Equation (5) cannot be checked

directly with empirical data. One way to nd a testable version of this

model is to impose further assumptions about the informational structure

of the economy (Biais and Bossaerts 1998). This paper adopts a structure

of information inspired by Allen, Morris and Shin (2003), which mixed a

private heterogeneous signal and a public common signal (cf. Section 3.1).

Given this structure, it is possible to deduct agent i’s expectations and his

beliefs about others’ expectations (cf. Section 3.2) and thus, to compute an

equilibrium equation for the P/D ratio (cf. Section 3.3). As, in equilibrium,

7



the past P/D ratios contain some information about the future adjusted

dividend growth, the investor can use them as the public signal (cf. Section

3.4). Our nal equilibrium equation will therefore be a mix of heterogeneous

non observable private signals about future adjusted dividend growth and a

public observable signal based on the past P/D ratios.

3.1 The information structure

Let us assume that each investor has two sources of information about the

future adjusted dividend growth 3!+(: a public signal and a private signal.

The public signal 3#!+( is the best forecast of z!+( given by the past P/D ratios

available at time !. Expressed in a di!erent way: 3#!+( = ( [3!+( !"! ], where

"! = "2!!1? 2!!2? 777# is the public information set. Note that the current

ratio 2! is not included in the public information set. This corresponds

to a market with the following sequence of decisions: 1) the agents form

their expectations, 2) they place their orders on the market according to

their expectations and 3) the price -! is set in order to clear the market.

Therefore, the agents have to form their expectation before knowing the

price -! and, thus, before knowing 2!.

In addition to the public forecast, each investor & observes an unbiased

private signal 6!!+( on the future values of 3!+(. This signal is based on his

private information set #!
! only, which does not contains any public infor-

mation ("! # #!
! = $). Thus the private signal is 6#!+( = ( [3!+( !#!

! ].

We assume that the average signal over all the agent is unbiased, thus
R 1
0 6

#
!+(,& = 3!+(. We nally assume that both signals are normally dis-

tributed and that the relative precision of the private signal to the public

signal is the same for each investor and is constant in time.

To be complete, we have to specify the information about the average

fraction of wealth invested in the asset ('!) available to each investors. We

make the hypothesis that this variable is equal to '! = '+ @!, where @! are

i.i.d. and ' is not directly observable. Therefore, the expectation about '!

is constant in time and the same for everyone, which implies in particular

that 4!+( = 4.
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3.2 Forecasting the others’ forecasts

Equation (5) can be split in two parts: rstly, the iterated average expecta-

tion of 3!+(+1 and, secondly, the iterated average expectation of the average

variance +!+(+1. With the informational framework describes in the previ-

ous section, it is possible to compute a solution for these two terms. The

next two sections present the solution for the iterated average expectation

of adjusted dividend growth and for the iterated expectations of the average

variance, respectively.

3.2.1 Forecasting the iterated average expectation

Allen et al. (2003) have shown that the traditional law of iterated expec-

tations (! [(!+1 [7 7 7 (!+( [3!+(]]] = (! [3!+(] does not hold for the iterated

average expectations with heterogeneous private information and a public

signal. However, when the weight given to each signal is constant, an alter-

native law of iterated average expectations exists. Allen, Morris and Shin’s

basic idea is the following: consider investor &, who tries, at time !, to fore-

cast the adjusted dividend growth rate at time !+1 using the public signal

and her private signal. Her expectation will be a weighted average of the

two signals:

(#! [3!+1] = (1! A) 3
#
!+1 + A6

#
!+1 (9)

where A is the relative weight given to the private signal. This relative

weight reects the relative precision that the agents associate to each signal.9

No assumption is made on how the agents assess this relative precision. They

can, for example, give a subjective weight to each signal or use their objective

precisions. Taking the average of Equation (9) over all agents yields:

(̄! [3!+1] = (1! A) 3#!+1 + A3!+1
9The relative precision is, by assumption, identical for every investors and constant in

time (cf. section 3.1). The latter assumption will be relaxed in Section 7. Note that the

precision of each signal can vary in time; only their relative precision is assumed to be

constant.
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Now consider the case where the investor is still situated at time !, but

wants to forecast the average expectation at time ! + 1 of the adjusted

dividend growth rate at time !+2. Using the previous result for the average

expectation of 3!+2 and taking its expectation for investor & yields:

(#!
£
(̄!+1 [3!+2]

¤
= (1! A) 3#!+2 + A(

#
! [3!+2]

Plugging equation (9) for 3!+2 into the previous equation gives:

(#!
£
(̄!+1 [3!+2]

¤
=
¡
1! A2

¢
3#!+2 + A

26#!+2

More generally:

(#!

h
(̄(!+1 [3!+(]

i
=
³
1! A(

´
3#!+( + A

(6#!+( (10)

Thus, investor &’s expectation of the average expectation is a weighted

average of the public and the private signal where the weight of the public

signal increases with the forecast horizon. Equation (10) is equivalent to:

(#!

h
(̄(!+1 [3!+(]

i
= 3#!+(+A

¡
6#!+( ! 3

#
!+(

¢
!A

³
1! A(!1

´ ¡
6#!+( ! 3

#
!+(

¢
(11)

The rst term of the sum in the right hand sight of Equation (11) is the

future adjusted dividend growth rate’s expectation given the public informa-

tion. Investor & adjusts this forecast with the second term of the sum to take

into account her private information. These rst two terms represent the

agent’s expectation about the future adjusted dividend growth rate given

the public and the private information. In addition, the investor makes a

last adjustment to her expectation since she tries to guess the average ex-

pectation of future adjusted dividend growth rate and not its true value.

Therefore, the last term of the sum in Equation (11) reects the "beauty

contest" e!ect on investor &’s expectations. Note that the coe"cient of this

last term is negative, which implies that the weight of the public signal is

bigger in the nal expectation than it would be if the investor had to guess

the true future value of the dividend. This reects the fact that each agent

knows that the other agents also observe the public signal and that every-

body uses it in their forecast. Therefore, as the public signal enters into

10



every individual expectations, it is a better predictor of the average opin-

ion than the private signal. Note also that the weight of the public signal

becomes bigger with the forecast horizon. This is due to the fact that with

a longer horizon, the number of average expectations’ layers is higher and

therefore, the resemblance between the average expectation and the best

forecast of the dividend decreases.

The aggregation of Equation (10) over all the agents yields:

(̄(! [3!+(] =
³
1! A(

´
3#!+( + A

(3!+( (12)

3.2.2 Forecasting the variance

In the particular framework of Section 3.1, the problem of the iterated av-

erage expectation of the "average variance" ((̄(+1! [+!+(+1]) reduces to the

traditional iterated expectation solution. The intuition behind this result

is the following: since we assumed that the precision of the distribution of

the signal was the same for everybody, then the expected variance of 3!+(

is also the same for each investor. Then, if everyone has the same expected

variance, its average expectation is known to everybody and is equal to the

traditional iterated expectation.

More formally, the proof is the following: recall rst that *2#$&"+% is the

expected variance of )!++ for investor & at time !+ B! 1. By using the same

rst-order Taylor approximation as in Section 2.1 yields:

*2#$&"+% = 0
2*2#$,"+% + *

2
#$-"+% (13)

The variance of 3!++ can be inferred from the variances of the two signals.

As, by assumption, both signals are normally distributed with the same

variances for everybody, the inferred variance of 3!++ is the same for each

agent.10 We therefore have:

*2#$&"+% = 0
2*2#$,"+% + *

2
-"+%

The last step is to compute the volatility of the P/D ratio expected

by each investor (*2#$,"+% ). For this, we assume that each investor believes

10See e.g. Hogg and Craig (1995) p.149.
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that the P/D ratio volatility is a function of the future adjusted dividend

growth volatility. Under this assumption, the P/D ratio volatility is indeed a

function of the future adjusted dividend growth volatility,11 which makes the

investor’s ex-ante beliefs consistent with their ex-post observation. Finally,

if the P/D ratio volatility is a function of the adjusted dividend growth

volatility, then as the latest is the same for everybody, the former is also

identical for every investor. Thus:

+!+(++ = 0
2*2,"+&+% + *

2
-"+&+%

(14)

and

(̄(+1! [+!+(++ ] = (! [+!+(++ ] = +
#
!+(++ (15)

