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Abstract

We consider sample covariance matrices SN = 1

pΣ
1/2

N XNX
∗

NΣ
1/2

N where XN is a N × p

real or complex matrix with i.i.d. entries with finite 12th moment and ΣN is aN×N positive

definite matrix. In addition as N → ∞ the spectral measure of ΣN almost surely converges

to some limiting probability distribution and p/N → γ > 0. We quantify the relationship

between sample and population eigenvectors, by studying the asymptotics of functionals

of the type 1

N Tr
(
g(ΣN )(SN − zI)−1)

)
, where I is the identity matrix, g is a bounded

function and z is a complex number. This is then used to compute the asymptotically

optimal bias correction for sample eigenvalues, paving the way for a new generation of

improved estimators of the covariance matrix and its inverse.
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1 Introduction and Overview of the Main Results

1.1 Model and results

Consider p independent samples C1, . . . , Cp, all of which are N × 1 real or complex vectors. In

this paper, we are interested in the large-N -limiting spectral properties of the sample covariance

matrix

SN =
1

p
CC∗, C = [C1, C2, . . . , Cp],

when we assume that the sample size p = p(N) satisfies p/N → γ as N → ∞ for some γ > 0.

This framework is known as large-dimensional asymptotics. Throughout the paper, 1 denotes

the indicator function of a set, and we make the following assumptions: C = Σ
1/2
N XN where

• (H1) XN is a N × p matrix of real or complex iid random variables with zero mean, unit

variance, and 12th absolute central moment bounded by a constant B independent of N

and p;

• (H2) the population covariance matrix ΣN is a N -dimensional random Hermitian positive

definite matrix independent of XN ;

• (H3) p/N → γ > 0 as N → ∞;

• (H4) (τ1, . . . , τN ) is a system of eigenvalues of ΣN , and the empirical distribution function

(e.d.f.) of population eigenvalues given by HN (τ) = 1
N

∑N
j=1 1[τj ,+∞)(τ) converges a.s.

to a nonrandom limit H(τ) at every point of continuity of H. H defines a probability

distribution function, whose support Supp(H) is included in the compact interval [h1, h2]

with 0 < h1 ≤ h2 <∞.

The aim of this paper is to investigate asymptotic properties of the eigenvectors of such sample

covariance matrices. Before exposing our results, we briefly review some known results about

spectral properties of sample covariance matrices under large-dimensional asymptotics.

In the whole paper we denote by ((λN
1 , . . . , λ

N
N ); (uN

1 , . . . , u
N
N )) a system of eigenvalues and

orthonormal eigenvectors of the sample covariance matrix SN = 1
pΣ

1
2
NXNX

∗
NΣ

1
2
N . Without loss

of generality, we assume that the eigenvalues are sorted in decreasing order: λN
1 ≥ λN

2 ≥ · · · ≥
λN

N . Superscripts will be omitted when no confusion is possible. We also denote by (v1, . . . , vN )

a system of orthonormal eigenvectors of ΣN .
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First the asymptotic behavior of the eigenvalues is now quite well understood. The “global

behavior” of the spectrum of SN for instance is characterized through the e.d.f., defined as:

FN (λ) = N−1
∑N

i=1 1[λi,+∞)(λ), ∀λ ∈ R. The e.d.f. is usually described through its Stieltjes

transform. We recall that the Stieltjes transform of a nondecreasing function G is defined by

mG(z) =
∫ +∞
−∞ (λ− z)−1dG(λ) for all z in C

+, where C
+ = {z ∈ C, Im(z) > 0}. The use of the

Stieltjes transform is motivated by the following inversion formula: given any nondecreasing

function G, one has that G(b)−G(a) = limη→0+ π−1
∫ b
a Im [mG(ξ + iη)] dξ, which holds if G is

continuous at a and b.

The first fundamental result concerning the asymptotic global behavior of the spectrum

has been obtained by Marčenko and Pastur in [21]. Their result has been later precised e.g. in

[4, 14, 16, 28, 29]. In the next Theorem, we recall their result (which was actually proved in

a more general setting than that exposed here) and quote the most recent version as given in

[27].

Let mFN
(z) = 1

N

∑N
i=1

1
λi−z = 1

N Tr
[
(SN − zI)−1

]
, where I denotes the N × N identity

matrix.

Theorem 1.1 ([21]). Under Assumptions (H1) to (H4), one has that for all z ∈ C
+,

limN→∞mFN
(z) = mF (z) a.s. where

∀z ∈ C
+, mF (z) =

∫ +∞

−∞

{
τ

[
1 − γ−1 − γ−1z mF (z)

]
− z

}−1
dH(τ). (1.1)

Furthermore, the e.d.f. of the eigenvalues of the sample covariance matrix given by FN (λ) =

N−1
∑N

i=1 1[λi,+∞)(λ) converges a.s. to the nonrandom limit F (λ) at all points of continuity

of F .

In addition, [11] show that the following limit exists :

∀λ ∈ R − {0}, lim
z∈C+→λ

mF (z) ≡ m̆F (λ). (1.2)

They also prove that F has a continuous derivative which is given by F ′ = π−1Im[m̆F ] on

(0,+∞). More precisely, when γ > 1, limz∈C+→λmF (z) ≡ m̆F (λ) exists for all λ ∈ R, F has

a continuous derivative F ′ on all of R, and F (λ) is identically equal to zero in a neighborhood

of λ = 0. When γ < 1, the proportion of sample eigenvalues equal to zero is asymptotically

1 − γ. In this case, it is convenient to introduce the e.d.f. F =
(
1 − γ−1

)
1[0,+∞) + γ−1F ,
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which is the limit of e.d.f. of the eigenvalues of the p-dimensional matrix p−1X∗
NΣNXN . Then

limz∈C+→λmF (z) ≡ m̆F (λ) exists for all λ ∈ R, F has a continuous derivative F ′ on all of R,

and F (λ) is identically equal to zero in a neighborhood of λ = 0. When γ is exactly equal to

one, further complications arise because the density of sample eigenvalues can be unbounded

in a neighborhood of zero; for this reason we sometimes have to rule out the possibility that

γ = 1.

Further studies have complemented the a.s. convergence established by the Marčenko-Pastur

theorem (see e.g. [1, 5, 6, 7, 9, 15, 22] and [2] for more references). The Marčenko-Pastur

equation has also generated a considerable amount of interest in statistics [13, 19], finance

[18, 17], signal processing [12], and other disciplines. We refer the interested reader to the

recent book by Bai and Silverstein [8] for a throrough survey of this fast-growing field of

research.

As we can gather from this brief review of the literature, the Marčenko-Pastur equation

reveals much of the behavior of the eigenvalues of sample covariance matrices under large-

dimensional asymptotics. It is also of utmost interest to describe the asymptotic behavior of

the eigenvectors. Such an issue is fundamental to statistics (for instance both eigenvalues and

eigenvectors are of interest in Principal Components Analysis), communication theory, wireless

communication, finance. The reader is referred to [3], Section 1 for more detail and to [10] for

a statistical approach to the problem and a detailed exposition of statistical applications.

Actually much less is known about eigenvectors of sample covariance matrices. In the special

case where Σ = I and the Xij are i.i.d. standard (real or complex) Gaussian random variables,

it is well-known that the matrix of sample eigenvectors is Haar distributed (on the orthogonal or

unitary group). To our knowledge, these are the only ensembles for which the distribution of the

eigenvectors is explicitly known. It has been conjectured that for a wide class of non Gaussian

ensembles, the matrix of sample eigenvectors should be “asymptotically Haar distributed”,

provided Σ = I. Note that the notion “asymptotically Haar distributed” needs to be defined.

This question has been investigated by [24], [25], [26] followed by [3]. Therein a random matrix

U is said to be asymptotically Haar distributed if Ux is asymptotically uniformly distributed

on the unit sphere for any non random unit vector x. [26] and [3] are then able to prove the

conjecture under various sets of assumptions on the Xij ’s.

In the case where Σ 6= I, much less is known (see [3]). One expects that the distribution of
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the eigenvectors is far from being rotation-invariant. This is precisely the aspect with which

this paper is concerned.

