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Contest success function with the possibility of a draw: 
axiomatization  

1. Introduction 
A contest is a competition where the contestants simultaneously contribute effort to win a 

prize. All contests can be classified as either perfectly or imperfectly discriminating (e.g. Hillman 

and Riley 1989). In perfectly discriminating contests (e.g. Moldovanu and Sela 2001) the highest 

contributed effort secures a win (like in an all-pay auction). In imperfectly discriminating 

contests (e.g. Dixit 1987) the highest contributed effort has the highest probability of a win, but it 

does not necessarily secure a win. Imperfectly discriminating contests are extensively used to 

study sport competitions (e.g. Szymanski 2003), political rent-seeking (e.g. Nitzan 1991, 1994), 

research and development and patent races (e.g. Nti 1997), labor incentives (e.g. Rosen 1986) to 

name a few. 

In imperfectly discriminating contests the technology that translates an individual’s effort 

into his or her probability of winning is called the contest success function (CSF). The majority 

of studies on imperfectly discriminating contests use the logit CSF introduced by Tullock (1980) 

and subsequently axiomatized by Skaperdas (1996) and Clark and Riis (1996, 1998). In some 

studies (e.g. Hirshleifer 1989, Baik 2004) the logit CSF is called the ratio-form CSF. Other forms 

of CSF include the probit CSF (e.g. Lazear and Rosen 1981, Dixit 1987) and the difference-form 

CSF (e.g. Hirshleifer 1989). All existing forms of CSF share one limitation. The sum of winning 

probabilities across all contestants is assumed to be additive to unity. Thus, only one result is 

admitted in the contest—one of the contestants wins the prize unilaterally.  

The majority of real life contests admit the possibility of ending without either side 

winning, which will be further referred to as a draw. A draw is a situation when two or more 

contestants obtain equal rights for the prize and they share the price. The possibility of a draw is 
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apparent in sport tournaments (e.g. chess, football), political rent-seeking (e.g. no party wins the 

majority and a winning coalition is formed), research and development and patent races (e.g. a 

simultaneous independent discovery), labor tournaments (e.g. two individuals are promoted to 

share a senior position), military conflicts (e.g. no party can force a win and a cease-fire or peace 

agreement is reached). To analyze such imperfectly discriminating contests the most appropriate 

tool is a CSF that admits the possibility of a draw. This paper presents the axiomatic 

characterization of such CSF. This axiomatization is a generalization of Skaperdas (1996) and 

Clark and Riis (1998) when the sum of winning probabilities across all contestants is non-

additive. 

The remainder of this paper is organized as follows. The logical exposition and the 

intuition behind the proposed system of axioms is presented in section two. This section 

describes the simplest case when there are only two contestants. In section three, which is more 

technical, a general result for any number of contestants is presented. Section four concludes. 

2. Contest with two contestants 
Consider first the simplest contest with only two contestants. This simple contest is of a 

special interest because: 

! a draw is most probable to occur in pairwise contests,  

! the model of a pairwise contest is extensively used in the literature (e.g. Rosen 1986, Baye 

and Shin 1999, Gradstein and Konrad 1999, Morgan 2003, Baik 2004), and  

! in a special case when there are only two contestants it is possible to generalize the existing 

axiomatization by Skaperdas (1996) and Clark and Riis (1998) by relaxing their axioms of 

additivity and homogeneity.  
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In what follows, the notation as in Skaperdas (1996) and Clark and Riis (1998) will be used 

wherever possible. Let " # $ %1,0, 21 &yypi  be the probability that the i-th player wins the contest, 

$ %2,1&i , when the first (second) contestant contributes effort 01 'y  ( 02 'y ).1 Let 

" # $ %1,0, 21
12 &yyp  be the probability that the first and the second player end up in a draw.  

