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Abstract

This paper establishes the first analytical formula for optimal nonlinear

shrinkage of large-dimensional covariance matrices. We achieve this by identifying

and mathematically exploiting a deep connection between nonlinear shrinkage and

nonparametric estimation of the Hilbert transform of the sample spectral density.

Previous nonlinear shrinkage methods were numerical: QuEST requires numerical

inversion of a complex equation from random matrix theory whereas NERCOME

is based on a sample-splitting scheme. The new analytical approach is more

elegant and also has more potential to accommodate future variations or extensions.

Immediate benefits are that it is typically 1,000 times faster with the same accuracy,

and accommodates covariance matrices of dimension up to 10, 000. The difficult

case where the matrix dimension exceeds the sample size is also covered.

KEY WORDS: Kernel estimation, Hilbert transform, large-dimensional asymptotics,

nonlinear shrinkage, rotation equivariance.

JEL CLASSIFICATION NOS: C13.
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1 Introduction

Given that many researchers employ the linear shrinkage estimator of Ledoit and Wolf

(2004) to estimate covariance matrices whose dimensions, p, are commensurate with the

sample size, n, attention is naturally turning to the more difficult — but potentially more

rewarding — method of nonlinear shrinkage estimation, where the transformation applied

to the sample eigenvalues must be optimal not in a space of dimension two (intercept and

slope) but in a much larger space of dimension p (that is, unconstrained transformation).

So far, there exist two very different nonlinear shrinkage methods that give satis-

factory and largely compatible results. The first method is the indirect approach of

Ledoit and Wolf (2012, 2015). It is indirect because it goes through recovery of the

population eigenvalues. They are not a necessary part of the procedure and are notori-

ously hard to pin down, so they can be thought of as nuisance parameters. The method

relies on numerical inversion of a deterministic multivariate function called the QuEST

(acronym for Quantized Eigenvalues Sampling Transform) function, which essentially

maps population eigenvalues into sample eigenvalues. The mathematics come from the

field known as Random Matrix Theory, originally from Physics, and involve heavy usage

of integral transforms.

The second method, going back to Abadir et al. (2014), is much simpler conceptually.

It involves just splitting the sample into two parts: one to estimate the eigenvectors,

and the other to estimate the eigenvalues associated with these eigenvectors. Averaging

over a large number of permutations of the sample split makes the method perform well.

Lam (2016) calls this method Nonparametric Eigenvalue-Regularized COvariance Matrix

Estimator (NERCOME). In practice, it requires brute-force spectral decomposition of

many different large-dimensional matrices. The main attraction of NERCOME lies not in

the fact that it would be more accurate or faster, but in the fact that it is decisively simpler

and more transparent, thus providing an independent and easily verifiable confirmation

for the mathematically delicate indirect method of QuEST.

The goal of this paper is to develop a method that combines the best qualities of

the three approaches described above: the speed of linear shrinkage, the accuracy of

the QuEST function, and the transparency of NERCOME. We achieve this goal through

nonparametric kernel estimation of the limiting spectral density of the sample eigenvalues

and its Hilbert transform. From the QuEST route we borrow the optimal nonlinear

shrinkage formula; from NERCOME we imitate the simplicity of interpretation and code

(we need fewer than thirty lines in Matlab); and from linear shrinkage we borrow the

speed, scalability, and analytical nature.

We contribute to the existing literature on three levels. At the conceptual level, we

show how the presence of the Hilbert transform in the shrinkage formula is the ingredient

that induces “shrinkage” by attracting nearby eigenvalues towards each other, thereby

reducing cross-sectional dispersion. The Hilbert transform is also what makes shrinkage
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a local (as opposed to global) phenomenon, which explains why there are nonlinearities.

At the technical level, we extend the kernel estimator of the limiting spectral density

function of large-dimensional sample covariance matrices developed by Jing et al. (2010)

in two important directions. First, we estimate not just the density but also its Hilbert

transform; indeed, from the point of view of optimal covariance matrix estimation, the

Hilbert transform is equally as important as the density itself. Krantz (2009, p. 17)

alludes to this importance being commonplace in mathematics: “The Hilbert transform

is, without question, the most important operator in analysis. It arises in many different

contexts, and all these contexts are intertwined in profound and influential ways.” Our

second extension of the kernel estimator is that, instead of keeping the bandwidth constant

(or uniform) for a given sample size, we let it vary in proportion to the location of a

given sample eigenvalue. This improvement confines the support of the spectral density

estimator to the positive half of the real line, as befits positive-definite matrices.; it also

reflects the scale-invariance of the problem. Finally, at the operational level, we make

the computer code two orders of magnitude simpler and faster than the ‘indirect’ route

of numerically inverting the QuEST function. As a result, we can estimate covariance

matrices of dimension 10, 000 and beyond, whereas the largest magnitude that could be

handled by nonlinear shrinkage before was 1, 000.

The remainder of the paper is organized as follows. Section 2 describes within a

finite-sample framework the basic features of the estimation problem under consideration.

Section 3 moves it to the realm of large-dimensional asymptotics and establishes necessary

background. Section 4 develops our proportional-bandwidth estimator for the limiting

sample spectral density and its Hilbert transform. Section 5 runs an extensive set

of Monte Carlo simulations. Section 6 studies the robustness of the performance of

the analytical nonlinear shrinkage estimator against alternative choices of kernel and

bandwidth. Section 7 concludes. An appendix contains all mathematical proofs, further

simulation results, the extension to the singular case, and our code.