In this paper, we present another approach to study eigenvectors of sample covariance ma-

trices. Roughly speaking, we study “functionals” of the type

∀z ∈ C
+, Θg

N (z) =
1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj |2 × g(τj) (1.3)

=
1

N
Tr

[
(SN − zI)−1g(ΣN )

]
,

where g is any real-valued univariate function satisfying suitable regularity conditions. By

convention, g(ΣN) is the matrix with the same eigenvectors as ΣN and with eigenvalues

g(τ1), . . . , g(τN ). These functionals are generalizations of the Stieltjes transform used in the

Marčenko-Pastur equation. Indeed, one can rewrite the Stieltjes transform of the e.d.f. of

sample eigenvalues as:

∀z ∈ C
+, mFN

(z) =
1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj |2 × 1. (1.4)

The constant 1 that appears at the end of Equation (1.4) can be interpreted as a weighting

scheme placed on the population eigenvectors: specifically, it represents a flat weighting scheme.

The generalization we here introduce puts the spotlight on how the sample covariance matrix

relates to the population covariance matrix, or even any function of the population covariance

matrix.

Our main result is given in the following Theorem.

Theorem 1.2. Assume that conditions (H1) − (H4) are satisfied. Let g be a (real-valued)

bounded function defined on [h1, h2] with finitely many points of discontinuity. Then there exists

a nonrandom function Θg defined over C
+ such that Θg

N (z) = N−1Tr
[
(SN − zI)−1g(ΣN )

]

converges a.s. to Θg(z) for all z ∈ C
+. Furthermore, Θg is given by:

∀z ∈ C
+, Θg(z) =

∫ +∞

−∞

{
τ

[
1 − γ−1 − γ−1zmF (z)

]
− z

}−1
g(τ)dH(τ). (1.5)

One can first observe that as we move from a flat weighting scheme of g ≡ 1 to any

arbitrary weighting scheme g(τj), the integration kernel
{
τ

[
1 − 1

γ − z mF (z)
γ

]
− z

}−1
remains
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unchanged. Therefore, our Equation (1.5) generalizes Marčenko and Pastur’s foundational

result. Actually the proof of Theorem 1.2 follows from some of the arguments used in [27] to

derive the Marchenko-Pastur equation. This proof is postponed until Section 2.

The generalization of the Marčenko-Pastur equation we propose allows to consider a few

unsolved problems regarding the overall relationship between sample and population covariance

matrices. Let us consider two of these problems, which are investigated in more detail in the

two next subsections.

The first of these questions is: how do the eigenvectors of the sample covariance matrix deviate

from those of the population covariance matrix? By injecting functions g of the form 1(−∞,τ)

into Equation (1.5), we quantify the asymptotic relationship between sample and population

eigenvectors. This is developed in more detail in Section 1.2.

Another question is: how does the sample covariance matrix deviate from the population

covariance matrix as a whole, and how can we modify it to bring it closer to the population

covariance matrix? This is an important question in Statistics, where a covariance matrix

estimator that improves upon the sample covariance matrix is sought. By injecting the function

g(τ) = τ into Equation (1.5), we find the optimal asymptotic bias correction for the eigenvalues

of the sample covariance matrix in Section 1.3. We also perform the same calculation for the

inverse covariance matrix (an object of great interest in Econometrics and Finance), this time

by taking g(τ) = 1/τ .

This list is not intended to be exhaustive. Other applications may hopefully be extracted from

our generalized Marčenko-Pastur equation.

1.2 Sample vs. Population Eigenvectors

As will be made more apparent in Equation (1.8) below, it is possible to quantify the asymptotic

behavior of sample eigenvectors in the general case by selecting a function g of the form 1(−∞,τ)

in Equation (1.5). Let us briefly explain why.

First of all, note that each sample eigenvector ui lies in a space whose dimension is growing

towards infinity. Therefore, the only way to know “where” it lies is to project it onto a known

orthonormal basis that will serve as a reference grid. Given the nature of the problem, the most

meaningful choice for this reference grid is the orthonormal basis formed by the population

eigenvectors (v1, . . . , vN ). Thus we are faced with the task of characterizing the asymptotic
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behavior of u∗i vj for all i, j = 1, . . . , N , i.e. the projection of the sample eigenvectors onto the

population eigenvectors. Yet as every eigenvector is identified up to multiplication by a scalar

of modulus one, the argument (angle) of u∗i vj is devoid of mathematical relevance. Therefore,

we can focus instead on its square modulus |u∗i vj |2 without loss of information.

Another issue that arises is that of scaling. Indeed as

1

N2

N∑

i=1

N∑

j=1

∣∣u∗i vj

∣∣2 =
1

N2

N∑

i=1

u∗i




N∑

j=1

vjv
∗
j


ui =

1

N2

N∑

i=1

u∗iui =
1

N
,

we study N |u∗i vj |2 instead, so that its limit does not vanish under large-N asymptotics.

The indexing of the eigenvectors also demands special attention as the dimension goes to infin-

ity. We choose to use an indexation system where “eigenvalues serve as labels for eigenvectors”,

that is ui is the eigenvector associated to the ith largest eigenvalue λi.

All these considerations lead us to introduce the following key object:

∀λ, τ ∈ R, ΦN (λ, τ) =
1

N

N∑

i=1

N∑

j=1

|u∗i vj |2 1[λi,+∞)(λ) × 1[τj ,+∞)(τ). (1.6)

This bivariate function is right continuous with left-hand limits and nondecreasing in each of

its arguments. It also verifies limλ→−∞
τ→−∞

ΦN (λ, τ) = 0 and limλ→+∞
τ→+∞

ΦN (λ, τ) = 1. Therefore, it

satisfies the properties of a bivariate cumulative distribution function.

Remark 1. Our function ΦN can be compared with the object introduced in [3]: ∀λ ∈ R,

FSN

1 (λ) =
∑N

i=1 |u∗ixN |2 1[λi,+∞)(λ), where (xN )N=1,2,... is a sequence of nonrandom unit

vectors satisfying the non-trivial condition x∗N (ΣN − zI)−1 xN → mH(z). This condition is

specified so that projecting the sample eigenvectors onto xN effectively wipes out any signa-

ture of non-rotation-invariant behavior. The main difference is that ΦN projects the sample

eigenvectors onto the population eigenvectors instead.

From ΦN we can extract precise information about the sample eigenvectors. The average of

the quantities of interest N |u∗i vj |2 over the sample (resp. population) eigenvectors associated

with the sample (resp. population) eigenvalues lying in the interval [λ, λ] (resp. [τ , τ ]) is equal
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to:

∑N
i=1

∑N
j=1N |u∗i vj |2 1[λ,λ](λi) × 1[τ ,τ ](τj)

∑N
i=1

∑N
j=1 1[λ,λ](λi) × 1[τ,τ ](τj)

=
ΦN (λ, τ) − ΦN (λ, τ) − ΦN (λ, τ) + ΦN (λ, τ)

[FN (λ) − FN (λ)] × [HN (τ) −HN (τ)]
, (1.7)

whenever the denominator is strictly positive. Since λ and λ (resp. τ and τ) can be chosen

arbitrarily close to each other (as long as the average in Equation (1.7) exists), our goal of

characterizing the behavior of sample eigenvectors would be achieved in principle by deter-

mining the asymptotic behavior of ΦN . This can be deduced from Theorem 1.2 thanks to the

inversion formula for the Stieltjes transform: for all (λ, τ) ∈ R
2 such that ΦN is continuous at

(λ, τ)

ΦN (λ, τ) = lim
η→0+

1

π

∫ λ

−∞
Im

[
Θg

N (ξ + iη)
]
dξ, (1.8)

which holds in the special case where g = 1(−∞,τ). We are now ready to state our second main

result.

Theorem 1.3. Assume that conditions (H1) − (H4) hold true and let ΦN (λ, τ) be defined by

(1.6). Then there exists a nonrandom bivariate function Φ such that ΦN (λ, τ)
a.s.−→ Φ(λ, τ) at

all points of continuity of Φ. Furthermore, when γ 6= 1, the function Φ can be expressed as:

∀(λ, τ) ∈ R
2, Φ(λ, τ) =

∫ λ
−∞

∫ τ
−∞ ϕ(l, t) dH(t) dF (l), where

∀(l, t) ∈ R
2 ϕ(l, t) =





γ−1lt

(at− l)2 + b2t2
if l > 0

1

(1 − γ)[1 + m̆F (0) t]
if l = 0 and γ < 1

0 otherwise,

(1.9)

and a (resp. b) is the real (resp. imaginary) part of 1 − γ−1 − γ−1l m̆F (l).

