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Abstract

This paper analyzes the identifying power of weak convexity assumptions in treatment

effect models with endogenous selection. The counterfactual distributions are constrained

either in terms of the response function, or conditional on the realized treatment, and sharp

bounds on the potential outcome distributions are derived. The methods are applied to

bound the effect of education on smoking.
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1 Introduction

The credibility of empirical work crucially depends on the strength of the underlying assump-

tions (Manski 2003). Stronger assumptions allow to draw stronger conclusions, but there is

generally less consensus about their validity. This paper avoids assumptions like conditional

independence, exogenous treatment selection, or exclusion restrictions that are commonly em-

ployed in treatment effect models. The paper builds on the previous literature on monotone

treatment response (e.g., Manski 1997; Blundell et al. 2007; Okumura and Usui 2009) and

monotone instrumental variables (e.g., Manski and Pepper 2000, 2009; Boes 2009) by intro-

ducing weak convexity (or concavity) in the counterfactual distributions.

To formalize the discussion, let each individual have a response function Y (s) ∈ Y that

determines the outcome in state s ∈ S. Assume that outcomes are measured (at least) on the

ordinal scale, and states are measured on the interval scale. Let S ∈ S denote the realized state,

let Y = Y (S) denote the realized outcome, and let X ∈ X denote the vector of covariates.

The observed data are the triple (Y, S,X) with distribution P (Y, S,X).

The goal is to learn the potential outcome distributions P [Y (s) ≤ y] or P [Y (s) ≤ y|X].

Two fundamental problems impede the point identification of P [Y (s) ≤ y] (covariates are

kept implicit in what follows to simplify notation). First, the outcome of each individual is

only observed in the realized state, outcomes that would be realized under alternative states

are logically unobserved. Second, the distribution of outcomes observed does not necessarily

resemble the distribution of potential outcomes (e.g., due to self-selection).

The paper imposes weak restrictions on the curvature of the potential outcome distribu-

tions, either conditional on the treatment indicator, or in terms of the response function. More

specifically, P [Y (s) ≤ y|S = t] is assumed to be convex/concave in t and/or in s, which will

be referred to as convex/concave treatment selection and convex/concave treatment response,

respectively. While each assumption is non-refutable by the empirical evidence alone, the

joint assumptions are refutable. Moreover, the bounds under convexity/concavity may yield a

substantial improvement over the no-assumptions bounds.
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2 Assumptions and Bounds

2.1 Convex/Concave Treatment Selection

The first type of assumption restricts the curvature of the potential outcome distribution as

a function of realized states, i.e., conditional on different values of S. Any linear combination

of P [Y (s) ≤ y|S] evaluated at S = t1 and evaluated at S = t2, with t1 ≤ t2 and combination

coefficient α, is assumed to weakly dominate the distribution evaluated at S = αt1 +(1−α)t2.

This assumption is referred to as convex treatment selection (CXTS), formally

Assumption (CXTS). For each y ∈ Y, (s, t1, t2) ∈ S3, with t1 ≤ t2, and for all α ∈ [0, 1], let

P [Y (s) ≤ y|S = αt1 + (1 − α)t2] ≤ αP [Y (s) ≤ y|S = t1] + (1 − α)P [Y (s) ≤ y|S = t2].

Assumption CXTS has two implications regarding the potential outcome distribution. First,

for any t ∈ S with t1 ≤ t ≤ t2 and evaluation points (t1, t2) ∈ S2, and ∀y ∈ Y, there exists α∗

(as a function of t1 and t2) with t = α∗t1 + (1 − α∗)t2 such that

P [Y (s) ≤ y|S = t] ≤ α∗P [Y (s) ≤ y|S = t1] + (1 − α∗)P [Y (s) ≤ y|S = t2]. (1)

Thus, an upper bound of the right-hand side is also an upper bound of the left-hand side.

Since the weak inequality in (1) holds for any t1 ≤ t and any t2 ≥ t, the smallest of the upper

bounds over all (t1, t2) can be used as sharp upper bound for P [Y (s) ≤ y|S = t].

Second, any convex function exhibits one of three types of (weak) monotonicity: (i) mono-

tonically decreasing in S, (ii) monotonically increasing in S, or (iii) one switch from monoton-

ically decreasing to monotonically increasing with a minimum at tmin = arg mint∈S P [Y (s) ≤

y|S = t]. The former two cases can be subsumed in the third if tmin = t(min) and tmin = t(max),

respectively, where t(min) denotes the smallest point and t(max) the largest point in S (the ex-

istence of these points is ensured by the assumption that S is measured on the interval scale).

Define F (y|s) = P (Y ≤ y|S = s), S l
t,min = {t ∈ S : t ≤ tmin}, and Su

t,min = {t ∈ S : t ≥ tmin}.

The bounds on the counterfactual distributions can be summarized as follows:
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Proposition 1. Let assumption CXTS hold. If t = s, then P [Y (s) ≤ y|S = t] = F (y|s).

If s < tmin, then

t ∈ S l
t,min t < s ⇒ F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s) +

s − t

s − t(min)
[1 − F (y|s)]

t > s ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s)

t /∈ S l
t,min ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ 1 −

t(max) − t

t(max) − tmin
[1 − F (y|s)]

If s = tmin, then

t < s ⇒ F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s) +
tmin − t

tmin − t(min)
[1 − F (y|s)]

t > s ⇒ F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ 1 −
t(max) − t

t(max) − tmin
[1 − F (y|s)]

If s > tmin, then

t ∈ Su
t,min t < s ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s)

t > s ⇒ F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ 1 −
t(max) − t

t(max) − s
[1 − F (y|s)]

t /∈ Su
t,min ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s) +

tmin − t

tmin − t(min)
[1 − F (y|s)]

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

The CXTS assumption yields point identification if t < s, t and s both lie in the monoton-

ically decreasing part of P [Y (s) ≤ y|S = t] over realized states, and t(min) approaches −∞ in

the limit, or if t > s, t and s both lie in the monotonically increasing part of P [Y (s) ≤ y|S = t]

over realized states, and t(max) approaches ∞ in the limit. Since the target is a distribution

function, with natural lower and upper limits of zero and one, point identification will only be

achieved for an idealized shape of the counterfactual distributions conditional on S.