Axiom 1 (Additivity) " # " # " # 1,,, 21
12

21
2

21
1 ()) yypyypyyp , 0, 21 '* yy  

Axiom 2 (Nontriviality) " # 0,.01 (p , " # 00.,2 (p , " # 10,012 (p  and " # 00, 11
1 +dyydp , 

" # 0,0 22
2 +dyydp  

Axioms 1 and 2 guarantee that the winning probabilities of two contestants together with their 

probability of a draw indeed constitute a non-trivial probability distribution. When one of the 

contestants contributes zero effort he or she cannot win the contest: but, he or she can end up in a 

draw. When two contestants contribute zero effort they end up in a draw with certainty. For every 

contestant the probability of winning is increasing in his or her own effort when the opponent 

contributes zero effort.2  

Axiom 3 (Independence of irrelevant alternatives) The propability that the i-th 

contestant wins given that the j-th contestant does not win depends only on the effort level of the 

i-th contestant (and it does not depend on the effort level of the j-th contestant), $ % jiji ,& ,2,1, .  

Theorem 1 Axioms 1-3 hold if and only if " # " #
" # " #2

2
1

1
1

1

21
1

1
,

yHyH
yHyyp
))

( , 

" # " #
" # " #2

2
1

1
2

2

21
2

1
,

yHyH
yHyyp
))

(  and " # " # " #2
2

1
121

12

1
1,

yHyH
yyp

))
(   

                                                 
1 Since the event of a draw is explicitly allowed, there is no problem in considering a zero effort of the contestnats. 
Skaperdas (1996) and Clark and Riis (1998) considered only strictly positive effort levels because without the 
possibility of a draw, the CSF exhibits a discontinuous jump when all contestants contribute zero effort. 
2 Clark and Riis (1998) assumed in addition that for every contestant the probability of winning is nonincreasing in 
his or her opponent’s effort, " # 0, 21 -.. j

i yyyp , $ % jiji ,& ,2,1, . This property follows from the conjunction 
of axioms 1-3 and there is no need to assume it explicitly. 
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where function " #i
i yH  is strictly increasing i.e. " # 0+ii

i dyydH  and " # 00 (iH , $ %2,1&i . 

Proof of this and all subsequent theorems is presented in Appendix. 

Given axioms 1-3, theorem 1 guarantees that for every contestant the probability of 

winning is increasing in his or her effort and decreasing in the opponent’s effort. For every 

contestant the probability of a draw is decreasing both in his or her effort and in the opponent’s 

effort. Thus, when both contestants contribute zero effort they end up in a draw with certainty but 

the higher the effort levels that they contribute, the less probable a draw is to occur. This property 

reflects an intuitive observation that in real-life contests a draw is more (less) probable when the 

contestants contribute low (high) effort on average.  

For example, in football it is more common to observe draws with low scores (e.g. “0:0”, 

“1:1”) than those with high scores (e.g. “2:2”, “3:3”). This can be interpreted that when both 

teams put a lot of effort into the game they are less likely to end up in a draw. During an 

elimination tournament the ending of a football match is restricted and a draw is not allowed. If 

neither team can reach a victory within a normal time limit both teams are required to play an 

extra added time until one side wins. It can also be interpreted that such requirement results in the 

contribution of higher effort by both teams making a draw less likely to occur during the 

additional time. According to the CSF described in theorem 1 the probability of a draw is 

converging to zero when both the first and the second contestant contribute high effort. Thus, for 

high effort levels the CSF described in theorem 1 converges to the logit CSF without the 

possibility of a draw (e.g. Skaperdas 1996). 

Theorem 1 also implies that, for example, when the first player contributes zero effort, the 

second player does not automatically win the contest. In such a case the most probable outcome 

of a contest is either a draw (when the second contestant contributes low effort) or a win for the 
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second player (if he or she contributes high effort). More generally, the CSF implied by theorem 

1 does not allow any contestant to secure a win with certainty. The logit CSF without the 

possibility of a draw (e.g. Tullock 1980) allows a contestant to secure a win with certainty in a 

special case when all his or her oponents contribute zero effort. 

Axiom 4 (homogeneity) " #
" #

" #
" #21

2
21

1

21
2

21
1

,
,

,
,

yyP
yyP

yyP
yyP

//
//

(
00
00 , 0+*0 , 0, 21 +* yy  

According to axiom 4 the ratio of winning probabilities remains unchanged if both 

contestants augment their effort by the same amount. Skaperdas (1996) and Clark and Riis (1998) 

formulated the homogeneity axiom in absolute terms i.e. " # " #2121 ,, yyPyyP ii //( 00 , 0+*0 , 

$ %2,1&i . However, when a draw is allowed, as shown above, the probability of a draw decreases 

when both contestants augment their effort. In absolute terms the sum of winning probabilities 

increases when both contestants augment their effort. Therefore, the homogeneity axiom does not 

hold in absolute terms but it can be assumed that it holds in relative terms. 