Equation (1.9) quantifies how the eigenvectors of the sample covariance matrix deviate from

those of the population covariance matrix under large-dimensional asymptotics. The result is

explicit as a function of mF .

To illustrate Theorem 1.3, we can pick any eigenvector of our choosing, for example the

one that corresponds to the first (i.e. largest) eigenvalue, and plot how it projects onto the

population eigenvectors (indexed by their corresponding eigenvalues). The resulting graph is
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Figure 1: Projection of first sample eigenvector onto population eigenvectors (indexed by their

associated eigenvalues). We have taken H ′ = 1[5,6].

shown in Figure 1. This is a plot of ϕ(l, t) as a function of t, for fixed l equal to the supremum of

Supp(F ). It is the asymptotic equivalent to plotting N |u∗1vj |2 as a function of τj . It looks like a

density because, by construction, it must integrate to one. As soon as the sample size is of the

order of 10 times the number of variables, we can see that the first sample eigenvector starts

deviating quite strongly from the first population eigenvectors. This should have precautionary

implications for Principal Component Analysis (PCA), where the number of variables is often

so large that it is difficult to make the sample size more than ten times bigger.

Obviously, Equation (1.9) would enable us to draw a similar graph for any sample eigen-

vector (not just the first one), and for any γ and H verifying the assumptions of Theorem 1.3.

Preliminary investigations reveal some unexpected patterns. For example: one might have

thought that the sample eigenvector associated with the median sample eigenvalue would be

closest to the population eigenvector associated with the median population eigenvalue; but in

general this is not true.
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1.3 Asymptotically Optimal Bias Correction for the Sample Eigenvalues

We now bring the two preceding results together to quantify the relationship between the

sample covariance matrix and the population covariance matrix as a whole. As will be made

clear in Equation (1.12) below, this is achieved by selecting the function g(τ) = τ in Equation

(1.5). The objective is to see how the sample covariance matrix deviates from the population

covariance matrix, and how we can modify it to bring it closer to the population covariance

matrix. The main problem with the sample covariance matrix is that its eigenvalues are too

dispersed: the smallest ones are biased downwards, and the largest ones upwards. This is

most easily visualized when the population covariance matrix is the identity, in which case the

limiting spectral e.d.f. of sample eigenvalues F is known in closed form (see Figure 2). We

0 0.5 1 1.5 2
0

2

4

6

8

10

12

x

F
’(
x
)

 

 

γ=1000

γ=100

γ=10

Figure 2: Limiting density of sample eigenvalues, in the particular case where all the eigenvalues

of the population covariance matrix are equal to one. The graph shows excess dispersion of

the sample eigenvalues. The formula for this plot comes from solving the Marčenko-Pastur

equation for H = 1[1,+∞).

can see that the smallest and the largest sample eigenvalues are biased away from one, and
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that the bias decreases in γ. Therefore, a key concern in multivariate statistics is to find the

asymptotically optimal bias correction for the eigenvalues of the sample covariance matrix.

As this correction will tend to reduce the dispersion of the eigenvalues, it is often called a

shrinkage formula.

Ledoit and Wolf [20] made some progress along this direction by finding the optimal linear

shrinkage formula for the sample eigenvalues (projecting ΣN on the two-dimensional subspace

spanned by SN and I). However, shrinking the eigenvalues is a highly nonlinear problem (as

Figure 3 below will illustrate). Therefore, there is strong reason to believe that finding the

optimal nonlinear shrinkage formula for the sample eigenvalues would lead to a covariance

matrix estimator that further improves upon the Ledoit-Wolf estimator. Theorem 1.2 paves

the way for such a development.

To see how, let us think of the problem of estimating ΣN in general terms. In order to con-

struct an estimator of ΣN , we must in turn consider what the eigenvectors and the eigenvalues

of this estimator should be. Let us consider the eigenvectors first. In the general case where

we have no prior information about the orientation of the population eigenvectors, it is rea-

sonable to require that the estimation procedure be invariant with respect to rotation by any

p-dimensional orthogonal matrix W . If we rotate the variables by W , then we would ask our

estimator to also rotate by the same orthogonal matrix W . The class of orthogonally invariant

estimators of the covariance matrix is constituted of all the estimators that have the same

eigenvectors as the sample covariance matrix (see [23], Lemma 5.3). Every rotation-invariant

estimator of ΣN is thus of the form:

UNDNU
∗
N , where DN = Diag(d1, . . . , dN) is diagonal,

and where UN is the matrix whose ith column is the sample eigenvector ui. This is the class

that we consider.

Our objective is to find the matrix in this class that is closest to the population covariance

matrix. In order to measure distance, we choose the Frobenius norm, defined as: ‖A‖F =
√

Tr (AA∗) for any matrix A. Thus we end up with the following optimization problem:

minDN diagonal ‖UNDNU
∗
N − ΣN‖F . Elementary matrix algebra shows that its solution is:

D̃N = Diag(d̃1, . . . , d̃N ) where ∀i = 1, . . . , N d̃i = u∗i ΣN ui.

The interpretation of d̃i is that it captures how the ith sample eigenvector ui relates to the
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population covariance matrix ΣN as a whole.

While UND̃NU
∗
N does not constitute a bona fide estimator (because it depends on the unob-

servable ΣN ), new estimators that seek to improve upon the existing ones will need to get as

close to UND̃NU
∗
N as possible. This is exactly the path that led Ledoit and Wolf [20] to their

improved covariance matrix estimator. Therefore, it is important, in the interest of developing

a new and improved estimator, to characterize the asymptotic behavior of d̃i (i = 1, . . . , N).

The key object that will enable us to achieve this goal is the nondecreasing function defined

by:

∀x ∈ R, ∆N (x) =
1

N

N∑

i=1

d̃i 1[λi,+∞)(x) =
1

N

N∑

i=1

u∗i ΣNui × 1[λi,+∞)(x). (1.10)

When all the sample eigenvalues are distinct, it is straightforward to recover the d̃i’s from ∆N :

∀i = 1, . . . , N d̃i = lim
ε→0+

∆N (λi + ε) − ∆N (λi − ε)

FN (λi + ε) − FN (λi − ε)
. (1.11)

The asymptotic behavior of ∆N can be deduced from Theorem 1.2 in the special case where

g(τ) = τ : for all x ∈ R such that ∆N continuous at x

∆N (x) = lim
η→0+

1

π

∫ x

−∞
Im

[
Θg

N (ξ + iη)
]
dξ, g(x) ≡ x. (1.12)

We are now ready to state our third main result.

Theorem 1.4. Assume that conditions (H1) − (H4) hold true and let ∆N be defined as in

(1.10). There exists a nonrandom function ∆ defined over R such that ∆N (x) converges a.s. to

∆(x) for all x ∈ R− {0}. If in addition γ 6= 1, then ∆ can be expressed as: ∀x ∈ R, ∆(x) =
∫ x
−∞ δ(λ) dF (λ), where

∀λ ∈ R, δ(λ) =





λ

|1 − γ−1 − γ−1λ m̆F (λ)|2
if λ > 0

γ

(1 − γ) m̆F (0)
if λ = 0 and γ < 1

0 otherwise.

(1.13)

By Equation (1.11) the asymptotic quantity that corresponds to d̃i = u∗i ΣNui is δ(λ), pro-

vided that λ corresponds to λi. Therefore, the way to get closest to the population covariance

matrix (according to the Frobenius norm) would be to divide each sample eigenvalue λi by the

correction factor |1−γ−1−γ−1λ m̆F (λi)|2. This is what we call the optimal nonlinear shrinkage
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Figure 3: Comparison of the Optimal Linear vs. Nonlinear Bias Correction Formulæ. In this

example, the distribution of population eigenvalues H places 20% mass at 1, 40% mass at 3

and 40% mass at 10. The solid line plots δ(λ) as a function of λ.

formula or asymptotically optimal bias correction. Figure 3 shows how much it differs from

Ledoit and Wolf’s [20] optimal linear shrinkage formula. In addition, when γ < 1, the sample

eigenvalues equal to zero need to be replaced by δ(0) = γ/[(1 − γ) m̆F (0)].