2 Finite Samples

In this section, and this section only, the sample size, n, and covariance matrix dimension,

p, are fixed for expositional purposes. Even though n is temporarily fixed, we still

subscript the major objects with n in order to maintain compatibility of notation with the

subsequent sections that let n (and p) go to infinity under large-dimensional asymptotics.

2.1 Rotation Equivariance

Let Σn denote a p-dimensional population covariance matrix. A mean-zero independent

and identically distributed (i.i.d.) i.i.d. sample of n observations Yn generates the sample
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covariance matrix Sn
..= Y ′

nYn/n. Its spectral decomposition is Sn = UnΛnU
′
n, where Λn

is the diagonal matrix, whose elements are the eigenvalues λn = (λn,1, . . . , λn,p) sorted

in nondecreasing order without loss of generality, and an orthogonal matrix Un whose

columns [un,1 . . . un,p] are corresponding eigenvectors. We seek an estimator of the form

Σ̂n
..= Un∆̂nU

′
n, where ∆̂n is a diagonal matrix whose elements δ̂n =

(
δ̂n,1, . . . , δ̂n,p

)
∈

(0,+∞)p are a function of λn. Thus, Σ̂n =
∑p

i=1 δ̂n,i · un,iu
′
n,i.

This is the framework of rotation equivariance championed by Stein (1986, Lecture 4).

Rotating the original set of p variables is viewed as an uninformative linear transformation

that must not contaminate the estimation procedure. The underlying philosophy is that

all orthonormal bases of the Euclidian space Rp are equivalent. By contrast, in the sparsity

literature, the original basis is special because a matrix that is sparse in the original basis

is generally no longer sparse in any other basis. Rotation equivariance does not take a

stance on the orientation of the eigenvectors of the population covariance matrix.

2.2 Loss Function

A perennial question is how to quantify the usefulness of a covariance matrix estimator.

It devolves into asking what covariance matrix estimators are used for. They are often

used to find combinations of the original variables that have minimum variance under

a linear constraint. Important — and mathematically equivalent — examples include

Markowitz (1952) portfolio selection in finance, Capon (1969) beamforming in signal

processing, and optimal fingerprinting (Ribes et al., 2009) in climate research. The

quality of the covariance matrix estimator is then measured by the true variance of the

linear combination of the original variables: lower variance is better.

On this basis, a metric that is agnostic as to the actual orientation of the linear

constraint vector, and is justified under large-dimensional asymptotics, has been proposed

by Engle et al. (2017, Definition 1). It can be expressed in our notation as

LMV
n

(
Σ̂n,Σn

)
..=

Tr
(
Σ̂−1

n ΣnΣ̂
−1
n

)/
p

[
Tr
(
Σ̂−1

n

)/
p
]2 − 1

Tr
(
Σ−1

n

)
/p

. (2.1)

LMV
n represents the true variance of the linear combination of the original variables that

has the minimum estimated variance, under a generic linear constraint, after suitable

normalization. Further justification for the minimum variance (MV) loss function is

provided by Engle and Colacito (2006) and Ledoit and Wolf (2017a). The optimal

nonlinear shrinkage formula in finite samples is identified by the following proposition.

Proposition 2.1. An estimator Σ̂n
..=
∑p

i=1 δ̂n,i ·un,iu
′
n,i minimizes the MV loss function

LMV

n defined in Equation (2.1) within the class of rotation-equivariant estimators specified

in Section 2.1 if and only if there exists a scalar βn ∈ (0,+∞) such that δ̂n,i = βn·u′
n,iΣnuni

for i = 1, . . . , p.
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Among all the possible scaling factors βn ∈ (0,+∞), the default value βn = 1 will

be retained from here onwards because
∑p

i=1 u
′
n,iΣnun,i = Tr(Σn). Thus, finite-sample

optimal nonlinear shrinkage replaces the sample eigenvalues λn with the unobservable

quantity

d
∗
n

..=
(
d∗n,1, . . . , d

∗
n,p

)
..=
(
u′
n,1Σnun,1, . . . , u

′
n,pΣnun,p

)
, (2.2)

prior to recombining it with the sample eigenvectors to form the (non-feasible) covariance

matrix estimator

S∗
n

..=

p∑

i=1

d∗n,i · un,iu
′
n,i =

p∑

i=1

(
u′
n,iΣnun,i

)
· un,iu

′
n,i . (2.3)

Remark 2.1. Section 3.1 of Ledoit and Wolf (2012) shows that the same estimator S∗
n

is also finite-sample optimal with respect to the (squared) Frobenius loss function, which

is defined for generic estimator Σ̂n as

LFR
n

(
Σ̂n,Σn

)
..=

1

p
Tr
[(
Σ̂n − Σn)

2
]
. (2.4)

This is the loss function with respect to which Ledoit and Wolf’s (2004) linear shrinkage

estimator is optimized an Appendix B contains corresponding Monte Carlo simulations.

3 Large-Dimensional Asymptotics

Further investigations of the nonlinear shrinkage formula that maps λn into d
∗
n are

mathematically arduous or even unattainable in finite samples, but decisive progress

can be made by letting the dimension go to infinity together with the sample size.

3.1 Assumptions

The major assumptions that define the large-dimensional asymptotic framework are listed

below. They are similar, for example, to the ones made by Ledoit and Wolf (2018).