Theorem 2 Axioms 1-4 hold if and only if " # rr

r
iii

yy
yyyp

2211
21 1

,
11

1
))

(  and 

" # rr yy
yyp

2211
21

12

1
1,

11 ))
( , where 0, +ir 1  are constant, $ %2,1&i  

Axiom 4 assumes that the relative winning probabilities are homogeneous of degree zero. 

The consequence of this assumption is that the strictly increasing function " #i
i yH  introduced in 

theorem 1 is uniquely specified. In particular, function " #i
i yH  is a power function. Common to 

all contestants, constant r captures the marginal increase in a winning probability caused by a 

higher effort. Contests with low r can be regarded as poorly discriminating or “noisy” contests 

(e.g. Blavatskyy 2004). When r converges to zero the contest outcome converges to a random 

lottery with no dependence on the contributed efforts of the contestants.  Contests with high r can 
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be regarded as highly discriminating and when r converges to infinity, the contest outcome is 

determined by an all-pay auction (e.g. Moldovanu and Sela 2001). Clark and Riis (1998) 

provided an intuitive explanation of an individual specific constant i1  as a degree of unfairness 

inside the contest. The higher the constant i1  the more probable is the i-th contestant to win 

given that he or she submits the same effort as the opponents.  

Skaperdas (1996) proposed as an anonymity axiom that individual characteristics are 

irrelevant for the CSF (only individual efforts matter), which could be formally expressed as 

" # " #12
2

21
1 ,, yypyyp ( . The anonymity axiom in conjunction with axiom 1 immediately implies 

that the probability of a draw is symmetric i.e. " # " #12
12

21
12 ,, yypyyp ( . When the anonymity 

axiom is added to axioms 1-3 (axioms 1-4) we obtain theorem 1 (theorem 2) with " # " #.. 21 HH (  

( 111 (( 21 ). Notice that when 1  converges to infinity the probability of a draw converges to 

zero and we obtain the logit CSF without the possibility of a draw " # " #rrr
i

i yyyyyp 2121 , )( , 

$ %2,1&i , axiomatized by Skaperdas (1996). When 1  converges to zero the contest ends up in a 

draw with certainty. Thus, we can interpret parameter 1  as a relative likelihood of a draw in the 

contest. 

3. Contest with n>2 contestants 
Let 2 3nN ,...,1(  denote the set of all contestants and 4  be the set of all subsets in N. For 

any group of contestants 45S  let S  denote the number of contestants in this group. The i-th 

contestant contributes effort 0'iy , Ni& . For any group of contestants 2 3 45( SiiS ,...,1  let us 

denote by " #
SiiS yyy ,...,

1
(  the vector of efforts contributed by the contestants grouped in S. Note 

that 2 3 Niyy ii &*( ,  and " #nN yyy ,...,1( . Finally, denote by " # $ %1,0&N
S yp  the probability that 
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a group 45S  of contestants ends up in a draw and all remaining contestants i.e. S\N  loose the 

contest. The probability that the i-th contestant wins the contest unilaterally is defined as 

2 3" #N
i yp , Ni& . Axioms 1a-3a are the generalization of axioms 1-3 for the contest with 2+n  

contestants. 

Axiom 1a  " # 1(6
45S

N
S yp , n

Ny )&* R  

When more than two contestants participate in the contest, first of all, all n contestants can 

end up in a draw together. Additionally any group of 17n , 27n  etc contestants can end up in a 

draw. Finally, any one of n contestants can win the contest unilaterally. These events are 

mutually exclusive: only one of them is true ex post. Therefore, axiom 1a requires the probability 

distribution over all possible groups of contestants to be additive to unity. 

Axiom 2a  NSS ,45* , : " # 0(N
S yp  if Siyi &*( ,0 ; " # 10 (Np  and 

2 3" # NidyydP ii
i &*+ ,00,...,,...,0  

According to axiom 2a if there is any group of, but not all, contestants such that all its 

members contribute zero effort, then the members of this group cannot end up in a draw only 

with each other. Axiom 2a implies inter alia that a contestant who contributes zero effort cannot 

win the contest. If all contestants contribute zero effort all of them end up in a draw with 

certainty. 