In a statistical context of estimation, m̆F (λi) and m̆F (0) are not known, so they need to be

replaced by m̆F̂ (λi) and m̆F̂ (0) respectively, where F̂ is some estimator of the limiting p.d.f. of

sample eigenvalues. Research is currently underway to prove that a covariance matrix estimator

constructed in this manner has desirable properties under large-dimensional asymptotics.

Monte-Carlo simulations indicate that applying this bias correction is highly beneficial,

even in small samples. We ran 10,000 simulations based on the distribution of population

eigenvalues H that places 20% mass at 1, 40% mass at 3 and 40% mass at 10. We kept γ

constant at 2 while increasing the number of variables from 5 to 100. For each set of simulations,

we computed the Percentage Relative Improvement in Average Loss (PRIAL). The PRIAL of
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an estimator M of ΣN is defined as

PRIAL(M) = 100 ×


1 −

E

∥∥∥M − UND̃NU
∗
N

∥∥∥
2

F

E

∥∥∥SN − UND̃NU
∗
N

∥∥∥
2

F


 .

By construction, the PRIAL of the sample covariance matrix SN (resp. of UND̃NU
∗
N ) is 0%

(resp. 100%), meaning no improvement (resp. meaning maximum attainable improvement).

For each of the 10,000 Monte-Carlo simulations, we consider S̃N , which is the matrix obtained

from the sample covariance matrix by keeping its eigenvectors and dividing its ith eigenvalue

by the correction factor |1−γ−1 −γ−1λi m̆F (λi)|2. The expected loss E

∥∥∥S̃N − UN D̃NU
∗
N

∥∥∥
2

F
is

estimated by computing its average across the 10,000 Monte-Carlo simulations. Figure 4 plots

the PRIAL obtained in this way, that is by applying the optimal nonlinear shrinkage formula

to the sample eigenvalues. We can see that, even with a modest sample size like p = 40, we

already get 95% of the maximum possible improvement.

A similar formula can be obtained for the purpose of estimating the inverse of the popu-

lation covariance matrix. To this aim, we set g(τ) = 1/τ in Equation (1.5) and define

ΨN (x) := N−1
N∑

i=1

u∗i Σ
−1
N ui × 1[λi,+∞)(x), ∀x ∈ R.

Theorem 1.5. Assume that conditions (H1) − (H4) are satisfied. There exists a nonrandom

function Ψ defined over R, such that ΨN (x) converges a.s. to Ψ(x) for all x ∈ R − {0}. If in

addition γ 6= 1, then Ψ can be expressed as: ∀x ∈ R, Ψ(x) =
∫ x
−∞ ψ(λ) dF (λ), where

∀λ ∈ R ψ(λ) =





1 − γ−1 − 2γ−1λRe [m̆F (λ)]

λ
if λ > 0

1

1 − γ
m̆H(0) − m̆F (0) if λ = 0 and γ < 1

0 otherwise.

(1.14)

Therefore, the way to get closest to the inverse of the population covariance matrix (ac-

cording to the Frobenius norm) would be to multiply the inverse of each sample eigenvalue λ−1
i

by the correction factor 1 − γ−1 − 2γ−1λi Re[m̆F (λi)]. This represents the optimal nonlinear

shrinkage formula (or asymptotically optimal bias correction) for the purpose of estimating the

inverse covariance matrix. Again, in a statistical context of estimation, the unknown m̆F (λi)

needs to be replaced by m̆F̂ (λi), where F̂ is some estimator of the limiting p.d.f. of sample

eigenvalues. This question is investigated in some work under progress.
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Figure 4: Percentage Relative Improvement in Average Loss (PRIAL) from applying the op-

timal nonlinear shrinkage formula to the sample eigenvalues. The solid line shows the PRIAL

obtained by dividing the ith sample eigenvalue by the correction factor |1−γ−1−γ−1λi m̆F (λi)|2,
as a function of sample size. The dotted line shows the PRIAL of the Ledoit-Wolf [20] linear

shrinkage estimator. For each sample size we ran 10,000 Monte-Carlo simulations. Like in

Figure 3, we used γ = 2 and the distribution of population eigenvalues H placing 20% mass

at 1, 40% mass at 3 and 40% mass at 10.

The rest of the paper is organized as follows. Section 2 contains the proof of Theorem 1.2.

Section 3 contains the proof of Theorem 1.3. Section 4 is devoted to the proofs of Theorems

1.4 and 1.5.

2 Proof of Theorem 1.2

First we need to adapt a Lemma from Bai and Silverstein [4].

Lemma 2.1. Let Y = (y1, . . . , yN ) be a random vector with i.i.d. entries satisfying:

Ey1 = 0, E|y1|2 = 1, E|y1|12 ≤ B,
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where the constant B does not depend on N . Let also A be a given N ×N matrix. Then there

exists a constant K > 0 independent of N , A and Y such that:

E |Y AY ∗ − Tr(A)|6 ≤ K‖A‖6N3.

Proof of Lemma 2.1 The proof of Lemma 2.1 directly follows from that of Lemma 3.1

in Silverstein and Bai (1995). Therein the assumption that E|y1|12 ≤ B is replaced with the

assumption that |y1| ≤ lnN. One can easily check that all their arguments carry through if

one assumes that the twelfth moment of y1 is uniformly bounded. �

Next, we need to introduce some notation. We set RN (z) = (SN−zI)−1 and define Θ
(k)
N (z) =

N−1Tr[RN (z)Σk] for all z ∈ C
+ and integer k. Thus, Θ

(k)
N = Θg

N if we take g(τ) = τk, ∀τ ∈ R.

In particular, Θ
(0)
N = mFN

. To avoid confusion, the dependency of most of the variables on N

will occasionally be dropped from the notation. All convergence statements will be as N → ∞.

Conditions (H1) − (H4) are assumed to hold throughout.

Lemma 2.2. One has that ∀z ∈ C
+, Θ

(1)
N (z)

a.s.−→ Θ(1)(z) where:

Θ(1)(z) =
γ2

γ − 1 − z mF (z)
− γ.

Proof of Lemma 2.2 In the first part of the proof, we show that

1 + zmFN
(z) =

p

N
− 1

N

p∑

k=1

1

1 + (N/p)Θ
(1)
N (z)

+ o(1).

Using the a.s. convergence of the Stieltjes transform mFN
(z), it is then easy to deduce the

equation satisfied by Θ(1) in Lemma 2.2. Our proof closely follows some of the ideas of [27]

and [4]. Therein the convergence of the Stieltjes transform mFN
(z) is investigated.

Let us define Ck = p−1/2
√

ΣXk, where Xk is the kth column of X. Then SN =
∑p

k=1CkC
∗
k .

Using the identity SN − zI + zI =
∑p

k=1CkC
∗
k , one deduces that

1

N
Tr(I + zRN (z)) =

1

N

p∑

k=1

C∗
kRN (z)Ck. (2.1)

Define now for any integer 1 ≤ k ≤ p

R
(k)
N (z) := (SN − CkC

∗
k − zI)−1.

17



By the resolvent identity RN (z) −R
(k)
N (z) = −RN (z)CkC

∗
kR

(k)
N (z), we deduce that

C∗
kRN (z)Ck − C∗

kR
(k)
N (z)Ck = −C∗

kRN (z)CkC
∗
kR

(k)
N (z)Ck,

which finally gives that

C∗
kRN (z)Ck =

1

1 + C∗
kR

(k)
N (z)Ck

C∗
kR

(k)
N (z)Ck.