4



Proposition 1 can be applied to derive bounds on the potential outcome distributions:

Corollary 1. Let assumption CXTS hold. Then,

s < tmin ⇒ F (y|s)P (S ≤ s) ≤ P [Y (s) ≤ y] ≤ F (y|s)P (S ≤ tmin)

+
∑

t<s

(

s − t

s − t(min)
[1 − F (y|s)]

)

P (S = t)

+
∑

t>tmin

(

1 −
t(max) − t

t(max) − tmin
[1 − F (y|s)]

)

P (S = t)

s = tmin ⇒ F (y|s) ≤ P [Y (s) ≤ y] ≤ F (y|s)P (S = s)

+
∑

t<s

(

F (y|s) +
tmin − t

tmin − t(min)
[1 − F (y|s)]

)

P (S = t)

+
∑

t>s

(

1 −
t(max) − t

t(max) − tmin
[1 − F (y|s)]

)

P (S = t)

s > tmin ⇒ F (y|s)P (S ≥ s) ≤ P [Y (s) ≤ y] ≤ F (y|s)P (S ≤ s)

+
∑

t<tmin

(

tmin − t

tmin − t(min)
[1 − F (y|s)]

)

P (S = t)

+
∑

t>s

(

1 −
t(max) − t

t(max) − s
[1 − F (y|s)]

)

P (S = t)

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

Depending upon the data and the application as well as the implications of an underlying

theoretical model, assumption CXTS might also be replaced by a weak concavity assumption:

Assumption (CVTS). For each y ∈ Y, (s, t1, t2) ∈ S3, with t1 ≤ t2, and for all α ∈ [0, 1], let

P [Y (s) ≤ y|S = αt1 + (1 − α)t2] ≥ αP [Y (s) ≤ y|S = t1] + (1 − α)P [Y (s) ≤ y|S = t2].

Assumption CVTS (the concave treatment selection assumption) states that any linear com-

bination of the potential outcome distribution evaluated at S = t1 and S = t2, with combi-

nation coefficient α, is weakly dominated by the potential outcome distribution evaluated at

S = αt1 + (1− α)t2. Define tmax = arg maxt∈S P [Y (s) ≤ y|S = t], S l
t,max = {t ∈ S : t ≤ tmax},

and Su
t,max = {t ∈ S : t ≥ tmax}. Then using analogous arguments as under convexity yields

the following bounds on the counterfactual distributions:
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Proposition 2. Let assumption CVTS hold. If t = s, then P [Y (s) ≤ y|S = t] = F (y|s).

If s < tmax, then

t ∈ S l
t,max t < s ⇒

t − t(min)

s − t(min)
F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s)

t > s ⇒ F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ 1

t /∈ S l
t,max ⇒

t(max) − t

t(max) − tmax
F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ 1

If s = tmax, then

t < s ⇒
t − t(min)

tmax − t(min)
F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s)

t > s ⇒
t(max) − t

t(max) − tmax
F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s)

If s > tmax, then

t ∈ Su
t,max t < s ⇒ F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ 1

t > s ⇒
t(max) − t

t(max) − s
F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|s)

t /∈ Su
t,max ⇒

t − t(min)

tmax − t(min)
F (y|s) ≤ P [Y (s) ≤ y|S = t] ≤ 1

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

While the convexity assumption yields more informative upper bounds than they are ob-

tained under monotonicity alone, assumption CVTS can be used to construct lower bounds on

the counterfactual distributions that are more informative than the no-assumptions bounds

and the bounds under monotonicity.

The bounds on the potential outcome distribution can be derived as follows:

Corollary 2. Let assumption CVTS hold. Then,

s < tmax ⇒ F (y|s)P (s ≤ S ≤ tmax) +
∑

t<s

(

t − t(min)

s − t(min)
F (y|s)

)

P (S = t)

+
∑

t>tmax

(

t(max) − t

t(max) − tmax
F (y|s)

)

P (S = t)
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≤ P [Y (s) ≤ y] ≤ F (y|s)P (S ≤ s) + P (S > s)

s = tmax ⇒ F (y|s)P (S = s) +
∑

t<s

(

t − t(min)

tmax − t(min)
F (y|s)

)

P (S = t)

∑

t>s

(

t(max) − t

t(max) − tmax
F (y|s)

)

P (S = t)

≤ P [Y (s) ≤ y] ≤ F (y|s)

s > tmax ⇒ F (y|s)P (tmax ≤ S ≤ s) +
∑

t<tmax

(

t − t(min)

tmax − t(min)
F (y|s)

)

P (S = t)

+
∑

t>s

(

t(max) − t

t(max) − s
F (y|s)

)

P (S = t)

≤ P [Y (s) ≤ y] ≤ F (y|s)P (S ≥ s) + P (S < s)

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

2.2 Convex/Concave Treatment Response

The second type of assumption restricts the curvature of the potential outcome distribution

in terms of the response function, i.e., over hypothetical states s. Any linear combination of

the distribution in state s1 and state s2 ≥ s1, with combination coefficient β and for any given

realized S = t, is assumed to weakly dominate the distribution in state βs1 + (1 − β)s2. This

assumption is referred to as convex treatment response (CXTR), formally

Assumption (CXTR). For each y ∈ Y, (s1, s2, t) ∈ S3, with s1 ≤ s2, and for all β ∈ [0, 1],

let P [Y (βs1 + (1 − β)s2) ≤ y|S = t] ≤ βP [Y (s1) ≤ y|S = t] + (1 − β)P [Y (s2) ≤ y|S = t].