Assumption 3.1 (Dimension). Let n denote the sample size and p ..= p(n) the number of

variables. It is assumed that the “concentration (ratio)” cn ..= p/n converges, as n → ∞,

to a limit c ∈ (0, 1) called the “limiting concentration (ratio)”. Furthermore, there exists

a compact interval included in (0, 1) that contains p/n for all n large enough.

The case c > 1, where the sample covariance matrix is singular, is covered in Appendix C.

Definition 1. The empirical distribution function (e.d.f.) of a collection of real numbers

(α1, . . . , αp) is the nondecreasing step function x 7−→ ∑p
i=1 1{αi≤x}/p, where 1 denotes

the indicator function.
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Assumption 3.2 (Population Covariance Matrix).

a. The population covariance matrix Σn is a nonrandom symmetric positive-definite

matrix of dimension p× p.

b. Let τ n
..= (τn,1, . . . , τn,p)

′ denote a system of eigenvalues of Σn, and Hn the e.d.f.

of population eigenvalues. It is assumed that Hn converges weakly to a limit law H,

called the “limiting spectral distribution (function)”.

c. Supp(H), the support of H, is the union of a finite number of closed intervals,

bounded away from zero and infinity.

d. There exists a compact interval [T , T ] ⊂ (0,∞) that contains
{
τn,1, . . . , τn,p

}
for

all n large enough.

Assumption 3.3 (Data Generating Process). Xn is an n × p matrix of i.i.d. random

variables with mean zero, variance one, and finite 16th moment. The matrix of

observations is Yn
..= Xn×

√
Σn. Neither

√
Σn nor Xn are observed on their own: only Yn

is observed.

Remark 3.1. The assumption of finite 16th moment is used in Theorem 3 of Jing et al.

(2010), which we will utilize in the proof of our own Theorem 4.1. However, these authors’

Remark 1 conjectures that a finite 4th moment is enough, which is supported by Monte

Carlo simulations we report in Table 4.

The sample covariance matrix Sn, its eigenvalues λn
..= (λn,1, . . . , λn,p) and eigenvec-

tors Un
..= [un,1 . . . un,p] have already been defined in Section 2.1. The e.d.f. of sample

eigenvalues is the function Fn(x) ..=
∑p

i=1 1{x≥λn,i}/p for x ∈ R.

3.2 Random Matrix Theory

The literature on the eigenvalues of the sample covariance matrix under large-dimensional

asymptotics is based on a foundational result by Marčenko and Pastur (1967). It has been

strengthened and broadened by subsequent authors including Silverstein and Bai (1995)

and Silverstein (1995), among others. The latter’s Theorem 1.1 implies that, under

Assumptions 3.1–3.3, there exists a limiting sample spectral distribution F such that

∀x ∈ R Fn(x)
a.s.−→ F (x). The limiting sample spectral c.d.f. F is uniquely determined

by c and H; therefore, we will refer to it as Fc,H
..= F whenever clarification is needed.

Assumptions 3.1–3.3 together with Theorem 1.1. of Bai and Silverstein (1998) imply

that the support of F , denoted by Supp(F ), is the union of a finite number ν ≥ 1 of

compact intervals: Supp(F ) =
⋃ν

k=1[ak, bk], where 0 < a1 < b1 < · · · < aν < bν < ∞.

3.3 Hilbert Transform

At this juncture, it is necessary to introduce an important mathematical tool called the

Hilbert transform. It is defined as convolution with the Cauchy kernel dt
πt
.
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Definition 2. The Hilbert transform of a real function g is defined as

∀x ∈ R Hg(x) ..=
1

π
PV

∫ +∞

−∞
g(t)

dt

t− x
. (3.1)

Here, PV denotes the Cauchy Principal Value, which is used to evaluate the singular

integral in the following way:

PV

∫ +∞

−∞
g(t)

dt

t− x
..= lim

ε→0+

[∫ x−ε

−∞
g(t)

dt

t− x
+

∫ +∞

x+ε

g(t)
dt

t− x

]
. (3.2)

Recourse to the Cauchy Principal Value is needed because the Cauchy kernel is singular,

as a consequence of which the integral does not converge in the usual sense.

The intuition behind the Hilbert transform is that it operates like a local attraction

force. It is very positive if there are heavy mass points slightly larger than you, so it

pushes you up (towards them), but very negative if they are slightly smaller, so it pushes

you down (also towards them). When the mass points lie far away, it fades out to zero like

gravitational attraction does. These effects can be deduced simply by visual inspection

of the Cauchy kernel. Figure 1 confirms them visually by plotting the Hilbert transform

of four well-known densities.

-1 0 1 2

-1

-0.5

0

0.5

1

Uniform

-10 -5 0 5 10
-0.2

0

0.2

0.4
Cauchy

-4 -2 0 2 4
-0.4

-0.2

0

0.2

0.4
Semicircle

Density
Hilbert Transform

-1 0 1 2
-4

-2

0

2

4
Arcsine

Figure 1: Hilbert transform of four densities. The transform is strongly positive to the

left of the center of mass, strongly negative to the right, and vanishes away from the

center of mass.
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Obviously, the regularity of the Hilbert transform is a direct reflection of the regularity

of the underlying density, but the main effects as described above remain true across the

board. The formulas used in Figure 1 come from Erdélyi (1954, Chapter XV). They are

reproduced for convenience in Table 1.