3.3 HEAPM with public and private information

Plugging the result about the iterated average expectation of the adjust

dividend growth rate in Equation (12) and of the iterated expected return

volatility in Equation (15) into Equation (5) yields the P/D ratio equation:

2! =
"X

(=0

0(
³³
1! A(+1

´
3#!+(+1 + A

(+13!+(+1 ! 4+#!+(+1
´
+ 51 (16)

Note that if the agents give all the weight to the private signal (A = 1),

the P/D ratio is a function of the discounted sum of future dividends. This

is equivalent to a model with perfect foresight. This result is due to the fact

that, if everybody follows her private signal only, the individual errors will

be cancelled out by the aggregation among investors.

Furthermore, as explained in Section 3.2.1, if the investors were trying

to guess the true value of the adjusted dividend growth and not the average

expectations, or in other words, if they were not taking into account the

beauty contest e!ect, the price would be equal to:

2! =
"X

(=0

0(
¡
(1! A) 3#!+(+1 + A3!+(+1 ! 4+

#
!+(+1

¢
+ 51 (17)

11See proof in Appendix A.
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The "pure" beauty contest e!ect on the price can be isolated by sub-

tracting Equation (17) from Equation (16).

C<(! = A
"X

(=0

0(
³
1! A(

´ ¡
3#!+(+1 ! 3!+(+1

¢
(18)

Note that the beauty contest e!ect is equal to zero when A = 1 and when

A = 0. This result is not surprising since in the rst case, each investor relies

on her private signal only and does not try to guess the average expectation

by using the public signal. In the second case, everybody uses the public

signal only, thus, everybody has the same expectation and we end up in the

traditional case of homogeneous rational expectation.

3.4 How to extract the public signal from the price

If the P/D ratio is driven by Equation (16), then it value partly reects

the true value of future adjusted dividend growth (3!+(). Therefore, its

value contains some public information about the future adjusted dividend

growth. The next two sections show how to extract this public information

from the P/D ratio.

3.4.1 Public signal on the adjusted dividend growth

Let us rst dene the new variable D! as:

D! = 2! !
"X

(=0

0(
³³
1! A(+1

´
3#!+(+1 ! 4+

#
!+(+1

´
+ 51

Note that at time !, the variable D! is known since it is constituted of the

current P/D ratio and the best forecasts of the adjusted dividend growth

rate and of the volatility of the asset return given the public information.

Equation (16) can be rewritten with this new variable:

D! = A
"X

(=0

(0A)( 3!+( (19)

From this last equation, it can be deduced that:

3!+( =
1

A
D!+(!1 ! 0D!+( (20)
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At time !, none of the variables in the last equation are know, but if is

possible to forecast them using the public information. This yields:

(! [3!+( !"! ] =
1

A
(! [D!+(!1 !"! ]! 0(! [D!+( !"! ] (21)

The left hand side of this equation is the expected adjusted dividend

growth rate given the public information, which precisely corresponds to

the denition of the variable 3#!+(.
12 After replacing D! by its denition, it

is possible to solve the equation for the variable 3#!+(. This yields:

3#!+( = 2
#
!+(!1 ! 02

#
!+( + 4+

#
!+( + / (22)

where 2#!+( = (! [2!+( !"! ] is the best forecast of the P/D ratio at time

! + 8, given the public information available at time ! and +#!+( is the best

forecast of the asset volatility at time ! + 8, given the public information

available at time !.

3.4.2 Public signal on the asset return volatility

Similarly to the public signal on the adjusted dividend growth rate, it is

possible to compute the best forecast of the asset return volatility given the

public information (+#!+(). To do so, we combine Equation (14) and (15):

+#!+( = (! [+!+(] = 0
2(!

h
*2,"+&

i
+(!

h
*2-"+&

i
(23)

We have that *2-"+& = ; E)!+(!1 [3!+(]. Using Equation (20) again yields:

; E)!+(!1 [3!+(] = 0
2; E)!+(!1 [D!+(]

Combining the previous equation, Equation (19) and Equation (26)

gives:

; E)!+(!1 [3!+(] = 0
2*2,"+&

Taking the expectation at time ! reduces it to:

(!

h
*2-"+&

i
= ; E)! [3!+(] = 0

2; E)! [2!+(]

12See Section 3.1.
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Finally, by plugging this last equation into Equation (23), we get:

+#!+( = 20
2; E)! [2!+(] (24)

4 How to test the model

One way to test the validity of the HEAPM is to compute the theoretical

P/D ratio given by Equation (16) and then to check if its dynamic has the

same empirical characteristics as those observed on the market (cf. Section

4.2). But before doing that, we have to estimate the empirical value of the

public signals 3#!++ and +
#
!++ , which are necessary to compute the theoretical

P/D ratio.

4.1 Estimation of the public signals

As Equation (24) shows, estimating the public signal +#!+( is equivalent to

forecasting the future volatility of the P/D ratio given the public informa-

tion available at time ! (which is constituted of the past P/D ratios). For

the public signal 3#!+(, Equation (22) tell us that we have to forecasts the

future value of P/D ratio given the information available at time !. It is

possible forecasts the P/D ratio and volatility given its past values by using

an autoregressive equation of order 1 with conditional heteroskedasticity of

order F (AR(1)-ARCH(F) model). Then, using this estimated model, it is

possible to compute the best public forecast for 2!++ and +!++ . Concretely,

the AR(1)-ARCH(F) model takes the following form:

2! = G+ H12!!1 + 7 7 7+ H.2!!. + I!

I2! = J + '1I
2
!!1 + 7 7 7+ '/I

2
!!/ + K!

where K! is a white noise and L! = ; E)! [2!]. This system can be rewrit-

ten in vectors and matrix terms to facilitate the forecasts.13 It takes the

following form:

13See Hamilton (1994), p. 7, to see how to rewrite a !th-order di!erence equation in

vector and matrix terms.
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!! = "+ #!!!1 + u!

u2! = $ +%u2!!1 +w!

Given this process, we can compute the best forecasts, which are equal

to:

!#!+# = ##+1!!!1 +
¡
1! ##+1

¢
(1!#)!1 "

u2
!

!+# = %#+1u2!!1 +
¡
1!%#+1

¢
(1!%)!1 $

Thus, once the parameters of the AR(1)-ARCH(F) model estimated, it

is possible to compute the 3#!+(’s and the +
#
!+(’s in Equation (16) given the

past information by using the best forecasts given above and Equation (22)

and (24). The theoretical P/D ratio is then equal to:

2! = !!!!1 ! "u2!!1 + A
"X

(=0

(0A)( 3!+(+1 + 53 (25)

where:

! = g.#
³
I. ! A (I. ! 0#) (I. ! 0A#)!1

´

" = 2A402g/%
2 (I/ ! 0A%)!1

where I.$/ are identity matrices of dimension (1% 1) and (F % F), respec-

tively, and g.$/ are 1 and F raw vectors, respectively, with all element equal

to zero except for the rst one, which is equal to one. These vectors select

the rst row or the rst element of the next matrix or vector, respectively.

4.2 Indirect tests of the model

Unfortunately, Equation (25) cannot be directly tested since the future ad-

justed dividend growth rate is not known. However, it is possible to get an

approximation of the theoretical P/D ratio by using the adjusted dividend
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growth rates observed ex-post.14 Then, one can get an idea of the validity

of the model by examining the importance of the di!erences between the

theoretical P/D ratio, which corresponds to the price-to-dividend ratio that

would prevail if the model given by Equation (25) was true, and the observed

P/D ratio. One way to do that concretely is to test if the variance of the

theoretical P/D ratio is equal to the variance of the observed P/D ratio.

5 Data and parameters

5.1 Dataset

The HEAPM is estimated with annual data on American stocks’ prices, div-

idends and interest rates for the period between 1871 and 2003. The prices

and dividends are taken from the Standard & Poors 500 Composite Stock

Price Index, extended back to 1871 by using the data in Cowles (1939).15

The interest rate is the 6 -month prime commercial paper rate.

5.2 Preliminary veri!cations

Before going estimating the model, we checked that the variables are sta-

tionary. Table 1 displays the !-statistics of the Augmented Dickey-Fuller

test for the null hypothesis of unit root.