Plugging the latter formula into (2.1), one can write that

1 + zmFN
(z) =

p

N
− 1

N

p∑

k=1

1

1 + C∗
kR

(k)
N (z)Ck

. (2.2)

We will now use the fact that R
(k)
N and Ck are independent random matrices to estimate the

asymptotic behavior of the last sum in (2.2). Using Lemma 2.1, we deduce that

max
k∈{1,...,p}

∣∣∣C∗
kR

(k)
N Ck − 1

p
Tr

(
R

(k)
N Σ

) ∣∣∣ a.s.→ 0, (2.3)

as N → ∞. Furthermore, using Lemma 2.6 in Silverstein and Bai (1995), one also has that

1

p

∣∣∣Tr
[(
RN −R

(k)
N

)
Σ

] ∣∣∣ ≤ ||Σ||
py

. (2.4)

Thus using (2.4), (2.3) and (2.2), one can write that

1 + zmFN
(z) =

p

N
− 1

N

p∑

k=1

1

1 + (N/p)Θ
(1)
N (z)

+ δN , (2.5)

where the error term δN is given by δN = δ1N + δ2N with

δ1N =
1

N

p∑

k=1

1
pTr

(
(RN −R

(k)
N )Σ

)

(1 + 1
pTr(RNΣ))(1 + 1

pTr(R
(k)
N Σ))

and

δ2N = − 1

N

p∑

k=1

C∗
kR

(k)
N Ck − Tr(R

(k)
N Σ)

(1 + 1
pTr(R

(k)
N Σ))(1 + 1

pC
∗
kR

(k)
N Ck)

.

We will now use (2.4) and (2.3) to show that δN a.s. converges to 0 as N → ∞. It is known

that FN converges a.s. to the distribution F given by the Marčenko-Pastur equation (and has

no subsequence vaguely convergent to 0). It is proven in Silverstein and Bai (1995) that under
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these assumptions, there exists m > 0 such that infN FN ([−m,m]) > 0. In particular, there

exists δ > 0 such that

inf
N

Im

[∫
1

λ− z
dFN (λ)

]
≥

∫
y

2λ2 + 2x2 + y2
dFN (λ) ≥ δ.

From this, we deduce that
∣∣∣∣1 +

1

p
Tr(ΣRN )

∣∣∣∣ ≥ Im

[
1

p
Tr(ΣRN )

]
≥ h1

γ
δ.

Using (2.4) we also get that

∣∣∣∣1 +
1

p
Tr

(
ΣR

(k)
N

)∣∣∣∣ ≥ Im

[
1

p
Tr

(
ΣR

(k)
N

)]
≥ h1

2γ
δ.

We first consider δ1N . Thus one has that

∣∣δ1N
∣∣ ≤ 2||Σ||γ2

Nyh2
1δ

2
= O(1/N). (2.6)

We now turn to δ2N . Using the a.s. convergence (2.3), it is not hard to deduce that

δ2N → 0, a.s.

This completes the proof of Lemma 2.2. �

Lemma 2.3. For every k = 1, 2, . . . the limit limN→∞ Θ
(k)
N (z) := Θ(k)(z) exists and satisfies

the recursion equation

∀z ∈ C
+, Θ(k+1)(z) =

[
zΘ(k)(z) +

∫ +∞

−∞
τkdH(τ)

]
×

[
1 +

1

γ
Θ(1)(z)

]
. (2.7)

Proof of Lemma 2.3 The proof is inductive, so we assume that formula (2.7) holds for any

integer smaller than or equal to q for some given integer q. We start from the formula

Tr (Σq + zΣqRN (z)) = Tr (ΣqRN (z)SN ) =

p∑

k=1

C∗
kΣqRN (z)Ck.

Using once more the resolvent identity, one gets that

C∗
kΣqRN (z)Ck =

C∗
kΣqR

(k)
N (z)Ck

1 + C∗
kR

(k)
N (z)Ck

,
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which yields that

1

N
Tr (Σq + zΣqRN (z)) =

p∑

k=1

C∗
kΣqR

(k)
N (z)Ck

1 + C∗
kR

(k)
N (z)Ck

. (2.8)

It is now an easy consequence of the arguments developed in the case where q = 0 to check

that

max
k∈{1,...,p}

∣∣∣C∗
kR

(k)
N (z)Ck − Tr (ΣRN (z))

∣∣∣ +
∣∣∣C∗

kΣqR
(k)
N (z)Ck − Tr

(
Σq+1RN (z)

) ∣∣∣

converges a.s. to zero. Using the recursion assumption that limN→∞ Θ
(k)
N (z) exists, ∀k ≤ q,

one can deduce that limN→∞ Θ
(q+1)
N (z) exists and that the limit Θ(q+1)(z) satisfies

[
zΘ(q)(z) +

∫ +∞

−∞
τ qdH(τ)

]
×

[
1 +

1

γ
Θ(1)(z)

]
= Θ(q+1)(z).

This finishes the proof of Lemma 2.3. �

Lemma 2.4. Theorem 1.2 holds when the function g is a polynomial.

Proof of Lemma 2.4 Given the linearity of the problem, it is sufficient to prove that

Theorem 1.2 holds when the function g is of the form: ∀τ ∈ R, g(τ) = τk, for any nonnegative

integer k. In the case where k = 0, this is a direct consequence of Theorem 1.1 in [27].

The existence of a function Θ(k) defined on C
+ such that Θ

(k)
N (z)

a.s.−→ Θ(k)(z) for all z ∈ C
+

is established by Lemma 2.2 for k = 1 and by Lemma 2.3 for k = 2, 3, . . . Therefore, all that

remains to be shown is that Equation (1.5) holds for k = 1, 2, . . .

We will first show it for k = 1. From the original Marčenko-Pastur equation we know that:

1 + zmF (z) =

∫ +∞

−∞

τ
[
1 − γ−1 − γ−1z mF (z)

]

τ [1 − γ−1 − γ−1z mF (z)] − z
dH(τ). (2.9)

From Lemma 2.2 we know that:

Θ(1)(z) =
γ2

γ − 1 − z mF (z)
− γ =

1 + z mF (z)

1 − γ−1 − γ−1z mF (z)
,

yielding that

1 + zmF (z) =
Θ(1)(z)

1 + γ−1Θ(1)(z)
. (2.10)

Combining Equations (2.9) and (2.10) yields:

∫ +∞

−∞

τ
[
1 − γ−1 − γ−1z mF (z)

]

τ [1 − γ−1 − γ−1z mF (z)] − z
dH(τ) =

Θ(1)(z)

1 + γ−1Θ(1)(z)
. (2.11)
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From Lemma 2.2, we also know that:

1 + γ−1Θ(1)(z) =
1

1 − γ−1 − γ−1z mF (z)
. (2.12)

Putting together Equations (2.11) and (2.12) yields the simplification:

Θ(1)(z) =

∫ +∞

−∞

1

τ [1 − γ−1 − γ−1z mF (z)] − z
τ dH(τ),

which establishes that Equation (1.5) holds when g(τ) = τ, ∀τ ∈ R.

We now show by induction that Equation (1.5) holds when g(τ) = τk for k = 2, 3, . . .

Assume that we have proven it for k − 1. Thus the recursion hypothesis is that:

Θ(k−1)(z) =

∫ +∞

−∞

1

τ [1 − γ−1 − γ−1z mF (z)] − z
τk−1 dH(τ). (2.13)

From Lemma 2.3 we know that:

Θ(k)(z) =

[
zΘ(k−1)(z) +

∫ +∞

−∞
τk−1dH(τ)

]
×

[
1 +

1

γ
Θ(1)(z)

]
. (2.14)

Combining Equations (2.13) and (2.14) yields:

Θ(k)(z)

1 + 1
γ Θ(1)(z)

= zΘ(k−1)(z) +

∫ +∞

−∞
τk−1dH(τ)

=

∫ +∞

−∞

{
z

τ [1 − γ−1 − γ−1z mF (z)] − z
+ 1

}
τk−1 dH(τ)

=

∫ +∞

−∞

1 − γ−1 − γ−1z mF (z)

τ [1 − γ−1 − γ−1z mF (z)] − z
τk dH(τ). (2.15)

Putting together Equations (2.12) and (2.15) yields the simplification:

Θ(k)(z) =

∫ +∞

−∞

1

τ [1 − γ−1 − γ−1z mF (z)] − z
τk dH(τ),

which proves that the desired assertion holds for k. Therefore, by induction, it holds for all

k = 1, 2, 3, . . . This completes the proof of Lemma 2.4. �

Lemma 2.5. Theorem 1.2 holds for any function g that is continuous on [h1, h2].