Density Hilbert Transform

Uniform f(x) = 1{0≤x<1} Hf (x) =
1

π
log

∣∣∣∣
1− x

x

∣∣∣∣

Cauchy f(x) =
1

π(x2 + 1)
Hf (x) = − x

π(x2 + 1)

Semicircle f(x) =

√
max{4− x2, 0}

2π
Hf (x) =

−x+ sgn(x)
√

max{x2 − 4, 0}
2π

Arcsine f(x) =





0 x < 0
1

π
√
x(1− x)

x ∈ (0, 1)

0 x > 1

Hf (x) =





1

π
√
x(x− 1)

x < 0

0 x ∈ (0, 1)

− 1

π
√
x(x− 1)

x > 1

Table 1: Formulas for various densities and their Hilbert transforms.

Theorem 1.1 of Silverstein and Choi (1995) shows that the limiting spectral density

f ..= F ′ exists and is continuous, and that its Hilbert transformHf exists and is continuous

too. As we shall see below, f andHf are the two key ingredients in computing the optimal

nonlinear shrinkage formula.

3.4 Optimal Nonlinear Shrinkage Formula

We consider the same class of nonlinear shrinkage estimators as Ledoit and Wolf (2017a).

It constitutes the large-dimensional asymptotic counterpart to the class of rotation-

equivariant covariance matrix estimators introduced in Section 2.1.

Definition 3 (Class of Estimators). Covariance matrix estimators are of the type

Σ̂n
..= Un∆̂nU

′
n, where ∆̂n is a diagonal matrix: ∆̂n

..= Diag
(
δ̂n(λn,1) . . . , δ̂n(λn,p)

)
, and

δ̂n is a (possibly random) real univariate function which can depend on Sn.

The shrinkage function must be as well-behaved asymptotically as the population spectral

e.d.f.

Assumption 3.4 (Limiting Shrinkage Function). There exists a nonrandom real

univariate function δ̂ defined on Supp(F ) and continuously differentiable such that

δ̂n(x)
a.s−→ δ̂(x), for all x ∈ Supp(F ). Furthermore, this convergence is uniform over

x ∈ ⋃ν
k=1[ak + η, bk − η], for any small η > 0. Finally, for any small η > 0, there exists a
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finite nonrandom constant K̂ such that almost surely, over the set x ∈ ⋃ν
k=1[ak−η, bk+η],

δ̂n(x) is uniformly bounded by K̂ from above and by 1/K̂ from below, for all n large

enough.

Within this framework, the asymptotically optimal nonlinear shrinkage formula is known.

Theorem 3.1. Define the oracle nonlinear shrinkage function

∀x ∈ Supp(F ) do(x) ..=
x

[
πcxf(x)

]2
+
[
1− c− πcxHf (x)

]2 . (3.3)

If Assumptions 3.1–3.4 are satisfied, then the following statements hold true:

(a) The oracle estimator of the covariance matrix

So
n

..= UnD
o
nU

′
n where Do

n
..= Diag

(
do(λn,1), . . . , d

o(λn,p)
)

(3.4)

minimizes in the class of nonlinear shrinkage estimators defined in Assumption

3.4 the almost sure limit of the minimum variance loss function introduced in

Section 2.2, as p and n go to infinity together in the manner of Assumption 3.1.

(b) Conversely, any covariance matrix estimator Σ̂n that minimize the a.s. limit of

the minimum-variance loss function (2.1) is asymptotically equivalent to So
n up to

scaling, in the sense that its limiting shrinkage function is of the form δ̂ = α do for

some positive constant α.

The scaling factor α in part (b) will henceforth be set equal to one in order to ensure

that the estimator has the same trace as the sample covariance matrix and the population

covariance matrix asymptotically.

Note that So
n already represents considerable progress with respect to the finite-sample

optimal estimator S∗
n of Equation (2.3): We no longer need to know the full population

covariance matrix Σn (estimating p(p+1)/2 parameters is hopeless when p is of the same

order of magnitude as n), instead we just need to know its eigenvalues τ n (p parameters

only, which is a priori extractable from a dataset of dimension p × n). The value of

Equation (3.3) is that it transforms what was apparently an infeasible problem into one

that may become feasible provided proper techniques are deployed, thereby avoiding the

‘curse of dimensionality’.

Remark 3.2. The quantities
(
do(λn,1), . . . , d

o(λn,p)
)
represent large-dimensional asymp-

totic counterparts to the finite-sample optimal quantities
(
u′
n,1Σnun,1, . . . , u

′
n,pΣnun,p

)
of

Equation (2.2). Equation (3.3) was first discovered by Ledoit and Péché (2011, Theo-

rem 3), based on a generalization of the Fundamental Equation of Random Matrix Theory

originally due to Marčenko and Pastur (1967). The formula here is the first one expressed

without any reference to complex numbers; previous (mathematically equivalent) versions

used the complex-valued Stieltjes transform instead of the Hilbert transform.
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3.5 Shrinkage as Local Attraction via the Hilbert Transform

Equation (3.3) may look initially daunting, yet intuition can be gleaned by considering

a slight modification of the limiting sample spectral density: ϕ(x) ..= πxf(x). Multipli-

cation by x captures the fact that larger eigenvalues exert more pull than smaller ones,

everything else being equal. Qualitatively speaking, ϕ acts as surrogate for the density f ,

in the sense that it measures where the influential eigenvalues lie. Its Hilbert transform

is Hϕ(x) = 1 + πxHf (x). In terms of the reweighted density function ϕ, Formula (3.3)

becomes

∀x ∈ Supp(F ) do(x) =
x

1 + c2
[
ϕ(x)2 +Hϕ(x)2

]
− 2cHϕ(x)

, (3.5)

which is easier to interpret. If the limiting concentration ratio c is negligible, then

the denominator is close to one, which would mean no shrinkage: This is why the

sample covariance matrix works well under traditional (fixed-dimensional) asymptotics.