The test shows that the hypothesis of unit root is rejected at a 1%

condence level for the adjusted dividend growth rate on the entire period.

For the P/D ratio, the hypothesis of unit root is rejected at a 1% condence

level for the period 1871-1995. If we introduce the next eight years, this

hypothesis is rejected at a condence level slightly higher than 5%. Formally,

14We made the assumption that the adjusted dividend growth rates after 2003 are equal

to their historical mean. The e!ect of this assumption should be marginal for the major

part of the sample since the mean of dividend di!erence is close to zero and is discounted.

However, it might a!ect more signicantly the last observations.
15The index reects the total market value of all 500 component stocks at a given

date. The market value of a company is determined by multiplying the stock by

the number of common shares outstanding. The dividends can be recovered from

an index, which is based on the sum of the total monthly dividend for the same

500 stocks. This data set is kindly provided by Rober J. Schiller on his website

(http://www.econ.yale.edu/~shiller/data.htm).
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Table 1: Unit root test

1871-1995 1871-2003

2! -4.2466*** -2.8340*

3! -10.0796*** -10.3925***

the P/D ratio can be considered as stationary at a 6% condence level, but

this rst test suggests that the behavior of the market might have change

during the period 1996-2003.

5.3 Estimation of the parameters

Finally, before estimating the theoretical P/D ratio given by Equation (25),

we must estimate the di!erent parameters of the model. The parameters

0 and / are taken from the estimation of equation: log (-!+1 +.!+1) =

/ + 01!+1 + (1! 0) ,!+1 + M! where is a M! white noise. The vectors of

parameters # and % come from the estimation of the AR(1)-ARCH(F) model

presented in Section ??. Finally, the parameter 4 can be estimated by using

Equation (22). To do so, we use the hypothesis made in Section (3.1), which

states that the public signal is an unbiased signal of the future adjusted

dividend growth rate. Therefore, the parameter 4 can be estimated by the

following regression:

3! = 2
#
!!1 ! 02

#
! + 4+

#
! + /+ N!

where ( [N!] = 0. The best forecasts 2#!!1, 2
#
! and +

#
! can be replaced by

their value derived from the AR(1)-ARCH(F) model as described in Section

?? to get the nal regression equation for the parameter 4:

3! = g. (I. ! 0#) !!!1 + 2402g/%u2!!1 + /+ N!

For example, Table 2 gives the estimated parameters for an AR(3)-

ARCH(1) model estimated on the entire sample.
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Table 2: Estimated parameters

Parameter Test value

/ 0.1664

0 0.9613

G 0.3542

H1 0.8477

H2 -0.0689

H3 0.1160

J 0.0208

'1 0.5652

4 4.0643

6 Model with constant relative weight: empirical

results

6.1 Overall sample vs. rolling sample estimation

Once that the parameters of the model are known, it is possible to compute

the theoretical P/D ratio for any given relative weight A by using Equation

(25). It is then possible to estimate the relative weight A# for which the

theoretical price is the closest from the price observed on the market. To nd

this optimal relative weight, we computed the sum of the squared di!erences

between the observed and the theoretical P/D ratio given A. We then dene

the optimal A# as the relative weight which minimize the sum of the squared

di!erences.

Two methods are possible to estimate the parameters of the model and

the optimal weight. Firstly, one can estimate the parameters of Equation

(25) by using the observations of the entire sample ("overall sample estima-

tion") and then compute the theoretical P/D ratio for each period. This

is equivalent to the situation where investors in 1920, for example, use the

same parameter as investors in 2000. This can be the case if investors do

not infer the model parameters from the past observations but use some

constant rule to set the value of these parameters. The second method is
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to estimate the parameters of the model for each period, using only the

available information at this time, and then compute the theoretical P/D

ratio given the parameter at this time ("rolling sample estimation"). This

estimation method corresponds to the case where, at each period, investors

use the new information to re-evaluate the model parameters and make their

forecast with these new values. The results of both methods are compared

in the next section.