Proof of Lemma 2.5 We shall deduce this from Lemma 2.4. Let g be any function that is

continuous on [h1, h2]. By the Weierstrass approximation theorem, there exists a sequence of

polynomials that converges to g uniformly on [h1, h2]. By Lemma 2.4, Theorem 1.2 holds for

every polynomial in the sequence. Therefore it also holds for the limit g. �
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We are now ready to prove Theorem 1.2. We shall prove it by induction on the number k of

points of discontinuity of the function g on the interval [h1, h2]. The fact that it holds for k = 0

has been established by Lemma 2.5. Let us assume that it holds for some k. Then consider any

bounded function g which has k + 1 points of discontinuity on [h1, h2]. Let ν be one of these

k + 1 points of discontinuity. Construct the function: ∀x ∈ [h1, h2], ρ(x) = g(x) × (x − ν).

The function ρ has k points of discontinuity on [h1, h2]: all the ones that g has, except ν.

Therefore, by the recursion hypothesis, Θρ
N (z) = N−1Tr

[
(SN − zI)−1ρ(ΣN )

]
converges a.s. to

Θρ(z) =

∫ +∞

−∞

1

τ [1 − γ−1 − γ−1z mF (z)] − z
ρ(τ) dH(τ) (2.16)

for all z ∈ C
+. It is easy to adapt the arguments developed in the proof of Lemma 2.3 to show

that limN→∞ Θg
N (z) exists (as g is bounded) and is equal to:

Θg(z) =
Θρ(z) −

[
1 + γ−1Θ(1)(z)

] ∫ +∞
−∞ g(τ)dH(τ)

z
[
1 + γ−1Θ(1)(z)

]
− ν

(2.17)

for all z ∈ C
+. Plugging Equation (2.16) into Equation (2.17) yields:

Θg(z) =

∫ +∞
−∞

{
τ−ν

τ [1−γ−1−γ−1z mF (z)]−z
−

[
1 + γ−1Θ(1)(z)

]}
g(τ) dH(τ)

z
[
1 + γ−1Θ(1)(z)

]
− ν

.

Using Equation (2.12) we get:

Θg(z) =

∫ +∞
−∞

{
τ−ν

τ [1−γ−1−γ−1z mF (z)]−z
− 1

1−γ−1−γ−1z mF (z)

}
g(τ) dH(τ)

z
1−γ−1−γ−1z mF (z)

− ν

=

∫ +∞
−∞

z−ν[1−γ−1−γ−1z mF (z)]
{τ [1−γ−1−γ−1z mF (z)]−z}×[1−γ−1−γ−1z mF (z)]

g(τ) dH(τ)

z−ν[1−γ−1−γ−1z mF (z)]
1−γ−1−γ−1z mF (z)

=

∫ +∞

−∞

1

τ [1 − γ−1 − γ−1z mF (z)] − z
g(τ) dH(τ),

which means that Equation (1.5) holds for g. Therefore, by induction, Theorem 1.2 holds for

any bounded function g with a finite number of discontinuities on [h1, h2]. �

3 Proof of Theorem 1.3

At this stage, we need to establish two Lemmas that will be of general use for deriving impli-

cations from Theorem 1.2.
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Lemma 3.1. Let g denote a (real-valued) bounded function defined on [h1, h2] with finitely

many points of discontinuity. Consider the function Ωg
N defined by:

∀x ∈ R, Ωg
N (x) =

1

N

N∑

i=1

1[λi,+∞)(x)
N∑

j=1

|u∗i vj |2 × g(τj).

Then there exists a nonrandom function Ωg defined on R such that Ωg
N (x)

a.s.→ Ωg(x) at all

points of continuity of Ωg. Furthermore,

Ωg(x) = lim
η→0+

1

π

∫ x

−∞
Im [Θg (λ+ iη)] dλ (3.1)

for all x where Ωg is continuous.

Proof of Lemma 3.1 The Stieltjes transform of Ωg
N is the function Θg

N defined by Equation

(1.3). From Theorem 1.2, we know that there exists a nonrandom function Θg defined over C
+

such that Θg
N (z)

a.s.→ Θg(z) for all z ∈ C
+. Therefore, Silverstein and Bai’s [4] Equation (2.5)

implies that: limN→∞ ΩN (x) ≡ Ωg(x) exists for all x where Ωg is continuous. Furthermore,

the Stieltjes transform of Ωg is Θg. Then Equation (3.1) is simply the inversion formula for

the Stieltjes transform. �

Lemma 3.2. Under the assumptions of Lemma 3.1, if γ > 1 then for all (x1, x2) ∈ R
2:

Ωg(x2) − Ωg(x1) =
1

π

∫ x2

x1

lim
η→0+

Im [Θg(λ+ iη)] dλ. (3.2)

If γ < 1 then Equation (3.2) holds for all (x1, x2) ∈ R
2 such that x1x2 > 0.

Proof of Lemma 3.2 One can first note that limz∈C+→x Im [Θg(z)] ≡ Im [Θg(x)] exists for

all x ∈ R (resp. all x ∈ R − {0}) in the case where γ > 1 (resp. γ < 1). This is obvious if

x ∈ Supp(F ). In the case where x /∈ Supp(F ), then it can be deduced from Theorem 4.1 in

[11] that
x

1 − γ−1(1 + xm̆F (x))
/∈ Supp(H), which ensures the desired result. Now Θg is the

Stieltjes transform of Ωg. Therefore, Silverstein and Choi’s [11] Theorem 2.1 implies that:

Ωg is differentiable at x and its derivative is:
1

π
Im [Θg(x)]

for all x ∈ R (resp. all x ∈ R−{0}) in the case where γ > 1 (resp. γ < 1). When we integrate,

we get Equation (3.2). �
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We are now ready to proceed with the proof of Theorem 1.3. Let τ ∈ R be given and take

g = 1(−∞,τ). Then we have:

∀z ∈ C
+, Θ

1(−∞,τ)

N (z) =
1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj |2 × 1(−∞,τ).

Since the function g = 1(−∞,τ) has a single point of discontinuity (at τ), Theorem 1.2 implies

that ∀z ∈ C
+, Θ

1(−∞,τ)

N (z)
a.s.→ Θ1(−∞,τ)(z), where:

∀z ∈ C
+, Θ1(−∞,τ)(z) =

∫ τ

−∞

1

t [1 − γ−1 − γ−1z mF (z)] − z
dH(t). (3.3)

Remember from Equation (1.8) that:

ΦN (λ, τ) = lim
η→0+

1

π

∫ λ

−∞
Im

[
Θ

1(−∞,τ)

N (l + iη)
]
dl.

Therefore, by Lemma 3.1, limN→∞ ΦN (λ, τ) exists and is equal to:

Φ(λ, τ) = lim
η→0+

1

π

∫ λ

−∞
Im

[
Θ1(−∞,τ)(l + iη)

]
dl, (3.4)

for every (λ, τ) ∈ R
2 where Φ is continuous. We first evaluate Φ(λ, τ) in the case where γ > 1,

so that the limiting e.d.f. of sample eigenvalues F is continuously differentiable on all of R.

Plugging (3.3) into (3.4) yields:

Φ(λ, τ) = lim
η→0+

1

π

∫ λ

−∞
Im

{∫ τ

−∞

1

t [a(l, η) + ib(l, η)] − l − iη
dH(t)

}
dl

=
1

π

∫ λ

−∞

∫ τ

−∞
lim

η→0+
Im

{
1

t [a(l, η) + ib(l, η)] − l − iη

}
dH(t) dl, (3.5)

where a(l, η)+ib(l, η) = 1−γ−1−γ−1(l+iη)mF (l+iη). The last equality follows from Lemma

3.2. Notice that:

Im

{
1

t [a(l, η) + ib(l, η)] − l − iη

}
=

η − b(l, η)t

[a(l, η)t− l]2 + [b(l, η)t− η]2
.

Taking the limit as η → 0+, we get:

a(l, η) −→ a = Re

[
1 − 1

γ
− lm̆F (l)

γ

]
, b(l, η) −→ b = Im

[
1 − 1

γ
− lm̆F (l)

γ

]
.
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The inversion formula for the Stieltjes transform implies: ∀l ∈ R, F ′(l) = 1
π Im [m̆F (l)], therefore

b = −πγ−1lF ′(l). Thus we have:

lim
η→0+

Im

{
1

t [a(l, η) + ib(l, η)] − l − iη

}
=

πγ−1lt

(at− l)2 + b2t2
× F ′(l). (3.6)

Plugging Equation (3.6) back into Equation (3.5) yields that:

Φ(λ, τ) =

∫ λ

−∞

∫ τ

−∞

γ−1lt

(at− l)2 + b2t2
dH(t) dF (l),

which was to be proven. This completes the proof of Theorem 1.3 in the case where γ > 1.