Axiom 3a 45*S : 
" #

" # " #S
S

TS
T

N
T
N

S

yf
yp

yp
(

7 6
58
45

1
 where $ %1,0R: 9)

SSf  is an arbitrary 

function 

The members of a group S are successful if all of them end up in a draw either with each 

other or together with the contestants that are not members of group S. According to axiom 3a the 
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probability that a group S ends up in a draw, conditional on the success of all its members, 

depends only on the efforts of its members and it does not depend on the efforts of other 

contestants that are not members of the group S. 

Theorem 3 Axioms 1a-3a hold if and only if 

" #

" # " # " # " #

" # " # " #6 6

6 6

45
:
45

:
45

:
45

(

A
BA

B
N

N
B

B
A

A
AS

A
BA

B
N

N
B

B
A

A
S

S

N
S

yHyHyH

yHyHyHyH

yp
...

...

 where " # 1(N
N yH , and for any group 4:S  

function " #S
S yH  is strictly increasing i.e. " # 0+.. iS

S yyH , Si&* , and " # 00 (SH  

According to theorem 3 axioms 1a-3a hold if and only if the CSF has the following 

structure. When all n contestants contribute zero effort, all of them end up in a draw with 

certainty. However, the probability of such ending " #
" # " # " #6 6

45
:
45

(

A
BA

B
N

N
B

B
A

AN
N

yHyHyH
yp

...
1  

strictly decreases in every contestant’s effort i.e. " # Niyyp iN
N &*;.. ,0 . Now consider a 

group 23iN \  of all contestants except for the i-th contestant, Ni& . When all members of the 

group 23iN \  contribute zero effort, they cannot end up in a draw only with each other. In general 

the probability of such ending 2 3" #N
N yp i\ , when compared with the probability " #N

N yp , is a 

strictly increasing function of the efforts of every member of the group 23iN \  i.e. 

2 3 " # 2 3
2 3" # " #N

N
N

N
N

N ypyHyp /( i\
i\i\ . Thus, when the members of group 23iN \  contribute higher 

effort the ending when the group 23iN \  shares the prize becomes relatively more probable than 

the ending when all contestants share the prize. 

Now consider a group 2 3i,jN \  of all contestants except for the i-th and the j-th contestant, 

jiNji ,& ,, . When compared with the probability " # 2 3" # 2 3" #N
jN

N
iN

N
N ypypyp \\ ))   the 
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probability that the members of the group 2 3i,jN \  end up in a draw only with each other is a 

strictly increasing function of the efforts of every member of this group. Intuitively, every 

member of the group 2 3i,jN \  is also a member of the larger groups 23iN \  and 2 3jN \ . Thus, 

higher efforts of the members of the group 2 3i,jN \  automatically increase the relative likelihood 

that the groups 23iN \  and 2 3jN \  share the prize. According to theorem 3 when the members of 

the group 2 3i,jN \  contribute higher effort the ending when the group 2 3i,jN \  shares the prize 

becomes relatively more probable than the (also more probable) ending when the groups 23iN \ , 

2 3jN \  and N share the prize. Formally, this corresponds to 

2 3" # 2 3
2 3" # 2 3

2 3" # 2 3
2 3" #" # " #N

N
jN

jN
iN

iN
jiN

jiN
N

jiN ypyHyHyHyp /))/( \
\

\
\

,\
,\,\ 1 . The same logical structure 

of the CSF is preserved for all other groups of contestants.  

It turns out that when more than two contestants participate in the contest the axiom of 

homogeneity as in Skaperdas (1996) and Clark and Riis (1998) cannot be generalized without 

imposing a restriction of the structure of contest outcome (ending). Specifically the homogeneity 

of relative winning probabilities (axiom 4a below) is compatible with theorem 3 only when the 

contest with more than two players can end up either with one player winning unilaterally or a 

group of players of a fixed size sharing the prize. An example of such restriction is when either 

only two, or only three or only all contestants together can end up in a draw3. Thus, 2(n  is the 

only special case when the homogeneity axiom does not restrict the structure of the contest 

outcome (ending).  