As c increases, however, (noticeable) shrinkage must occur. Let us set aside the term

c2
[
ϕ(x)2 + Hϕ(x)

2
]
because it is negligible for small c and generally innocuous: Given

that it is always positive, it only serves to augment the first term 1. The key factor

here is sign of the last term 2cHϕ(x). It works as a local attraction force. From the

point of view of any given eigenvalue λn,i, if there is a heavy mass of other eigenvalues

hovering slightly above, 2cHϕ(λn,i) will be strongly positive, which will push λn,i higher

in the direction of its closest and most numerous neighbors. Conversely, if there are

many eigenvalues hovering slightly below λn,i, then 2cHϕ(λn,i) will be strongly negative,

which will pull λn,i lower — also in the direction of its most immediate neighbors. This

attraction phenomenon is intrinsically local because the absolute magnitude of the Hilbert

transform Hϕ(λn,i) fades away as the other eigenvalues become more distant from λn,i.

The local attraction field generated by the Hilbert transform is why we speak of

“shrinkage”: the spread of covariance matrix eigenvalues reduces when they get closer

to one another. Linear shrinkage is handling this effect at the global level, that is, by

shrinking all sample eigenvalues towards their grand mean. However, given that we now

know that the attraction is essentially a local phenomenon that fades away at great

distances, we must shrink any given eigenvalue towards those of its neighbors that exert

the greatest pull. Thus, it could be that it is optimal to “nonlinearly shrink” a relatively

small eigenvalue (that is, one that is below average) downwards, if there is a sufficiently

massive cluster of slightly inferior eigenvalues attracting it towards them, which cannot

happen with linear shrinkage instead: Any eigenvalue below average will be brought up

necessarily. Figure 2 provides a graphical illustration for these contrasting behaviors.

In this example, the average eigenvalue is equal to 1.25. Sample eigenvalues below

the average but above 1 need to be “shrunk” downwards because they are attracted by

the cluster to their immediate left. Similarly, sample eigenvalues above the average but

below 1.75 need to be “shrunk” upwards because they are attracted by the cluster to
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Figure 2: Local Attraction Effect. 2, 500 population eigenvalues are equal to 0.8, and

1, 500 are equal to 2. The sample size is n = 18, 000. At the bottom of the figure is a

histogram displaying the location of the sample eigenvalues.

their immediate right. Linear shrinkage, being a global operator, is not equipped to sense

a disturbance in the force: It applies the same shrinkage intensity across the board and

shrinks all eigenvalues towards the average of 1.25.

3.6 Practical Considerations

d
o
n

..=
(
do(λn,1), . . . , d

o(λn,p)
)
represent the large-dimensional counterparts of the finite-

sample optimal eigenvalues d
∗
n =

(
d∗n,1, . . . , d

∗
n,p

)
of Equation (2.2). d

o
n is an oracle

estimator, meaning that it cannot be computed from observable data, since it depends

on the limiting sample spectral density f , its Hilbert transform Hf , and the limiting

concentration ratio c. Nonetheless, it constitutes a useful stepping stone towards the

ultimate objective, which is the construction of a bona fide estimator (that is, one that is

feasible in practice) with the same asymptotic properties.

Remark 3.3. Ledoit and Wolf (2018, Section 4.2) prove that the estimator So
n is also

optimal within the class of rotation-equivariant estimators of Assumption 3.4 with respect

to the Frobenius norm. Intuitively, this is because the two corresponding finite-sample

optimal estimators are identical, as pointed out in Remark 2.1.

There is considerable interest in estimating the nonlinearly shrunk eigenvalues d
o
n

from λn only. For the limiting concentration ratio c, there is no problem: we can just

plug its natural estimator cn ..= p/n into formula (3.3). Things are more complicated,
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however, for the limiting sample spectral density f and its Hilbert transform Hf . Given

that the sample spectral e.d.f Fn converges to F almost surely, the obvious idea would

have been to plug its derivative F ′
n in place of f :

λn,i[
π
p

n
λn,iF

′
n(λn,i)

]2
+
[
1− p

n
− π

p

n
λn,iHF ′

n
(λn,i)

]2 . (3.6)

Unfortunately, this approach cannot work because Fn is discontinuous at every λn,i, so

its derivative does not exist at these points, and a fortiori the Hilbert transform of F ′
n

does not exist either. This problem has been a major stumbling block in the literature.

The new solution that we propose is to use kernel estimators to estimate f and Hf .

4 Asymptotic Theory

4.1 Kernel Requirements

Assumption 4.1 (Kernel). Let k(x) denote a continuous, symmetric, nonnegative

probability density function (p.d.f.) whose support is a compact interval [−R,R], with

mean zero and variance one. We assume throughout that this kernel satisfies the following

conditions:

1. Its Hilbert transform Hk exists and is continuous on R.

2. Both the kernel k and its Hilbert transform Hk are functions of bounded variation.

4.2 Proportional Bandwidth

The approach that we propose uses a variable bandwidth proportional to the magnitude

of a given sample eigenvalue. Thus, the bandwidth applied to the sample eigenvalue λn,i

is equal to hn,i
..= λn,ihn, for i = 1, . . . , p, where hn is a vanishing sequence of positive

numbers to be specified below. In terms of nomenclature, we can call hn the “global

bandwidth” and hn,i a “locally adaptive” bandwidth.

