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How to Extend a Model of Probabilistic Choice from Binary 
Choices to Choices among More Than Two Alternatives 

Many popular models of probabilistic choice such as the Fechner model of 

random errors (Fechner, 1860; Hey and Orme, 1994; Blavatskyy, 2008) are developed 

for binary choice problems because binary choice tasks are frequently used in empirical 

(especially experimental) research. However, many applications in the theory of 

individual demand, operations research, social choice, political economy and etc. 

involve multiple alternatives and require an extension of binary choice models to 

choices among multiple alternatives. For example, given marketing data on how likely 

an average consumer is to choose product A over product B, product B over product C 

and product A over product C, a retail firm may be interested to know the probability 

that product A is purchased when all three products A, B and C are offered on the market. 

This note presents an algorithm that extends any binary choice model to choice 

among more than two alternatives. This algorithm is closely related to an example in 

Luce and Suppes (1965, pp. 351-352) who show how a ranking over three alternatives 

can be generated from binary choice probabilities. Köhler (2007) develops a procedural 

model for solving complex decision problems (such as choice among multiple 

alternatives) by decomposing a complex problem into a sequence of binary choices. 

Let S={A1,…,An} be a finite set of n≥2 alternatives. Let P:SS→[0,1] be a 

binary choice probability function (known as fuzzy preference relation, e.g. Zimmerman 

et al. (1984)). P(Ai,Aj) is the probability that a decision maker chooses alternative AiS 

over alternative AjS in a binary choice. For any two alternatives Ai,AjS such that 

Ai≠Aj, probability P(Ai,Aj) is observable from a relative frequency with which a decision 

maker chooses Ai when asked to choose repeatedly between Ai and Aj. Probability 

P(Ai,Ai) cannot be observed from actual choices and it is not defined for any AiS.  
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This note presents an algorithm how to extend a binary choice model P to choice 

among n≥2 alternatives. According to this algorithm a decision maker acts as follows: 

1) Select one alternative AiS at random. Label it as alternative B (“the best”). 

2) Select alternative AjS, Aj≠B, at random. Choose between Aj and B. If Aj is chosen 

over B, which happens with probability P(Aj,B), then label Aj as a new alternative B. 

3) Repeat step 2) ad infinitum. 

At every stage t>2 of this algorithm a decision maker chooses between the 

alternative that was chosen in the last comparison and another randomly selected 

element of the choice set S. Note that a new element is selected with replacement, i.e. 

this element can be one of the non-chosen alternatives from previous iterations. Köhler 

(2007) analyses the same algorithm when selection is done without replacement. The 

proposed algorithm is not literally an infinite chain of actual pairwise choices. Rather, it 

is a mental process so that a decision maker is not endowed with the preferred 

alternative in each choice (and we can abstract from endowment effects). 

Let Q(Ai|S)t denote the probability that the i-th alternative AiS is chosen over 

another randomly selected alternative at the iteration tℕ of this algorithm. The 

probabilities Q(Ai|S)t are recursively defined by the following system of equations: 

(1) 
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with the initial condition Q(Ai|S)1 =1/n for all i{1,…,n}. 
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The probability that an alternative Ai is chosen from the set S is defined as 

   
ti

t
i SAQSAQ


 lim  for all i{1,…,n}. In other words, we calculate the chance that 

the i-th alternative is chosen from the set S as if an individual continues the sequence of 

binary choices ad infinitum. A vector Q = (Q(A1|S), …, Q(An|S))´ is an asymptotic 

probability distribution on S  if it solves the following homogeneous matrix equation 

(2)    01  QIΡ n , 

where P is the transition matrix on the right-hand side of (1) and I is the nn identity 

matrix. 

Equation (2) is a system of homogeneous linear equations. It has a trivial 

solution Q = 0, which we may discard because all choice probabilities should sum up to 

one. Equation (2) also has a non-trivial solution, which can be conveniently written in a 

closed form using notation from graph theory. 

Definition 1 An arborescence G ≡ (S, E) is a directed graph, i.e. an ordered pair 

of the vertex set S and the edge set E, which has one vertex RS, called the root of G, 

such that for any other vertex vS, there is only one directed path from R to v. 

Let G denote an arborescence with the vertex set S and let  (S) be the set of all 

arborescences with the vertex set S. Let R(G) be the root of G and let E(G) be the edge 

set of G. Note that the elements of E(G) are ordered pairs of alternatives {Ai,Aj} such 

that Ai,AjS and Ai≠Aj. Product       GEAA ji
ji

AAP
,

,  is the probability that a decision 

maker chooses the initial vertex (tail) Ai over the terminal vertex (head) Aj in all edges 

of an arborescence G. With this notation, the vector Q that solves (2) can be written as 

(3)                        n jiji AGRSG GEAA jiAGRSG GEAA ji AAPAAP
,,

,,...,,
1

Q , 

where λ is an arbitrary constant. 
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Since all choice probabilities should add up to one, i.e.   1
1

 

n

i i SAQ , it 

follows immediately that        


SG GEAA ji
ji

AAP
,

,1 . Thus, a decision maker 

chooses an alternative AkS from a non-singleton choice set S with a probability  

(4)  
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,  

for all k{1,…,n}. 