Intuitively, an individual’s low effort yields a relatively high economic benefit when the 

overall aggregate effort is low. In such case, besides a unilateral victory, there is also a high 

probability of a draw with the opponents who contributed high effort. However, when every 
                                                 
3 An example when only all contestants together can end up in a draw is analyzed in section 3.2 below. 
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contestant augments his or her effort by the same amount the overall aggregate effort contributed 

in the contest increases. In this case, the relative economic benefit of an individual’s low effort 

decreases. A low effort yields only a chance of unilateral victory. The probability of a draw with 

the opponents who contributed high effort converges to zero. Thus, the homogeneity of winning 

probabilities does not hold because at low aggregate effort the possibility of a draw dilutes the 

economic benefit of effort differentials. One possibility to overcome this problem is to assume 

that the homogeneity of winning probabilities is preserved in the limit when all contestants 

contribute infinitely high effort. However, this assumption does not allow to specify the 

monotone functions that define the probabilities of a draw.  

3.1. Example of the CSF when a contest outcome is unrestricted  

When we keep the assumption that any group 45S  of contestants can share the prize, 

the CSF can be formulated solely in general monotone functions " #S
S yH  as in theorem 3. 

Figures 1 and 2 demonstrate the CSF from theorem 3 when there are three contestants and 

" #
2

<
=

>
?
@

A
( 6

&Si
iS

S yyH . Figure 1 (2) demonstrates the probability of a win and a draw for the first 

contestant when his or her opponents contribute effort 032 (( yy  ( 4.0,5.0 32 (( yy ). When 

the first contestant contributes low effort ( 01 9y ) the most probable successful ending of the 

contest for the first contestant is a draw together with two opponents. If the first contestant does 

not end up in a draw with two opponents while contributing low effort he or she is more probable 

to end up in a draw with one opponent who submitted positive effort rather than to win the 

contest unilaterally (e.g. figure 2).  

When the first contestant contributes high effort ( )B91y ) the most probable ending of 

the contest is that the first contestant wins the prize unilaterally. If the first contestant does not 
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win while contributing high effort he or she is more probable to end up in a draw with one 

opponent rather than in a draw with both opponents. A draw with an opponent who contributed 

higher effort is more probable that a draw with an opponent who contributed lower effort. When 

one of the opponents contributes high effort a draw with such an opponent can become the most 

probable successful ending for the contestant who contributes low or moderate effort (e.g. figure 

2 when 6.01 (y ). Figures 1 and 2 also demonstrate that: 

! the probability that the first player wins the contest is strictly increasing in his or her effort,  

! the probability that the first contestant ends up in  a draw with one of the opponents is first 

increasing and then decreasing in his or her effort, and  

! the probability that the first contestant ends up in  a draw with all opponents is strictly 

decreasing in his or her effort. 
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Figure 1 Probability 2 31p  ( 2 32,1p , 2 33,1p , 2 33,2,1p ) that the first contestant wins in the contest 
with three contestants (ends up in a draw with the second, the third, the second and the 
third contestant) while contributing effort 1y  ( 032 (( yy ) 
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Figure 2 Probability 2 31p  ( 2 32,1p , 2 33,1p , 2 33,2,1p ) that the first contestant wins in the contest 
with three contestants (ends up in a draw with the second, the third, the second and the 
third contestant) while contributing effort 1y  ( 4.0,5.0 32 (( yy ) 
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3.2. Example of the CSF when a contest outcome is restricted  

Consider a special case when a contest outcome is restricted so that either one of n 

contestants wins the contest unilaterally or all contestants end up in a draw together. This kind of 

a draw can be interpreted as a stalemate when competition ends up in a deadlock with none of the 

contestants being able to force a unilateral win. Formally, a restriction " # 0(N
S yp  is imposed 

for every group 4:S , 23 NiiS &, , . This restriction allows to simplify theorem 3 into 

corollary 1 below and to impose homogeneity on the relative winning probabilities as done in 

axiom 4a below. 