The advantages of the proportional bandwidth relative to the simpler and more

common fixed one are threefold. First, if hn < 1/R, which will be the case for large

enough n, then the support of the kernel estimator will remain in the positive half of

the real line. This is desirable because the covariance matrix is positive definite. Second,

estimating a covariance matrix is a scale-equivariant problem: If we multiply all the

variables by some α 6= 0, then the estimator should remain exactly the same except

for rescaling by the coefficient α2. Using a global bandwidth that depends solely on n

but not on the scale of the eigenvalues would violate this desirable feature. Third, the

mathematical nature of the mapping (c,H) 7→ Fc,H is such that large eigenvalues get

smudged more than small ones. Given the somewhat qualitative nature of this statement,

a visual illustration shall suffice.
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Figure 3: Limiting sample spectral density f when the population eigenvalues are

{1, 2, . . . , 5}, each with weight 1/5.

In Figure 3, the small eigenvalues (to the left) get spread out less than the large ones

(to the right). Indeed, the width of the support interval associated with a given eigenvalue

is almost exactly proportional to the magnitude of the eigenvalue itself. This is why a

‘one-size-fits-all’ approach to bandwidth selection is ill-suited for the estimation of the

spectral density.

Additional justification for proportional bandwidth is given by the “arrow model” of

Ledoit and Wolf (2018). This model shows that, if the largest population eigenvalue τn,p

becomes very large and detaches itself from the bulk of the other population eigenvalues,

then the corresponding sample eigenvalue will also detach itself, and fall somewhere within

an interval of width proportional to τn,p.

A similar phenomenon occurs in the simple case where all but one of the population

eigenvalues are equal to zero. Then all sample eigenvalues but one are equal to zero,

and the nonzero eigenvalue behaves like a variance. It is well known that the standard

deviation of the sample variance (based on i.i.d. data) is proportional to the population

variance. Under traditional (finite-dimensional) asymptotics, it has been long known

since Girshick (1939, p. 217) that the limiting standard deviation of a sample eigenvalue

is directly proportional to the eigenvalue itself.

4.3 Kernel Estimators

The kernel estimator of the sample spectral p.d.f. f is

∀x ∈ R f̃n(x) ..=
1

p

p∑

i=1

1

hn,i

k

(
x− λn,i

hn,i

)
=

1

p

p∑

i=1

1

λn,ihn

k

(
x− λn,i

λn,ihn

)
.
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The kernel estimator of its Hilbert transform Hf is

Hf̃n
(x) ..=

1

p

p∑

i=1

1

hn,i

Hk

(
x− λn,i

hn,i

)
=

1

p

p∑

i=1

1

λn,ihn

Hk

(
x− λn,i

λn,ihn

)
=

1

π
PV

∫
f̃n(t)

x− t
dt .

4.4 Uniform Consistency

Our main results are as follows. All proofs are in Appendix A.

Theorem 4.1. Suppose that the kernel k(x) satisfies the conditions of Section 4.1. Let hn

be a sequence of positive numbers satisfying

lim
n→∞

nh5/2
n = ∞ and lim

n→∞
hn = 0 . (4.1)

Moreover, suppose that Assumptions 3.1–3.3 are satisfied. Then, both

sup
x∈Supp(F )

∣∣f̃n(x)− f(x)
∣∣ −→ 0 and sup

x∈Supp(F )

∣∣Hf̃n
(x)−Hf (x)

∣∣ −→ 0 (4.2)

in probability.

The two kernel estimators enable us to shrink the sample eigenvalues nonlinearly as

follows:

∀i = 1, . . . , p d̃n,i ..=
λn,i[

π
p

n
λn,if̃n(λn,i)

]2
+
[
1− p

n
− π

p

n
λn,iHf̃n

(λn,i)
]2 . (4.3)

The shrunk eigenvalues d̃n
..= (d̃n,1, . . . , d̃n,p)

′ are then stacked into the diagonal of the

diagonal matrix D̃n to generate a covariance matrix estimator

S̃n
..= UnD̃nU

′
n =

p∑

i=1

d̃n,i · un,iu
′
n,i . (4.4)

The covariance matrix estimator based on the kernel method performs as well in the large-

dimensional asymptotic limit as the nonlinear shrinkage estimator of Ledoit and Wolf

(2012, 2015) based on the indirect method, as the following corollary attests.

Corollary 4.1. Under Assumptions 3.1–3.4, the covariance matrix estimator S̃n mini-

mizes in the class of nonlinear shrinkage estimators defined in Assumption 3.4 the limit in

probability of the minimum variance loss function LMV

n , as p and n go to infinity together.

Remark 4.1. The above statement remains true if we replace the minimum variance

loss function LMV
n with the Frobenius loss function LFR

n . Indeed, Section 4.2 of

Ledoit and Wolf (2018) proves that the same estimator So
n is also optimal within the

class of rotation-equivariant estimators of Assumption 3.4 with respect to the Frobenius

norm. Intuitively, this is because the finite-sample optimal estimator of Equation (2.2)

is the same as the finite-sample optimal estimator with respect to the Frobenius norm,

given in Ledoit and Wolf (2012, Equation (3.2)).
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4.5 Epanechnikov Kernel

The two most popular kernels for density estimation are the Gaussian kernel and the

Epanechnikov (1969) kernel. We choose the latter for four reasons:

Common Sense The support of the Gaussian kernel is the real line, yet covariance

matrix eigenvalues cannot be negative. By contrast, the Epanechnikov kernel has

bounded support.