Assumption CXTR has two implications regarding the potential outcome distribution which

follow in close analogy to the convex treatment selection assumption. First, for any s ∈ S with

s1 ≤ s ≤ s2 and hypothetical states (s1, s2) ∈ S2, and ∀y ∈ Y, there exists β∗ (as a function

of s1 and s2) with s = β∗s1 + (1 − β∗)s2 such that

P [Y (s) ≤ y|S = t] ≤ β∗P [Y (s1) ≤ y|S = t] + (1 − β∗)P [Y (s) ≤ y|S = t]. (2)

7



Thus, an upper bound of the right-hand side is also an upper bound of the left-hand side.

Since the weak inequality in (2) holds for any s1 ≤ s and any s2 ≥ s, the smallest of the upper

bounds over all (s1, s2) can be used as sharp upper bound for P [Y (s) ≤ y|S = t].

Second, any convex function exhibits one of three types of (weak) monotonicity: (i) mono-

tonically decreasing in s, (ii) monotonically increasing in s, or (iii) one switch from monoton-

ically decreasing to monotonically increasing with a minimum at smin = arg mins∈S P [Y (s) ≤

y|S = t]. The former two cases can be subsumed in the third if smin = s(min) and smin = s(max),

respectively, where s(min) denotes the smallest point and s(max) the largest point in S (the ex-

istence of these points is ensured by the assumption that S is measured on the interval scale).

Define F (y) = P (Y ≤ y), F (y|t) = P (Y ≤ y|S = t), S l
s,min = {s ∈ S : s ≤ smin}, and

Su
s,min = {s ∈ S : s ≥ smin}. Then assumption CXTR yields the following sharp bounds:

Proposition 3. Let assumption CXTR hold. If s = t, then P [Y (s) ≤ y|S = t] = F (y|t).

If t < smin, then

s ∈ S l
s,min s < t ⇒ F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t) +

t − s

t − s(min)
[1 − F (y|t)]

s > t ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t)

s /∈ S l
s,min ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ 1 −

s(max) − s

s(max) − smin
[1 − F (y|t)]

If t = smin, then

s < t ⇒ F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t) +
smin − s

smin − s(min)
[1 − F (y|t)]

s > t ⇒ F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ 1 −
s(max) − s

s(max) − smin
[1 − F (y|t)]

If t > smin, then

s ∈ Su
s,min s < t ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t)

s > t ⇒ F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ 1 −
s(max) − s

s(max) − t
[1 − F (y|t)]

s /∈ Su
s,min ⇒ 0 ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t) +

smin − s

smin − s(min)
[1 − F (y|t)]

In the absence of other information, these bounds are sharp.
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Proof. See the appendix.

While the CXTS assumption yields bounds on P [Y (s) ≤ y|S = t] over realized states t, for

the hypothetical state s fixed, the CXTR assumption yields bounds over hypothetical states s,

with the realized state S = t fixed. Thus, the two assumptions make different contributions to

the (partial) identification of the potential outcome distribution. Under the convex treatment

response assumption, the bounds have the following form:

Corollary 3. Let assumption CXTR hold. Then,

s < smin ⇒ P (Y ≤ y|s ≤ S ≤ smin)P (s ≤ S ≤ smin) ≤ P [Y (s) ≤ y] ≤

F (y) +
∑

s<t<smin

(

t − s

t − s(min)
[1 − F (y|t)]

)

P (S = t)

+
∑

t≥smin

(

smin − s

smin − s(min)
[1 − F (y|t)]

)

P (S = t)

s = smin ⇒ F (y|s)P (S = s) ≤ P [Y (s) ≤ y] ≤ F (y)

s > smin ⇒ P (Y ≤ y|smin ≤ S ≤ s)P (smin ≤ S ≤ s) ≤ P [Y (s) ≤ y] ≤

P (Y ≤ y|S ≥ s)P (S ≥ s) + P (S ≤ s)

−
∑

t≤smin

(

s(max) − s

s(max) − smin
[1 − F (y|t)]

)

P (S = t)

−
∑

smin<t<s

(

s(max) − s

s(max) − t
[1 − F (y|t)]

)

P (S = t)

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

A concave treatment response (CVTR) assumption can be formulated accordingly:

Assumption (CVTR). For each y ∈ Y, (s1, s2, t) ∈ S3, with s1 ≤ s2, and for all β ∈ [0, 1],

let P [Y (βs1 + (1 − β)s2) ≤ y|S = t] ≥ βP [Y (s1) ≤ y|S = t] + (1 − β)P [Y (s2) ≤ y|S = t].

Define smax = arg maxs∈S P [Y (s) ≤ y|S = t], S l
s,max = {s ∈ S : s ≤ smax}, and Su

s,max =

{s ∈ S : s ≥ smax}. Following analogous arguments as under the convexity assumption, and

the convex/concave treatment selection assumptions, one can derive the following bounds on

the counterfactual distributions:
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Proposition 4. Let assumption CVTR hold. If s = t, then P [Y (s) ≤ y|S = t] = F (y|t).