Corollary 1 4:*S , 23iS , : " # 0(N
S yp  C  axioms 1a-3a hold if and only if 

2 3" # " #

" #6
(

)
( n

j
j

j

i
i

N
i

yH

yH
yp

1
1

 and " #
" #6

(

)
( n

j
j

j
N

N

yH
yp

1
1

1  where function " #i
i yH  is strictly 

increasing i.e. " # 0+.. ii
i yyH  and " # 00 (iH , Ni&*   

Proof of corollary 1 follows immediately from theorem 3 

 Axiom 4a 
" #
" #

" #
" #N

j
N

i

N
j

N
i

yP
yP

yP
yP

/
/

(
0
0

, 0+*0 , Nji &* , , 0, ,ji yy  

Axiom 4a is sufficiently restrictive to specify uniquely the monotone functions " #i
i yH  from 

corollary 1. Specifically, axiom 4a holds if and only if functions " #i
i yH  are power functions 

(corollary 2) 

Corollary 2 4:*S , 23iS , : " # 0(N
S yp  C  axioms 1a-4a hold if and only if 

2 3" #
6
(

)
( n

j

r
jj

r
ii

N
i

y

yyp

1
1 1

1
 and " #

6
(

)
( n

j

r
jj

N
N

y
yp

1
1

1

1
 where 0, +ir 1  are constant, Ni&  



 16

Proof of corollary 2 is analogous to the proof of theorem 2 with axioms 1a-4a and 

corollary 1 being used instead of axioms 1-4 and theorem 1 correspondingly.   

The CSF from corollary 2 generically applies to “unfair” contests (e.g. Clark and Riis, 

1998). In “unfair” contests the contestants are heterogeneous: the same effort yields different 

probability of winning when it is contributed by different contestants.  The anonymity axiom as 

in Skaperdas (1996) imposes a restriction that a contest is fair i.e. two different contestants have 

the same probability of winning when they contribute the same effort. Formally, this corresponds 

to 2 3" # 2 3" #N
j

N
i ypyp (  when ji yy ( , Nji &* , . The anonymity axiom implies that the 

coefficients 0+i1  from corollary 2 are identical for every contestant i.e. Nii &*( ,11  

4. Conclusion 
This paper presents an axiomatic characterization of the CSF with a rich structure on the 

outcome of the contest. Specifically, the possibility of a draw is allowed so that any group of the 

contestants can end up in a “shared victory” of the contest. In a special case of a simple pairwise 

contest it is possible to generalize the logit CSF axiomatized by Skaperdas (1996) and Clark and 

Riis (1998) to allow for the possibility of a draw. The obtained logit CSF with the possibility of a 

draw is mainly characterized by the properties of the independence of irrelevant alternatives and 

the relative homogeneity of winning probabilities. However, the property of homogeneity (either 

in relative or absolute winning probabilities) cannot be sustained in a general case when there are 

more than two contestants unless a restriction on the structure of contest outcome is imposed. An 

example of such restriction is when either only two or only three or only all contestants together 

can end up in a draw. 

The logit CSF with the possibility of a draw is shown to possess the following properties. 

When all contestants contribute high effort the logit CSF with the possibility of a draw converges 
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to the logit CSF without the possibility of a draw. The probability that all contestants end up in a 

draw is the highest and equal to unity when all contestants contribute zero effort and it strictly 

decreases in the effort of every contestant. The probability that any group of two or more, but not 

all, contestants shares the prize increases in low effort of its members and decreases in high effort 

of its members. The probability that any contestant wins the contest unilaterally strictly increases 

in his or her effort.  

The CSF with the possibility of a draw is a useful model in many economic situations 

where the ending of competition without either side winning is a plausible outcome. The CSF 

axiomatized in this paper can be employed instead the conventional logit CSF to analyze the 

paradoxical results in the literature on the imperfectly discriminating contests such as Tullock 

(1980) “overdissipation of rents” or the non-existence of pure strategy Nash equilibrium in highly 

discriminating contests (e.g. Blavatskyy 2004). The CSF with the possibility of a draw is 

continuous at zero and therefore it is more convenient as an analytical tool than the conventional 

logit CSF, which is discontinuous at zero. However, the CSF with a possibility of a draw is 

derived only in general monotone functions when more than two contestants participate in the 

contest and the structure of contest outcome is unrestricted. A useful extension of this work is to 

find an intuitively appealing property that allows to specify these monotone functions while 

preserving the rich structure of the contest outcome. 
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5. Appendix 
 

Proof of theorem 1 

Let " # " #
" #0,1
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1
1

1
1
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7
(  and " # " #

" #2
2
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2
2

,01
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7
( . Notice that this newly defined 

function " #i
i yH  is strictly increasing i.e. " # 0+ii

i dyydH  because according to axiom 2 

" # 00, 11
1 +dyydp  and " # 0,0 22

2 +dyydp . Additionaly, " # 00 (iH , $ %2,1&i , due to axiom 2 as well.  