6.2 Estimated relative weight and volatility tests

The optimal relative weight A# is equal to 07227 with the overall sample

method and to 07187 with the rolling sample method. These two results are

similar. They mean that, between 1871 and 2003, the investors seem to have

given a weight to the public information about four times bigger than the one

given to the private information. Figure 1 and 2 show the observed and the

theoretical P/D ratio with the overall sample method and the rolling sample

method respectively.16 With both methods, the theoretical price follows

relatively closely the price observed on the market. This is particularly true

for the overall sample method. In both case, the picture is very di!erent

from the traditional graph given by a rational expectation model where the

theoretical and the observed price diverge signicantly (see, e.g., Shiller 1981

or 2003).

Table 3: Volatility test

Method Overall sample Rolling sample

Test value 1-value Test value 1-value

F-test 1.374090 0.0745 1.623560 0.0146

Siegel-Tukey 1.477986 0.1394 2.224521 0.0261

Bartlett 3.180563 0.0745 5.960385 0.0146

Levene 2.051350 0.1533 4.681654 0.0316

Brown-Forsythe 1.938616 0.1650 3.889712 0.0499

The volatility tests conrm these conclusions. Table 3 displays the test
16With the rolling sample method, the theoretical P/D ratio is computed from 1900.

The observation before this date are used to give the rst estimation of the parameters.
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Figure 1: Theoretical P/D ratio with constant relative weight (overall sam-

ple method)
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statistics and the 1-values of the volatility test for the optimal value with

both methods. The null hypothesis is the equality between the two variances.

For the overall sample method, the tests indicate that it is not possible to

reject the hypothesis of equal variances at a 5% condence level. For the

rolling sample method, the equal variance hypothesis is rejected at a 5% con-

dence level for all tests but is accepted at a 1% condence level. Note that,

with the rolling sample method, the volatility of the model (*2 = 072749) is

bigger than the observed one (*2 = 071693). The evidence in favour of the

model with higher order beliefs are not unquestionable, but formally, both

models pass the volatility test at a 1% condence level. Therefore, a model
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Figure 2: Theoretical P/D ratio with constant relative weight (rolling sample

method)
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with higher order beliefs seems to give a volatility which is more in line

with the one observed on the market, what traditional rational expectation

models fail to do.

6.3 Stability of the relative weight

In our HEAPM, the relative weight A is assumed to be constant in time.

This is a rather strong hypothesis. To check if this hypothesis corresponds

to the reality, we computed the optimal relative weight over di!erent periods

of 20 years. The result for the entire sample and the rolling sample method

are displayed in Figure 3. In these two gures, it is clear that the relative
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Figure 3: Stability of relative weight (L: overall. R: Rolling)
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weight seems to vary with time. The next section deals with this problem

by slightly modifying the original HEAPM and introducing a time-varying

relative weight.

7 Model with time-varying relative weight: em-

pirical results

7.1 Modi!cation of the original model

With a time-varying relative weight, the original HEAPM of Equation (16)

can be re-written as:

2! =
"X

(=0

0(
³³
1! A(+1!

´
3#!+(+1 + A

(+1
! 3!+(+1 ! 4+#!+(+1

´
+ 51

This model implies that, at each time !, investors choose a di!erent

relative weight between the private and the public signal. This relative

weight varies for each period, but at time !, it remains constant for each

forecast horizon !+8. It is still assumed that the relative weight is identical

for each investor. Similarly to the constant relative weight, the optimal

A#! , which is di!erent for each period, is dened as the relative weight that
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Figure 4: Estimated relative weight (L: overall. R: rolling)
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minimizes the squared di!erence between the theoretical and the observed

2! at time !.

7.2 Estimated relative weight and volatility tests

The estimated relative weights obtained with the overall sample and the

rolling sample method are presented in Figure 4. As suggested by in the

previous section, the optimal relative weight seems to vary signicantly in

time. Note that with both methods, the periods with a relative weight equal

to zero, which corresponds to a situation where investors give no weight to

their private signal, are relatively rare and short. The end of the 90s is an

exception since both methods indicates that investors have used only the

public signal for several years in a row. This could explain the irregularities

in the stationary of the P/D ratio mentioned in Section 5.2.