In the case where γ < 1, much of the arguments remain the same, except for an added

degree of complexity due to the fact that the limiting e.d.f. of sample eigenvalues F has a

discontinuity of size 1 − γ at zero. This is handled by using the following three Lemmas.

Lemma 3.3. If γ 6= 1, F is constant over the interval
(
0, (1 − 1√

γ )2h1

)
.

Proof of Lemma 3.3 If H placed all its weight on h1, then we could solve the Marčenko-

Pastur equation explicitly for F , and the infimum of the support of the limiting e.d.f. of nonzero

sample eigenvalues would be equal to (1− γ−1/2)2 × h1. Since, by Assumption (H4), H places

all its weight on points greater than or equal to h1, the infimum of the support of the limiting

e.d.f. of nonzero sample eigenvalues has to be greater than or equal to (1 − γ−1/2)2 × h1 (see

Equation (1.9b) in Bai and Silverstein [7]). Therefore, F is constant over the open interval
(
0, (1 − γ−1/2)2 × h1

)
. �

Lemma 3.4. Let κ > 0 be a given real number. Let µ be a complex holomorphic function

defined on the set {z ∈ C
+ : Re[z] ∈ (−κ, κ)}. If µ(0) ∈ R then:

lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
−µ(ξ + iη)

ξ + iη

]
dξ

}
= µ(0).

Proof of Lemma 3.4 For all ε in (0, κ), we have:

lim
η→0+

1

π

∫ +ε

−ε
Im

[
− 1

ξ + iη

]
dξ = lim

η→0+

1

π

∫ +ǫ

−ǫ

η

ξ2 + η2
dξ

= lim
η→0+

1

π

[
arctan

(
ε

η

)
− arctan

(−ε
η

)]

= 1. (3.7)
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Since µ is continuously differentiable, there exist δ > 0, β > 0 such that |µ′(z)| ≤ β, ∀z, |z| ≤ δ.

Using Taylor’s theorem, we get that |µ(z) − µ(0)| ≤ β|z|, ∀|z| ≤ δ. Now we can perform the

following decomposition:

lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
−µ(ξ + iη)

ξ + iη

]
dξ

}

= lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
−µ(ξ + iη) − µ(0) + µ(0)

ξ + iη

]
dξ

}

= µ(0) lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
− 1

ξ + iη

]
dξ

}

+ lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
−µ(ξ + iη) − µ(0)

ξ + iη

]
dξ

}

= µ(0) + lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
−µ(ξ + iη) − µ(0)

ξ + iη

]
dξ

}
,

where the last equality follows from Equation (3.7). The second term vanishes because:

∣∣∣∣ lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
Im

[
−µ(ξ + iη) − µ(0)

ξ + iη

]
dξ

}∣∣∣∣

≤ lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε

∣∣∣∣
µ(ξ + iη) − µ(0)

ξ + iη

∣∣∣∣ dξ
}

≤ lim
ε→0+

{
lim

η→0+

1

π

∫ +ε

−ε
β dξ

}
= 0.

This yields Lemma 3.4. �

Lemma 3.5. Assume that γ < 1. Let g be a (real-valued) bounded function defined on [h1, h2]

with finitely many points of discontinuity. Then:

lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε

∫ +∞

−∞
Im

{
g(τ)

τ [1−γ−1−γ−1(ξ+iη) mF (ξ+iη)]−ξ−iη

}
dH(τ)dξ

=

∫ +∞

−∞

g(τ)

1 + m̆F (0)τ
dH(τ),

where F =
(
1 − γ−1

)
1[0,+∞) + γ−1F , and m̆F (0) = limz∈C+→0mF (z).

Proof of Lemma 3.5 One has that

∀z ∈ C
+, 1 + zmF (z) = γ + γzmF (z), (3.8)

τ
[
1 − γ−1 + γ−1zmF (z)

]
− z = −z

[
1 +mF (z)τ

]
. (3.9)
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Define:

µ(z) =

∫ +∞

−∞

g(τ)

1 +mF (z)τ
dH(τ).

Equation (3.9) yields:

lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε

∫ +∞

−∞
Im

{
g(τ)

τ [1−γ−1−γ−1(ξ+iη)mF (ξ+iη)]−ξ−iη

}
dH(τ)dξ

= lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

{
− 1

ξ + iη

∫ +∞

−∞

g(τ)

1 +mF (ξ + iη)τ
dH(τ)

}
dξ

= lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

{
−µ (ξ + iη)

ξ + iη

}

=

∫ +∞

−∞

g(τ)

1 + m̆F (0)τ
dH(τ),

where the last equality follows from Lemma 3.4. �

We are now ready to complete the proof of Theorem 1.3 for the case where γ < 1. The

inversion formula for the Stieltjes transform implies that:

lim
ε→0+

[Φ(ε, τ) − Φ(−ε, τ)]

= lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

[
Θ1(−∞,τ)(ξ + iη)

]
dξ

= lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

{∫ τ

−∞

dH(t)

t[1−γ−1−γ−1(ξ+iη)mF (ξ+iη)]−ξ−iη

}
dξ

=

∫ τ

−∞

1

1 + m̆F (0) t
dH(t), (3.10)

where the last equality follows from Lemma 3.5. By Lemma 3.3, we know that for λ in a

neighborhood of zero: F (λ) = (1− γ)1[0,+∞)(λ). From Equation (3.10) we know that for λ in

a neighborhood of zero:

Φ(λ, τ) =

∫ λ

−∞

∫ τ

−∞

1

1 + m̆F (0) t
dH(t) d1[0,+∞)(l).

Comparing the two expressions, we find that for λ in a neighborhood of zero:

Φ(λ, τ) =

∫ λ

−∞

∫ τ

−∞

1

(1 − γ)
[
1 + m̆F (0) t

] dH(t) dF (l).

Therefore, if we define ϕ as in (1.9), then we can see that for λ in a neighborhood of zero:

Φ(λ, τ) =

∫ λ

−∞

∫ τ

−∞
ϕ(l, t) dH(t) dF (l). (3.11)
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From this point onwards, the fact that Equation (3.11) holds for all λ > 0 can be established

exactly like we did in the case where γ > 1. This completes the proof of Theorem 1.3. �

4 Proofs of Theorems 1.4 and 1.5

4.1 Proof of Theorem 1.4

Lemma 2.2 shows that ∀z ∈ C
+, Θ

(1)
N (z)

a.s.→ Θ(1)(z), where:

∀z ∈ C
+, Θ(1)(z) =

γ

1 − γ−1 − γ−1z mF (z)
− γ. (4.1)

Remember from Equation (1.12) that:

∆N (x) = lim
η→0+

1

π

∫ x

−∞
Im

[
Θ

(1)
N (λ+ iη)

]
dλ.

Therefore, by Lemma 3.1, limN→∞ ∆N (x) exists and is equal to:

∆(x) = lim
η→0+

1

π

∫ x

−∞
Im

[
Θ(1)(λ+ iη)

]
dλ (4.2)

for every x ∈ R where ∆ is continuous. We first evaluate ∆(x) in the case where γ > 1.