Axioms 2 and 3 together imply that 
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" # " #2
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, yp
yyp

yyp
(

7
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Specifically, axiom 3 implies that the ratio 
" #
" #21

2
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1

,1
,

yyp
yyp

7
 does not depend on 2y  and therefore 
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" #

" #
" # " #0,

0,1
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,

1
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1
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21
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(

7
(

7
. The last equality follows from axiom 2 which 

guarantees that " # 00,1
2 (yp . Using the definition of function " #i

i yH , $ %2,1&i , we can write 

" # " # " #" #1
1

1
1

1
1 10, yHyHyp )(  and " # " # " #" #2

2
2

2
2

2 1,0 yHyHyp )( . Axioms 2 and 3 then imply a 

system of equations (A1). 
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The solution of system (A1) is " # " #
" # " #2

2
1

1
1
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1

1
,

yHyH
yHyyp
))

( , " # " #
" # " #2
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,
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))

( . 

From axiom 1 it follows that " # " # " # " # " #" #2
2

1
1

21
2

21
1

21
12 11,,1, yHyHyypyypyyp ))(77( . 

It is straightforward to verify that such functions " #21
1 , yyp , " #21

2 , yyp  and " #21
12 , yyp  satisfy 

axioms 1-3. Thus, axioms 1-3 are both necessary and sufficient. Q.E.D. 
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Proof of theorem 2 

It follows from theorem 1 that 
" #
" #

" #
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( . Axiom 4 then is equivalent to the 
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functional equation  
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Since equation (A2) holds for any positive 2y  by letting 12 yy (  we establish that 

" # " # " # " #1/1 1
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12
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2 HyHHyH ( , 01 +*y . Thus, we can rewrite (A2) as (A3): 
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Let zxey )(1 , xey (2  and " # " # " #1lnln 11 HeHxf x 7( . Notice that function " #.f  is 

continuous because function " # " # " #" #0.,10.,. 111 ppH 7(  is continuous. Equation (A3) then 

becomes Cauchy’s functional equation " # " # " #zfxfzxf )() , which has the unique solution 

" # rxxf ( , where r is constant. Using the definition of function " #.f  we then obtain  

" # " # ryHyH 1
1

1
1 1(  and " # " # ryHyH 1

2
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2 1( , 01 +*y . Since theorem 1 restricts " # 0+ii
i dyydH  

it must be the case that r and " #1iH  are non-zero and of the same sign, $ %2,1&i . Additionally, 

theorem 1 requires function " #.iH  to be strictly positive on ))R . Therefore, " # 01, +iHr , 

$ %2,1&i . Finally, let " #1i
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Substituting for the newly obtained function " #.iH  in theorem 1 we obtain 
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11 ))
( , $ %2,1&i . It is straightforward 

to verify that this CSF satisfies all axioms 1-4. Q.E.D. 
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Proof of theorem 3 

For convenient notation let us introduce the following family of functions. " # 1(N
N yH , 

" # " # " #" #S
S
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S
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S yfyfyH 7( 1  where $ %1,0R: 9)

SSf  is an arbitrary function used in axiom 3a. 

It is possible then to rewrite axiom 3a as (A4)  
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T ypyp 1  due to axiom 1a. Equation (A4) defines the probability 

distribution " # 45Syp N
S ,  recursively. Iterating every probability " #N
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side of (A4) we obtain (A5).  
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Since equation (A5) holds for any element of 4  it is possible to sum (A5) over all 

elements of 4 . On the left hand side of equation (A5) we then obtain " # 1(6
45S

N
S yp  due to 

axiom 1a. It follows then that " #
" # " # " #6 6
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N yp  in (A5) we finally obtain " #

" # " # " # " #

" # " # " #6 6

6 6

45
:
45

:
45

:
45

(

A
BA

B
N

N
B

B
A

A
AS

A
BA

B
N

N
B

B
A

A
S

S

N
S

yHyHyH

yHyHyHyH

yp
...

...
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is straightforward to verify that this CSF satisfies all axioms 1a-3a and therefore these axioms are 

both necessary and sufficient. Q.E.D. 

 