Asymptotic Theory Assumption 4.1 requires a kernel with bounded support for

uniform consistency to hold as per Theorem 4.1.

Optimality The Epanechnikov kernel minimizes mean-squared error, at least for i.i.d.

data.

Computation The Hilbert transform of the Gaussian kernel is the Dawson (1897)

integral, which is a higher-transcendental function extremely slow to compute.

The kernel originally introduced by Epanechnikov (1969) as per his Equation (13) has

unit variance, support
[
−
√
5,
√
5
]
, and density

∀x ∈ R κE(x) ..=
3

4
√
5

[
1− x2

5

]+
. (4.5)

This is the default kernel used for univariate density estimation by the popular software

STATA, among others. Its Hilbert transform does not appear to have been computed in

the literature. We derive it in the following proposition.

Proposition 4.1.

∀x ∈ R HκE(x) =





− 3x

10π
+

3

4
√
5π

(
1− x2

5

)
log

∣∣∣∣∣

√
5− x√
5 + x

∣∣∣∣∣ if |x| 6=
√
5

− 3x

10π
if |x| =

√
5

(4.6)

Proposition 4.2. The Epanechnikov kernel satisfies Assumption 4.1.

From this we deduce for all i = 1, . . . , p

f̃n(λn,i) =
1

p

p∑

j=1

3

4
√
5λn,jhn

[
1− 1

5

(
λn,i − λn,j

λn,jhn

)2
]+

(4.7)

Hf̃n
(λn,i) =

1

p

p∑

j=1

{
−3(λn,i − λn,j)

10πλ2
n,jh

2
n

+
3

4
√
5πλn,jhn

[
1− 1

5

(
λn,i − λn,j

λn,jhn

)2
]

× log

∣∣∣∣∣

√
5λn,jhn − λn,i + λn,j√
5λn,jhn + λn,i − λn,j

∣∣∣∣∣

}
. (4.8)

Throughout, the last term in (4.8) is understood to be a zero in the unlikely event that

(λn,i − λn,j)
2 happens to be exactly equal to 5λ2

n,jh
2
n. Alternative kernels are explored as

robustness checks through Monte Carlo simulations in Section 6.
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4.6 Choice of Bandwidth

The most consequential choice relating to the bandwidth has already been justified in

Section 4.2: We introduced a locally adaptive bandwidth proportional to the magnitude

of the sample eigenvalues: hn,i = λn,ihn.

As for the global bandwidth hn, Theorem 4.1 requires it to be a negative exponent

of n strictly less than 2/5. Jing et al. (2010) is the only previous article we are aware of

that uses a kernel to estimate the sample spectral density. They select the exponent 1/3,

which is the first ‘simple’ fraction below the authorized boundary of 2/5. There is always

the potential for disagreement about what the ‘right’ exponent should be, so to anchor

on solid ground we just follow in their footsteps:

hn
..= n−1/3 =⇒ ∀i = 1, . . . , p hn,i

..= λn,ihn = λn,in
−1/3 . (4.9)

The kernel, location- and bandwidth-adjusted for the ith sample eigenvalue,

1

hn,i

κE

(
x− λn,i

hn,i

)
,

has support is
[
λn,i

(
1−

√
5n−1/3

)
, λn,i

(
1 +

√
5n−1/3

)]
. The lower boundary is in the

positive half-line if and only if n > 5
√
5 ≈ 11.2, therefore it is unadvisable to use this large-

dimensional asymptotic procedure when p < 12. Alternative choices of the bandwidth

are explored as robustness checks through Monte Carlo simulations in Section 6.

4.7 Summary: The Analytical Formula

Compute the spectral decomposition of the sample covariance matrix as per Section 2.1:

Sn =..

p∑

i=1

λn,i · un,iu
′
n.i .

Choose the global bandwidth as per Section 4.6:

hn
..= n−1/3 .

Specify the locally adaptive bandwidth as per Section 4.2:

∀j = 1, . . . , n hn,j
..= λn,jhn .

Estimate the spectral density with the Epanechnikov kernel from Section 4.5:

f̃n(λn,i) ..=
1

p

p∑

j=1

3

4
√
5hn,j

[
1− 1

5

(
λn,i − λn,j

hn,j

)2
]+

,
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and its Hilbert transform as per Section 3.3 and Proposition 4.1:

Hf̃n
(λn,i) ..=

1

p

p∑

j=1

{
−3(λn,i − λn,j)

10πh2
n,j

+
3

4
√
5πhn,j

[
1− 1

5

(
λn,i − λn,j

hn,j

)2
]

× log

∣∣∣∣∣

√
5hn,j − λn,i + λn,j√
5hn,j + λn,i − λn,j

∣∣∣∣∣

}
.

Compute the asymptotically optimal nonlinear shrinkage formula as per Section 3.4:

∀i = 1, . . . , p d̃n,i ..=
λn,i[

π
p

n
λn,if̃n(λn,i)

]2
+
[
1− p

n
− π

p

n
λn,iHf̃n

(λn,i)
]2 .

Recompose the covariance matrix estimator as per Section 4.4:

S̃n
..=

p∑

i=1

d̃n,i · un,iu
′
n,i .