If t < smax, then

s ∈ S l
s,max s < t ⇒

s − s(min)

t − s(min)
F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t)

s > t ⇒ F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ 1

s /∈ S l
s,max ⇒

s(max) − s

s(max) − smax
F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ 1

If t = smax, then

s < t ⇒
s − s(min)

smax − s(min)
F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t)

s > t ⇒
s(max) − s

s(max) − smax
F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t)

If t > smax, then

s ∈ Su
s,max s < t ⇒ F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ 1

s > t ⇒
s(max) − s

s(max) − t
F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ F (y|t)

s /∈ Su
s,max ⇒

s − s(min)

smax − s(min)
F (y|t) ≤ P [Y (s) ≤ y|S = t] ≤ 1

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

The concave treatment response assumptions places bounds on each counterfactual distri-

bution that in turn can be used to bound the potential outcome distributions:

Corollary 4. Let assumption CVTR hold. Then,

s < smax ⇒ P (Y ≤ y|S ≤ s)P (S ≤ s) +
∑

s<t<smax

(

s − s(min)

t − s(min)
F (y|t)

)

P (S = t)

+
∑

t≥smax

(

s − s(min)

smax − s(min)
F (y|t)

)

P (S = t) ≤ P [Y (s) ≤ y] ≤

P (Y ≤ y|s ≤ S ≤ smax)P (s ≤ S ≤ smax) + 1 − P (s ≤ S ≤ smax)

s = smax ⇒ F (y) ≤ P [Y (s) ≤ y] ≤ F (y|s)P (S = s) + P (S 6= s)

s > smax ⇒ P (Y ≤ y|S ≥ s)P (S ≥ s) +
∑

t≤smax

(

s(max) − s

s(max) − smax
F (y|t)

)

P (S = t)
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+
∑

smax<t<s

(

s(max) − s

s(max) − t
F (y|t)

)

P (S = t) ≤ P [Y (s) ≤ y] ≤

P (Y ≤ y|smax ≤ S ≤ s)P (smax ≤ S ≤ s) + 1 − P (smax ≤ S ≤ s)

In the absence of other information, these bounds are sharp.

Proof. See the appendix.

While each assumption alone is not refutable, a joint set of assumptions is refutable using

the empirical evidence alone. For example, if the convex treatment selection assumption is

combined with the convex treatment response assumption, then the observed distribution

P (Y ≤ y|S) is convex in S. Thus, if a convex shape of P (Y ≤ y|S) is rejected by the data,

then the joint assumptions CXTS/CXTR can be rejected as well. A particularly appealing case

is obtained if smin = tmin which then becomes a global minimum point. Analogous arguments

hold for the combination of concavity assumptions.

3 Bounds on the Effect of Education on Smoking

The causal effect of education and smoking is used to illustrate the convexity assumptions

and the construction of bounds. Several explanations exist in favor of a causal mechanism,

including theories of productive efficiency (Grossman 1972) and allocative efficiency (Kenkel

1991; Rosenzweig 1995). A competing interpretation asserts the existence of individual time

preferences as unobserved background factor that generates a negative correlation even in the

absence of a causal effect (Farrell and Fuchs 1982).

More recently, Currie and Moretti (2003), Kenkel et al. (2006), de Walque (2007), Grimard

and Parent (2007,) Gilman et al. (2008), and Tenn et al. (2008) employed instrumental

variables to estimate the effect of education on smoking. These studies are not conclusive,

however, regarding the magnitude of the impact, ranging from negligibly small to negative

and significant. While substantial effort is made to justify the instruments in each of these

papers, their validity is not entirely without debate (see Tenn et al. 2008).
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The analysis here adds to the previous literature by investigating the effect of education

on different parts of the smoking distribution. I will make use of the convexity assumptions

outlined above and thus will not require exogenous instruments or exclusion restrictions. The

analysis is based on the Smoking Supplement of the 1979 US National Health Interview Survey

which contains information on the respondent’s socioeconomic characteristics and smoking

behavior. Details on the data can be found in Mullahy (1985).

The population has been restricted to employed white men aged between 40 and 55, and

education levels of 6 to 16 years of schooling, which gives a total of 1,180 observations. Table

1 and Figure 1 display features of the smoking distribution conditional on different levels

of schooling. Consider Table 1 first. The schooling distribution indicates that the largest

fraction of people in the sample obtained a high school degree, followed by those who obtained

vocational, and undergraduate college or university education.

— Insert Table 1 and Figure 1 about here —

Table 1 also reports the probability of non-smoking, and smoking no more than 10 (20)

cigarettes on average per day, conditional on schooling. The shape of the smoking distribution,

as a function of schooling, at each of these thresholds is convex over the most part of the

schooling support (as shown in Figure 1). Exceptions are the upper right two points for the

probability of smoking less than 20 cigarettes conditional on 15/16 years of schooling. However,

there is only a small number of observations in this category, and the corresponding confidence

intervals are wide enough to be consistent with an everywhere convex function.

A consistent minimum is obtained at about eight years of schooling. Following the above

arguments, I will maintain the assumption that tmin = arg mint∈S P (Y (s) ≤ y|S = t) and

smin = tmin = 8. Figure 2 shows the bounds on the potential outcome distribution using the

empirical evidence alone (the no-assumptions bounds), under the convex treatment selection

(CXTS) assumption only, under the convex treatment response (CXTR) assumption only, and

if the latter two types are imposed jointly (CXTS/CXTR).

12



— Insert Figure 2 about here —

The CXTS and the CXTR assumptions contribute differently to the identification of the

counterfactual distributions, and hence, the width of the bounds on the potential outcome

distributions differs between these two types of assumptions. Moreover, the joint assumptions

yield bounds that are even tighter than the intersection bounds because CXTR and CXTS can

make both contributions to more informative upper and/or more informative lower bounds.

Figure 2 shows that there is a substantial improvement in the bounds by using the convexity

assumptions. The results indicate, for example, that the probability of non-smoking lies be-

tween about 41 and 51 percent for those with 8 years of schooling, compared to about 2 and

85 percent using the no-assumptions bounds.