Figures 5 and 6 (in Appendix B) show the observed and the theoretical

P/D ratios with a time-varying relative weight. Once again, the P/D ratios

given by the model are relatively close to the observed ones. This conclusion

is conrmed by the 1-values of the volatility tests presented in Table 4. With

a time-varying relative weight, the hypothesis of equal variance between the

observed and the theoretical P/D ratio cannot be rejected at a 5% condence

level.17 This is a signicant empirical evidence in favour of the HEAPM
17The hypothesis cannot even be rejected at a 10% condence level, if we do not take
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developed in this paper. It seems that a model with higher order beliefs

is able to generate a volatility, which is similar to the one observed on the

market, whereas rational expectation models fail to produce this feature.

Table 4: Volatility test

1-value

Method Overall sample Rolling sample

F-test 0.9988 0.1205

Siegel-Tukey 0.6959 0.0503

Bartlett 0.9988 0.1205

Levene 0.7879 0.1385

Brown-Forsythe 0.8269 0.1497

8 Conclusion

This paper proposes an asset pricing model, which takes into account in-

vestors’ higher order beliefs. The particularity of this model is that it can

be estimated and thus help to determine if the e!ect of higher order beliefs

on the stock price is empirically signicant. The model is estimated with

American data on stock prices, dividends, and interest rates for the period

between 1871 and 2003. The main conclusion is that higher order beliefs

seem to have a signicant impact on asset prices. In particular, the price

volatility induced by the model does not signicantly di!er from the volatil-

ity observed on the market. In this sense, higher order beliefs appear to be

a plausible explanation of the excess volatility puzzle.

In addition to the main conclusion, the paper sheds light on a few other

points. First, it shows that heterogeneous expectations induce the beauty

contest phenomenon described by Keynes (1936). In the asset price equa-

tion, the beauty contest e!ect takes the form of an iterated average expec-

tation. This iterated average expectation replaces the iterated expectation

used in traditional asset price models. Second, after making some further as-

sumptions about the information available to each agent, we give a testable

into account the Siegel-Tukey test.
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asset price equation. This equation is a useful tool to understand how the

agents combine their private and public information to take into account

the beauty contest e!ect. In particular, it shows that, in order to guess

others’ expectations, the agent put more weight on the public signal than

they would do if they were trying to guess the future dividends. They do so

because, as the public signal inuences everyone’s expectation, it constitutes

a better predictor of the average opinion that the private signal.18 Finally,

in our model, the price still contain some information about the future pay-

o!s. This paper shows how this information can be extracted from the past

prices. The direct consequence of this is that the past prices can be used as

the pubic signal described above.

In conclusion, our empirical results indicate that higher order beliefs

might play a signicant role in the stock markets. A signicant part of

the volatility observed in the price seems to be explained by this phenom-

enon, rather than by the movements of the fundamentals. This conclusion

suggests that adding higher order beliefs to traditional present value model

could improve their empirical performance. The model used in this paper is

based on some restrictive hypotheses, but its simplicity and its value added

in terms of empirical performances might constitute a promising basis for

further developments.
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A Volatility of the P/D ratio

From Equation (16), we can compute the volatility of 2!++ expected by

investor & at time !+ B ! 1. This yields:

; E)#!++!1 (2!++) = ; E)
#
!++!1

Ã
"X

(=0

0(
³³
1! A(+1

´
3#!+++(+1 + A

(+13!+++(+1 ! 4+#!+++(+1
´!

As the expected adjusted dividend growth 3#!+++( and the expected

volatility +#!+++( are known at time ! + B ! 1, their conditional variance

is null and the previous equation is equivalent to:

; E)#!++!1 (2!++) = ; E)
#
!++!1

Ã
"X

(=0

0(A(+13!+++(+1

!

Thus, the variance of the P/D ratio is a function of the variance and

autocovariance of the future adjusted dividend growth. As we have seen

in Section 3.2.2, these variances and autocovariances are identical for each

investor and therefore we have:

; E)#!++!1 (2!++) = A
2; E)!++!1

Ã "X

(=0

(0A)( 3!+++(+1

!
= *2,"+% (26)
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B Theoretical and observed P/D ratios with time

varying relative weight

Figure 5: Theoretical P/D ratio with time-varying relative weight (overall

sample method)
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Figure 6: Theoretical P/D ratio with time-varying relative weight (rolling

sample method)
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