Plugging Equation (4.1) into Equation (4.2) yields:

∆(x) = lim
η→0+

1

π

∫ x

−∞
Im

[
γ

1 − γ−1 − γ−1(λ+ iη)mF (λ+ iη)
− γ

]
dλ

= lim
η→0+

∫ x

−∞

π−1Im [(λ+ iη)mF (λ+ iη)]

|1 − γ−1 − γ−1(λ+ iη)mF (λ+ iη)|2
dλ

=

∫ x

−∞
lim

η→0+

π−1Im [(λ+ iη)mF (λ+ iη)]

|1 − γ−1 − γ−1(λ+ iη)mF (λ+ iη)|2
dλ (4.3)

=

∫ x

−∞

π−1Im [λm̆F (λ)]

|1 − γ−1 − γ−1λm̆F (λ)|2
dλ

=

∫ x

−∞

λF ′(λ)

|1 − γ−1 − γ−1λm̆F (λ)|2
dλ

=

∫ x

−∞

λ

|1 − γ−1 − γ−1λ m̆F (λ)|2
dF (λ),

where Equation (4.3) made use of Lemma 3.2. This completes the proof of Theorem 1.4 in the

case where γ > 1.
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In the case where γ < 1, much of the arguments remain the same. The inversion formula

for the Stieltjes transform implies that:

lim
ε→0+

[∆(ε) − ∆(−ε)]

= lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

[
Θ(1)(ξ + iη)

]
dξ

= lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

{∫ +∞

−∞

τ dH(τ)

τ [1−γ−1−γ−1(ξ+iη)mF (ξ+iη)]−ξ−iη

}
dξ

=

∫ +∞

−∞

τ

1 + m̆F (0) τ
dH(τ), (4.4)

where the last equality follows from Lemma 3.5. Notice that for all z ∈ C
+:

∫ +∞

−∞

τ

1 +mF (z) τ
dH(τ) =

1

mF (z)

∫ +∞

−∞

1 +mF (z) τ − 1

1 +mF (z) τ
dH(τ)

=
1

mF (z)
− 1

mF (z)

∫ +∞

−∞

1

1 +mF (z) τ
dH(τ). (4.5)

Plugging Equation (3.9) into Equation (4.5) yields:

∫ +∞

−∞

τ

1 +mF (z) τ
dH(τ)

=
1

mF (z)
+

z

mF (z)

∫ +∞

−∞

1

1 − γ−1 + γ−1zmF (z)
dH(τ)

=
1 + z mF (z)

mF (z)
, (4.6)

where the last equality comes from the original Marčenko-Pastur equation. Plugging Equation

(3.8) into Equation (4.6) yields:

∫ +∞

−∞

τ

1 +mF (z) τ
dH(τ) = γ

1 + z mF (z)

mF (z)
.

Taking the limit as z ∈ C
+ → 0, we get:

∫ +∞

−∞

τ

1 + m̆F (0) τ
dH(τ) =

γ

m̆F (0)
.

Plugging this result back into Equation (4.4) yields:

lim
ε→0+

[∆(ε) − ∆(−ε)] =
γ

m̆F (0)
. (4.7)
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By Lemma 3.3, we know that for λ in a neighborhood of zero: F (λ) = (1−γ)1[0,+∞)(λ). From

Equation (4.7) we know that for x in a neighborhood of zero:

∆(x) =

∫ x

−∞

γ

m̆F (0)
d1[0,+∞)(λ).

Comparing the two expressions, we find that for x in a neighborhood of zero:

∆(x) =

∫ x

−∞

γ

(1 − γ) m̆F (0)
dF (λ).

Therefore, if we define δ as in (1.13), then we can see that for x in a neighborhood of zero:

∆(x) =

∫ x

−∞
δ(λ) dF (λ). (4.8)

From this point onwards, the fact that Equation (4.8) holds for all x > 0 can be established

exactly like we did in the case where γ > 1. Thus the proof of Theorem 1.4 is complete. �

4.2 Proof of Theorem 1.5

As

∀x ∈ R, ΨN (x) =
1

N

N∑

i=1

1[λi,+∞)(x)
N∑

j=1

|u∗i vj |2
τj

,

∀z ∈ C
+, Θ

(−1)
N (z) =

1

N

N∑

i=1

1

λi − z

N∑

j=1

|u∗i vj |2
τj

,

and using the inversion formula for the Stieltjes transform, we obtain:

∀x ∈ R, ΨN (x) = lim
η→0+

∫ x

−∞
Im

[
Θ

(−1)
N (λ+ iη)

]
dλ.

Since the function g(τ) = 1/τ is continuous on [h1, h2], Theorem 1.2 implies that ∀z ∈ C
+,

Θ
(−1)
N (z)

a.s.→ Θ(−1)(z), where:

∀z ∈ C
+, Θ(−1)(z) =

∫ +∞

−∞

τ−1

τ [1 − γ−1 − γ−1z mF (z)] − z
dH(τ). (4.9)

Therefore, by Lemma 3.1, limN→∞ ΨN (x) exists and is equal to:

Ψ(x) = lim
η→0+

1

π

∫ x

−∞
Im

[
Θ(−1)(λ+ iη)

]
dλ, (4.10)
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for every x ∈ R where Ψ is continuous. We first evaluate Ψ(x) in the case where γ > 1, so that

F is continuously differentiable on all of R.

In the notation of Lemma 2.5, we set ν equal to zero so that ∀τ ∈ R, ρ(τ) = g(τ)×τ = 1.

Then Equation (2.17) implies that:

∀z ∈ C
+, Θ(−1)(z) =

mF (z) −
[
1 + γ−1Θ(1)(z)

] ∫ +∞
−∞ τ−1dH(τ)

z
[
1 + γ−1Θ(1)(z)

] .

Using Equation (2.12), we obtain:

∀z ∈ C
+, Θ(−1)(z) =

mF (z)

z

[
1 − γ−1 − γ−1z mF (z)

]
− 1

z

∫ +∞

−∞
τ−1dH(τ). (4.11)

Thus for all λ ∈ R:

lim
η→0+

Im
[
Θ−1(λ+ iη)

]
=

1

λ
Im

{
m̆F (λ)

[
1 − γ−1 − γ−1λ m̆F (λ)

]}

=
1

λ

{
1 − γ−1 − 2γ−1λRe [m̆F (λ)]

}
× Im [m̆F (λ)]

=
1

λ

{
1 − γ−1 − 2γ−1λRe [m̆F (λ)]

}
× πF ′(λ).

Plugging this result back into Equation (4.10) yields:

Ψ(x) =
1

π

∫ x

−∞
lim

η→0+
Im

[
Θ(−1)(λ+ iη)

]
dλ

=

∫ x

−∞

1 − γ−1 − 2γ−1λRe [m̆F (λ)]

λ
dF (λ),

where we made use of Lemma 3.2. This completes the proof of Theorem 1.5 in the case where

γ > 1.

We now turn to the case where γ < 1. Equation (4.10) implies that:

lim
ε→0+

[Ψ(ε) − Ψ(−ε)] = lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

[
Θ(−1)(ξ + iη)

]
dξ. (4.12)

Plugging Equation (3.8) into Equation (4.11) yields for all z ∈ C
+:

Θ(−1)(z) = −mF (z)mF (z) − 1

z

∫ +∞

−∞

1

τ − 0
dH(τ)

=
1

z

[
1 − γ − γzmF (z)

]
mF (z) − 1

z
m̆H(0).
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Plugging this result into Equation (4.12), we get:

lim
ε→0+

[Ψ(ε) − Ψ(−ε)] = lim
ε→0+

lim
η→0+

1

π

∫ +ε

−ε
Im

{
−µ(ξ + iη)

ξ + iη

}
dξ,

where µ(z) = −[1 − γ − γzmF (z)]mF (z) + m̆H(0). Therefore, by Lemma 3.4, we have:

lim
ε→0+

[Ψ(ε) − Ψ(−ε)] = µ(0) = −(1 − γ)m̆F (0) + m̆H(0). (4.13)

By Lemma 3.3, we know that for λ in a neighborhood of zero: F (λ) = (1−γ)1[0,+∞)(λ). From

Equation (4.13) we know that for x in a neighborhood of zero:

Ψ(x) =

∫ x

−∞

[
−(1 − γ)m̆F (0) + m̆H(0)

]
d1[0,+∞)(λ).

Comparing the two expressions, we find that for x in a neighborhood of zero:

Ψ(x) =

∫ x

−∞

[
−m̆F (0) +

1

1 − γ
m̆H(0)

]
dF (λ).

Therefore, if we define ψ as in (1.14), then we can see that for x in a neighborhood of zero:

Ψ(x) =

∫ x

−∞
ψ(λ) dF (λ). (4.14)

From this point onwards, the fact that Equation (4.14) holds for all x > 0 can be established

exactly like we did in the case where γ > 1. Thus the proof of Theorem 1.5 is complete. �
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