It should be noted that the convexity assumptions alone do not suffice to evaluate whether

education has a positive, a negative, or no effect at all on the probability to smoke (nor

on the distribution at the other thresholds shown in Figure 2). This follows because the

intersection of the bounds for all schooling levels is a non-empty set. Thus, without imposing

additional restrictions on the data, the analysis presented here is consistent with the notion that

the association between education and smoking is merely related to unobserved background

factors, even in the absence of a causal mechanism.

Figure 3 provides an additional set of bounds using assumptions of semi-monotonicity

(Boes 2009). The minimum monotone treatment selection (MMTS) and minimum monotone

treatment response (MMTR) assumptions relax the assumptions of convexity to monotonically

decreasing (increasing) P [Y (s) ≤ y|S = t] in t and s to the left (right) of the conjectured

minimum point. The results indicate that there is a moderate information gain by imposing

convexity as opposed to semi-monotonicity.

— Insert Figure 3 about here —
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4 Concluding Remarks

This paper proposed two weak convexity (or concavity) assumptions on the counterfactual

distributions and derives their partial identification results for the potential outcome distri-

butions. First, the convex treatment selection assumption, which imposes constraints on the

variation of the potential outcome distribution conditional on realized states. Second, the

convex treatment response assumption, which restricts the shape of the outcome distribution

over potential states. Both types of assumptions jointly are refutable by the observed data

distribution, and they may significantly improve over the no-assumptions bounds.

The bounding strategy is limited in two ways. First, the data requirements are vast because

the outcome distribution in each state is estimated separately. Furthermore, without addi-

tional assumptions it is generally impossible to extrapolate to outcomes not actually observed.

Second, a crucial issue in the construction of bounds is credible knowledge of the extremum

points, which may not always exist, and it would be helpful to develop a data driven criterion

to identify global minima or maxima.

Further research is also needed regarding inference. First, the potential finite sample bias

in the analogue estimates needs to be appropriately corrected (see Kreider and Pepper 2007,

and Manski and Pepper 2009, for related results). Second, estimation of bounds for continuous

outcomes is generally more challenging than for discrete outcomes as in the example above.

Third, the uncertainty in the support of the convexity/concavity assumption and the location

of the extremum points must be accounted for in order to derive confidence intervals with a

pre-defined coverage probability.
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Tables and Figures

Table 1: Smoking distribution conditional on schooling

Years of schooling P (S) P (Y = 0|S) P (Y ≤ 10|S) P (Y ≤ 20|S)

6 0.040 [47] 0.575 0.681 0.894

8 0.043 [51] 0.471 0.549 0.745

10 0.152 [179] 0.480 0.548 0.760

12 0.335 [395] 0.557 0.625 0.798

13.5 0.142 [167] 0.623 0.683 0.832

15 0.027 [32] 0.688 0.750 0.813

16 0.132 [156] 0.776 0.814 0.884

Source: Smoking Supplement of the 1979 US National Health Interview Survey, own cal-

culations. Notes: The estimates are based on a random sample of 1,180 observations on

employed white men aged 40-55. The numbers of observations used to estimate each cu-

mulative distribution are reported in square brackets. Y denotes the average number of

cigarettes smoked per day, S denotes the years of schooling.
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Figure 1: Convex shape of observed smoking distribution by schooling
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Source: Smoking Supplement of the 1979 US National Health Interview Survey, own calculations. Notes: The

estimates are based on a random sample of 1,180 observations on employed white men aged 40-55. Y is the

average number of cigarettes smoked per day, S is the years of schooling.
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Figure 2: Convexity bounds on the potential smoking distribution by schooling
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Source: Smoking Supplement of the 1979 US National Health Interview Survey, own calculations. Notes: The

estimates are based on a random sample of 1,103 observations on employed white men aged 35-60. Left bars

are obtained using the empirical evidence alone. The CXTS assumption asserts convexity in u with minimum

point 2 = arg minu∈S P [Y (s) ≤ y|S = u] (middle left bars), the CXTR assumption asserts convexity in s with

minimum point 2 = arg mins∈S P [Y (s) ≤ y|S = u] (middle right bars). The right bars indicate the bounds

obtained under the joint set of assumptions CXTS and CXTR.
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Figure 3: Monotonicity bounds on the potential smoking distribution by schooling
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Source: Smoking Supplement of the 1979 US National Health Interview Survey, own calculations. Notes: The

estimates are based on a random sample of 1,180 observations on employed white men aged 40-55. Left bars

are obtained using the empirical evidence alone. The MMTS assumption asserts monotonicity in u around the

minimum at 2 = arg minu∈S P [Y (s) ≤ y|S = u] (middle left bars), the MMTR assumption asserts monotonicity

in s around the minimum at 2 = arg mins∈S P [Y (s) ≤ y|S = u] (middle right bars). The right bars indicate

the bounds obtained under the joint set of assumptions MMTS and MMTR.
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Appendix: Proofs

Proof of Proposition 1.

Consider the case s < tmin (the case s > tmin is symmetric, the case s = tmin immediately

follows). If t < s, then F (y|s) = P (Y ≤ y|S = s) is a lower bound of P [Y (s) ≤ y|S = t] by

monotonicity (recall that P [Y (s) ≤ y|S = t] is monotonically decreasing in S for all t ∈ S l
t,min).