Equation (4) allows us to generalize any model of binary choice to choice 

among n≥2 alternatives. This generalization has several intuitive properties. For 

example, if a decision maker always (never) chooses one alternative over every other 

element of a choice set in a direct binary choice, then he also always (never) chooses 

this alternative from the overall choice set. If a decision maker chooses with 

probabilities 50%-50% between any two alternatives from a given choice set, then each 

alternative is selected with equal probability (1/n) from this choice set. 

Example 1 (Neoclassical microeconomic theory) In standard microeconomic 

theory there exists an utility function u:S→ℝ such that  

(5)      
    5.05.0,

ji

ji
ji

AuAu

AuAu
AAP




 , 

for any Ai,AjS such that Ai≠Aj. Formula (5) simply states that alternative Ai is chosen 

over alternative Aj with probability one if u(Ai)>u(Aj) and with probability zero if 

u(Ai)<u(Aj). The binary choice probability P(Ai,Aj) is not defined if u(Ai)=u(Aj).
1 If u(.) 

is an injective (one-to-one) function, we can plug in formula (5) into equation (4) and 

then we obtain the following result 

                                                 
1 This indeterminacy plays a crucial role for the existence of a mixed-strategy equilibrium in non-
cooperative game theory. 
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(6)      
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for all k{1,…,n}. Equation (6) simply states that a decision maker always picks the 

alternative with the highest utility. 

Example 2 (Luce or strict utility model) In Luce or strict utility model (Luce, 1959), 

there exists a function v:S→ℝ+, which is unique up to a proportionality factor, such that  

(7)    
   ji

i
ji AvAv

Av
AAP


, , 

for all Ai,AjS. If we plug in formula (7) into equation (4) we obtain the following result 

(8)    
  


SA i

k
k

i
Av

Av
SAQ , 

for all k{1,…,n}. Luce (1959) originally derived (8) from a famous Luce choice 

axiom. 

Example 3 (Intransitive choice) Let n=3 and let P(A1,A2)=P(A2,A3)=P(A3,A1) 

so that the decision maker violates weak stochastic transitivity. If we plug these binary 

choice probabilities into equation (4) we obtain Q(Ak|S)=1/3 for all k{1,2,3}. 

Example 4 (Asymmetric dominance effect) Asymmetric dominance effect is 

an empirical observation that a choice probability Q(A1|{A1,A2,A3}) is often greater than 

a binary choice probability P(A1,A2)≠1 if alternative A3 is dominated by alternative A1 

but not by alternative A2 so that P(A3,A1)=0 but P(A3,A2)≠0 (e.g. Huber et al., 1982; 

Herne, 1999; Dhar and Simonson, 2003). According to equation (4), if P(A3,A1)=0 then 

(9)         
   

2

3 2 2 1
1 1 2 3 1 2

3 2 2 1

, ,
, , ,
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Q A A A A P A A

P A A P A A
 


. 
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The right-hand-side of equation (9) is always strictly greater than P(A1,A2) if P(A3,A2)≠0 

and P(A1,A2)≠1. Thus, the proposed algorithm actually predicts asymmetric dominance 

effect, which cannot be explained within standard models of probabilistic choice such as 

random utility model or Luce choice model (Theorem 41 in Luce and Suppes, 1965). 

Example 5 (Attraction effect) Attraction affect refers to an empirical finding 

that is very similar to the asymmetric dominance effect. Specifically, people choose an 

alternative A1 from the choice set {A1,A2,A3} more frequently than they do from the 

choice set {A1,A2} if A3 appears to be inferior to A1 so that P(A3,A1) is relatively small 

but not equal to zero, and at the same time A3 is not dominated by A2 so that P(A3,A2)≠0 

(e.g. Huber and Puto, 1983; Simonson and Tversky, 1992; Tversky and Simonson, 1993). 

If a choice probability Q(A1|{A1,A2,A3}) is given by equation (4), then this probability is 

greater than a binary choice probability P(A1,A2) if and only if the following holds:  

(10)      
       

2

3 2 2 1
3 1 2

3 2 1 2 2 3 1 2

, ,
,

, , , ,

P A A P A A
P A A

P A A P A A P A A P A A


 
. 

The right-hand side of inequality (10) is strictly positive provided that people 

do not always choose A1 over A2 i.e. P(A1,A2)≠1. Hence, there always exists a choice 

probability P(A3,A1) sufficiently close to zero such that inequality (10) is satisfied. In 

other words, the proposed algorithm is compatible with the attraction effect. 

Examples 1-3 show that the proposed algorithm is quite general and it can be 

used to extend very different models of binary choice to choice among multiple 

alternatives. Moreover, both neoclassical microeconomic theory (Example 1) and Luce 

choice model (Example 2) are consistent with the proposed algorithm. Thus, we can use 

the new algorithm to extend binary choice models to choice among multiple alternatives 

in an analogous manner to choice functions in neoclassical microeconomic theory and 
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Luce choice model. The proposed algorithm is also compatible with several stylized 

empirical facts that cannot be explained within standard models of probabilistic choice 

(Example 4 and 5).  
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