The upper bound is given by α∗P [Y (s) ≤ y|S = t1]+(1−α∗)P [Y (s) ≤ y|S = t2] (which follows

from convexity). Note that α∗ = (t2 − t)/(t2 − t1), i.e., α∗ is monotonically increasing in t2

and t1. The smallest upper bound of P [Y (s) ≤ y|S = t1] is one since t1 ≤ t, the smallest

upper bound of P [Y (s) ≤ y|S = t2] is F (y|s) for all t2 in the interval [s, tmin]. Thus, the upper

bound of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≤ α∗ + (1 − α∗)F (y|s) = F (y|s) + α∗[1 − F (y|s)]

Since the upper bound holds for all t1 ≤ t and all t2 ∈ [s, tmin], and the upper bound is smaller

the smaller α∗, the optimal (α∗-minimizing) choice of t1, t2 is t1 = t(min) and t2 = s such that

α∗ = (s − t)/(s − t(min)). If t = s, then P [Y (s) ≤ y|S = t] = F (y|s). If s < t ≤ tmin, then

P [Y (s) ≤ y|S = t] is bounded from below by zero (by monotonicity). The upper bound is

given by α∗P [Y (s) ≤ y|S = t1] + (1 − α∗)P [Y (s) ≤ y|S = t2] (by convexity). The smallest

upper bounds on P [Y (s) ≤ y|S = t1] and P [Y (s) ≤ y|S = t2] is F (y|s) which therefore is

the upper bound of P [Y (s) ≤ y|S = t]. If t > tmin, then P [Y (s) ≤ y|S = t] is bounded from

below by zero (by monotonicity). Using the convexity argument, the smallest upper bound of

P [Y (s) ≤ y|S = t1] is given by F (y|s) (in the interval [s, tmin]), the smallest upper bound of

P [Y (s) ≤ y|S = t2] is one. Thus, the upper bound of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≤ α∗F (y|s) + (1 − α∗) = 1 − α∗[1 − F (y|s)]

Since the upper bound holds for all t1 ∈ [s, tmin] and all t2 ≥ t, and the upper bound is smaller

the larger α∗, the optimal (α∗-maximizing) choice of t1, t2 is t1 = tmin and t2 = t(max) such

that α∗ = (t(max) − t)/(t(max) − tmin). Since assumption CXTS is the only assumption invoked

on the data, each lower and upper bound is sharp. Hence, the overall bounds are sharp.
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Proof of Corollary 1.

Consider the case s < tmin. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

s<t≤tmin

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>tmin

P [Y (s) ≤ y|S = t]P (S = t)

Proposition 1 provides sharp bounds on each counterfactual distribution. For the first sum,

the lower and upper bounds are F (y|s) and F (y|s)+(s−t)/(s−t(min))[1−F (y|s)], respectively.

For the second sum, the bounds are zero and F (y|s). For the third sum, the bounds are zero

and 1 − (t(max) − t)/(t(max) − tmin)[1 − F (y|s)], which yields the stated bounds.

For s = tmin the potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

Using the results of Proposition 1, the lower bound of P [Y (s) ≤ y|S = t] for all t 6= s is F (y|s).

The upper bound is F (y|s) + (tmin − t)/(tmin − t(min))[1− F (y|s)] if t < s, the upper bound is

1 − (t(max) − t)/(t(max) − tmin)[1 − F (y|s)] if t > s.

Finally, consider the case s > tmin. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<tmin

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

tmin≤t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>s

P [Y (s) ≤ y|S = t]P (S = t)

For the first sum, the bounds as stated in Proposition 1 are zero and F (y|s)+(tmin−t)/(tmin−

t(min))[1 −F (y|s)], respectively. For the second sum, the bounds are zero and F (y|s). For the

third sum, the bounds are F (y|s) and 1 − (t(max) − t)/(t(max) − s)[1 − F (y|s)].

Since the potential outcome distribution is a sum of counterfactual distributions, and the

bounds on the latter are sharp by Proposition 1, the overall bounds are sharp.

Proof of Proposition 2.

Consider the case s < tmax (the case s > tmax is symmetric, the case s = tmax immediately
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follows). If t < s, then F (y|s) = P (Y ≤ y|S = s) is an upper bound of P [Y (s) ≤ y|S = t] by

monotonicity (recall that P [Y (s) ≤ y|S = t] is monotonically increasing in S for all t ∈ S l
t,max).

The lower bound is given by α∗P [Y (s) ≤ y|S = t1]+(1−α∗)P [Y (s) ≤ y|S = t2] (which follows

from concavity). The largest lower bound of P [Y (s) ≤ y|S = t1] is zero since t1 ≤ t, the largest

lower bound of P [Y (s) ≤ y|S = t2] is F (y|s) for all t2 in the interval [s, tmax]. Thus, the lower

bound of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≥ (1 − α∗)F (y|s)

Since the lower bound holds for all t1 ≤ t and all t2 ∈ [s, tmax], and the lower bound is larger the

larger 1− α∗, or the smaller α∗, the optimal (α∗-minimizing) choice of t1, t2 is t1 = t(min) and

t2 = s such that 1−α∗ = (t− t(min))/(s− t(min)). If t = s, then P [Y (s) ≤ y|S = t] = F (y|s). If

s < t ≤ tmax, then P [Y (s) ≤ y|S = t] is bounded from above by one (by monotonicity). The

lower bound is given by α∗P [Y (s) ≤ y|S = t1] + (1 − α∗)P [Y (s) ≤ y|S = t2] (by concavity).

The largest lower bounds on P [Y (s) ≤ y|S = t1] and P [Y (s) ≤ y|S = t2] is F (y|s) which

therefore is the lower bound of P [Y (s) ≤ y|S = t]. If t > tmax, then P [Y (s) ≤ y|S = t] is

bounded from above by one (by monotonicity). Using the concavity argument, the largest

lower bound of P [Y (s) ≤ y|S = t1] is given by F (y|s) (in the interval [s, tmax]), the largest

lower bound of P [Y (s) ≤ y|S = t2] is zero. Thus, the lower bound of P [Y (s) ≤ y|S = t] can

be written as

P [Y (s) ≤ y|S = t] ≥ α∗F (y|s)

Since the lower bound holds for all t1 ∈ [s, tmax] and all t2 ≥ t, and the lower bound is larger

the larger α∗, the optimal (α∗-maximizing) choice of t1, t2 is t1 = tmax and t2 = t(max) such

that α∗ = (t(max)− t)/(t(max) − tmax). Since assumption CVTS is the only assumption invoked

on the data, each lower and upper bound is sharp. Hence, the overall bounds are sharp.

Proof of Corollary 2.

Consider the case s < tmax. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

s<t≤tmax

P [Y (s) ≤ y|S = t]P (S = t)
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+
∑

t>tmax

P [Y (s) ≤ y|S = t]P (S = t)

Proposition 2 provides sharp bounds on each counterfactual distribution. For the first sum,

the lower and upper bounds are (t − t(min))/(s − t(min))F (y|s) and F (y|s), respectively. For

the second sum, the bounds are F (y|s) and one. For the third sum, the bounds are (t(max) −

t)/(t(max) − tmax)[1 − F (y|s)] and one, which yields the stated bounds.

For s = tmax the potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

Using the results of Proposition 2, the upper bound of P [Y (s) ≤ y|S = t] for all t 6= s is

F (y|s). The lower bound is (t − t(min))/(tmax − t(min))F (y|s) if t < s, the lower bound is

(t(max) − t)/(t(max) − tmax)F (y|s) if t > s.

Finally, consider the case s > tmax. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<tmax

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

tmax≤t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>s

P [Y (s) ≤ y|S = t]P (S = t)

For the first sum, the bounds as stated in Proposition 2 are (t − t(min))/(tmax − t(min))F (y|s)

and one, respectively. For the second sum, the bounds are F (y|s) and one. For the third sum,

the bounds are (t(max) − t)/(t(max) − s)F (y|s) and F (y|s).

Since the potential outcome distribution is a sum of counterfactual distributions, and the

bounds on the latter are sharp by Proposition 2, the overall bounds are sharp.

Proof of Proposition 3.

Consider the case t < smin (the case t > smin is symmetric, the case t = smin immediately

follows). If s < t, then F (y|t) = P (Y ≤ y|S = t) is a lower bound of P [Y (s) ≤ y|S = t] by

monotonicity (recall that P [Y (s) ≤ y|S = t] is monotonically decreasing in s for all s ∈ S l
s,min).

The upper bound is given by β∗P [Y (s1) ≤ y|S = t]+(1−β∗)P [Y (s2) ≤ y|S = t] (which follows

from convexity). Note that β∗ = (s2 − s)/(s2 − s1), i.e., β∗ is monotonically increasing in s2

and s1. The smallest upper bound of P [Y (s1) ≤ y|S = t] is one since s1 ≤ s, the smallest
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upper bound of P [Y (s2) ≤ y|S = t] is F (y|t) for all s2 in the interval [t, smin]. Thus, the upper

bound of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≤ β∗ + (1 − β∗)F (y|t) = F (y|t) + β∗[1 − F (y|t)]

Since the upper bound holds for all s1 ≤ s and all s2 ∈ [t, smin], and the upper bound is smaller

the smaller β∗, the optimal (β∗-minimizing) choice of s1, s2 is s1 = s(min) and s2 = t such that

β∗ = (t − s)/(t − s(min)). If s = t, then P [Y (s) ≤ y|S = t] = F (y|t). If t < s ≤ smin, then

P [Y (s) ≤ y|S = t] is bounded from below by zero (by monotonicity). The upper bound is

given by β∗P [Y (s1) ≤ y|S = t] + (1 − β∗)P [Y (s2) ≤ y|S = t] (by convexity). The smallest

upper bounds on P [Y (s1) ≤ y|S = t] and P [Y (s2) ≤ y|S = t] is F (y|t) which therefore is the

upper bound of P [Y (s) ≤ y|S = t]. If s > smin, then P [Y (s) ≤ y|S = t] is bounded from

below by zero (by monotonicity). Using the convexity argument, the smallest upper bound of

P [Y (s1) ≤ y|S = t] is given by F (y|t) (in the interval [t, smin]), the smallest upper bound of

P [Y (s2) ≤ y|S = t] is one. Thus, the upper bound of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≤ β∗F (y|t) + (1 − β∗) = 1 − β∗[1 − F (y|t)]

Since the upper bound holds for all s1 ∈ [t, smin] and all s2 ≥ s, and the upper bound is smaller

the larger β∗, the optimal (β∗-maximizing) choice of s1, s2 is s1 = smin and s2 = s(max) such

that β∗ = (s(max)−s)/(s(max)−smin). Since assumption CXTR is the only assumption invoked

on the data, each lower and upper bound is sharp. Hence, the overall bounds are sharp.

Proof of Corollary 3.

Consider the case s < smin. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

s<t<smin

P [Y (s) ≤ y|S = t]P (S = t)

+P [Y (s) ≤ y|S = smin]P (S = smin)

+
∑

t>smin

P [Y (s) ≤ y|S = t]P (S = t)

Proposition 3 provides sharp bounds on each counterfactual distribution. For the first sum, the

lower and upper bounds are zero and F (y|t), respectively. For the second sum, the bounds are

F (y|t) and F (y|t)+ (t− s)/(t− smin)[1−F (y|t)]. The counterfactual distributions in the third
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term and the last sum is bounded by zero and F (y|t) + (smin − s)/(smin − s(min))[1 − F (y|t)].

Summarizing terms yields the stated bounds.

For s = smin the potential outcome distribution can be written as

P [Y (smin) ≤ y] = P (Y ≤ y|S = smin)P (S = smin)

+
∑

t<smin

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>smin

P [Y (s) ≤ y|S = t]P (S = t)

Using the results of Proposition 3, the lower bound of P [Y (s) ≤ y|S = t] for all t < smin and

for all t > smin is zero, the upper bound is F (y|t).

Finally, consider the case s > smin. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<smin

P [Y (s) ≤ y|S = t]P (S = t)

+P [Y (s) ≤ y|S = smin]P (S = smin)

+
∑

smin<t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>s

P [Y (s) ≤ y|S = t]P (S = t)

For the first sum, the bounds are zero and 1−(s(max)−s)/(s(max)−smin)[1−F (y|t)], respectively,

as stated in Proposition 3. The counterfactial distributions in the third term and the second

sum are bounded by F (y|t) and 1 − (s(max) − s)/(s(max) − t)[1 − F (y|t)]. The bounds in the

last sum are zero and F (y|t)].

Since the potential outcome distribution is a sum of counterfactual distributions, and the

bounds on the latter are sharp by Proposition 3, the overall bounds are sharp.

Proof of Proposition 4.

Consider the case t < smax (the case t > smax is symmetric, the case t = smax immediately

follows). If s < t, then F (y|t) = P (Y ≤ y|S = t) is an upper bound of P [Y (s) ≤ y|S = t] by

monotonicity (recall that P [Y (s) ≤ y|S = t] is monotonically increasing in s for all s ∈ S l
s,max).

The lower bound is given by β∗P [Y (s1) ≤ y|S = t]+(1−β∗)P [Y (s2) ≤ y|S = t] (which follows

from concavity). Note that β∗ = (s2 − s)/(s2 − s1), i.e., β∗ is monotonically increasing in s2

and s1. The largest lower bound of P [Y (s1) ≤ y|S = t] is zero since s1 ≤ s, the largest lower
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bound of P [Y (s2) ≤ y|S = t] is F (y|t) for all s2 in the interval [t, smax]. Thus, the lower bound

of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≥ (1 − β∗)F (y|t)

Since the lower bound holds for all s1 ≤ s and all s2 ∈ [t, smax], and the lower bound is larger

the smaller β∗, the optimal (β∗-minimizing) choice of s1, s2 is s1 = s(min) and s2 = t such that

1 − β∗ = (s − s(min))/(t − s(min)). If s = t, then P [Y (s) ≤ y|S = t] = F (y|t). If t < s ≤ smax,

then P [Y (s) ≤ y|S = t] is bounded from above by one (by monotonicity). The lower bound

is given by β∗P [Y (s1) ≤ y|S = t] + (1 − β∗)P [Y (s2) ≤ y|S = t] (by concavity). The largest

lower bounds on P [Y (s1) ≤ y|S = t] and P [Y (s2) ≤ y|S = t] is F (y|t) which therefore is the

lower bound of P [Y (s) ≤ y|S = t]. If s > smax, then P [Y (s) ≤ y|S = t] is bounded from

above by one (by monotonicity). Using the concavity argument, the largest lower bound of

P [Y (s1) ≤ y|S = t] is given by F (y|t) (in the interval [t, smax]), the largest lower bound of

P [Y (s2) ≤ y|S = t] is zero. Thus, the lower bound of P [Y (s) ≤ y|S = t] can be written as

P [Y (s) ≤ y|S = t] ≥ β∗F (y|t)

Since the lower bound holds for all s1 ∈ [t, smax] and all s2 ≥ s, and the lower bound is larger

the larger β∗, the optimal (β∗-maximizing) choice of s1, s2 is s1 = smax and s2 = s(max) such

that β∗ = (s(max)−s)/(s(max)−smax). Since assumption CVTR is the only assumption invoked

on the data, each lower and upper bound is sharp. Hence, the overall bounds are sharp.

Proof of Corollary 4.

Consider the case s < smax. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

s<t<smax

P [Y (s) ≤ y|S = t]P (S = t)

+P [Y (s) ≤ y|S = smax]P (S = smax)

+
∑

t>smax

P [Y (s) ≤ y|S = t]P (S = t)

Proposition 4 provides sharp bounds on each counterfactual distribution. For the first sum,

the lower and upper bounds are F (y|t) and one, respectively. For the second sum, the bounds

are (s − s(min))/(t − s(min))F (y|t) and F (y|t). The counterfactual distributions in the third
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term and the last sum are bounded by (s − s(min))/(smax − s(min))F (y|t). Summarizing terms

yields the stated bounds.

For s = smax the potential outcome distribution can be written as

P [Y (smax) ≤ y] = P (Y ≤ y|S = smax)P (S = smax)

+
∑

t<smax

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>smax

P [Y (s) ≤ y|S = t]P (S = t)

Using the results of Proposition 4, the lower bound of P [Y (s) ≤ y|S = t] for all t < smax and

for all t > smax is F (y|t), the upper bound is one.

Finally, consider the case s > smax. The potential outcome distribution can be written as

P [Y (s) ≤ y] = P (Y ≤ y|S = s)P (S = s) +
∑

t<smax

P [Y (s) ≤ y|S = t]P (S = t)

+P [Y (s) ≤ y|S = smax]P (S = smax)

+
∑

smax<t<s

P [Y (s) ≤ y|S = t]P (S = t)

+
∑

t>s

P [Y (s) ≤ y|S = t]P (S = t)

For the first sum, the bounds are (s(max) − s)/(s(max) − smax)F (y|t) and one, respectively, as

stated in Proposition 4. The counterfactual distributions in the third term and the second sum

are bounded by (s(max) − s)/(s(max) − t)F (y|t) and F (y|t). The counterfactual distributions in

the last sum are bounded by F (y|t)] and one.

Since the potential outcome distribution is a sum of counterfactual distributions, and the

bounds on the latter are sharp by Proposition 4, the overall bounds are sharp.
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