Computer code for this analytical formula is in Appendix D.

5 Monte Carlo Simulations

5.1 Competitors

We compare the performance of the following six covariance matrix estimators:

Sample The sample covariance matrix Sn.

Linear The linear shrinkage estimator of Ledoit and Wolf (2004).

Analytical The analytical nonlinear shrinkage formula S̃n of Section 4.7.

QuEST The nonlinear shrinkage estimator of Ledoit and Wolf (2015), which is based

on numerical inversion of the QuEST function.

NERCOME The Nonparametric Eigenvalue-Regularized COvariance Matrix Estimator

of Lam (2016), which is based on sample splitting.

FSOPT The finite-sample optimal estimator S∗
n defined in Equation (2.3), which would

require knowledge of the unobservable population covariance matrix Σn, and thus

is not applicable in the real world but serves as a useful benchmark.

The Matlab code for NERCOME was generously provided by Professor Clifford Lam

from the Department of Statistics at the London School of Economics. The code for the

QuEST package comes from the numerical implementation detailed in Ledoit and Wolf

(2017b) and is freely downloadable from the academic website of the second author.
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5.2 Percentage Relative Improvement in Average Loss

The main quantity of interest is the Percentage Relative Improvement in Average Loss

(PRIAL). It is defined for a generic estimator Σ̂n as

PRIALMV
n

(
Σ̂n

)
..=

E
[
LMV

n

(
Sn,Σn)

]
− E

[
LMV

n

(
Σ̂n,Σn)

]

E
[
LMV

n

(
Sn,Σn)

]
− E

[
LMV

n

(
S∗
n,Σn)

] × 100% , (5.1)

where LMV
n denotes the Minimum-Variance loss function of Section 2.2, Σn denotes

the population covariance matrix, and S∗
n denotes the finite-sample-optimal rotation-

equivariant estimator of Equation 2.3, which is only observable in Monte Carlo simulations

but not in reality. The expectation E[·] is in practice taken as the average across

max{100,min{1000, 105/p}}Monte Carlo simulations; for example, in dimension p = 500,

we run 200 simulations instead of 1000. We do so because in higher dimensions the results

are more stable across random simulations, so it is not necessary to run so many.

By construction, PRIALMV
n (Sn) = 0%. It means that the sample covariance matrix

represents the baseline reference against which any loss reduction is measured. An

estimator that has lower (higher) expected loss than the sample covariance matrix will

score a positive (negative) PRIAL.

Also by construction PRIALMV
n (S∗

n) = 100% because this is the maximum amount of

loss reduction that can be attained by nonlinear shrinkage within the rotation-equivariant

framework of Section 2.1, as shown in Proposition 2.1. Given that the construction

of S∗
n requires knowledge of the unobservable population covariance matrix Σn, 100%

improvement represents an upper limit that is unattainable in reality. The question is

how close to the speed-of-light of 100% a bona fide estimator can get.

Recall that the loss function LMV
n represents the true variance of the linear combination

of the original variables that has minimum estimated variance under generic linear

constraint, suitably normalized. Therefore, the PRIAL measures how much of the

potential for variance reduction is captured by any given shrinkage technique.

5.3 Baseline Scenario

The simulations are organized around a baseline scenario, where each parameter will be

subsequently varied in order to assess the robustness of the conclusions. The baseline

scenario has the following characteristics:

• the matrix dimension is p = 200;

• the sample size is n = 600; therefore, the concentration ratio p/n is equal to 1/3;

• the condition number of the population covariance matrix is 10;

• 20% of the population eigenvalues are equal to 1, 40% are equal to 3, and 40% are

equal to 10;

• and the variates are normally distributed.
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The distribution of the population eigenvalues is a particularly interesting and difficult

case introduced and analyzed in detail by Bai and Silverstein (1998).

Table 2 reports estimator performances under the baseline scenario. Computational

times in milliseconds come from a 64-bit, quad-core 4.00GHz Windows desktop PC

running Matlab R2016a.

Estimator Sample Linear Analytical QuEST NERCOME FSOPT

Average Loss 2.71 2.10 1.52 1.50 1.58 1.48

PRIAL 0% 50% 97% 98% 92% 100%

Time (ms) 1 2 3 2, 346 3, 071 3

Table 2: Simulation results for the baseline scenario.

The 0% PRIAL for the sample covariance matrix and the 100% PRIAL for the finite-

sample optimal estimator are by construction. Linear shrinkage captures half of

the potential for variance reduction. Nonlinear shrinkage captures 92%–98% of the

potential, depending on the method used (NERCOME/Analytical/QuEST), which is

a very satisfactory number.

One key lesson is that the analytical formula developed in the present paper is faster

than all the other nonlinear shrinkage methods by two orders of magnitude. Thus, it

delivers the best of both worlds: QuEST-tier variance reduction at Linear-tier speed.

Note also that 2 of the 3 milliseconds spent on computing the analytical formula are

spent on extracting the eigenvalues and eigenvectors of the sample covariance matrix, an

operation that all nonlinear shrinkage methods must perform, even if they know the true

covariance matrix (cf. FSOPT).

The only estimator that is in the same ballpark as analytical nonlinear shrinkage

in terms of both speed and accuracy is the finite-sample optimal estimator, which

presupposes foreknowledge of the true covariance matrix, an unrealistic assumption.

Among bona fide estimators, the analytical nonlinear estimator is the only one that comes

even close to matching both the speed and accuracy of the finite-sample optimal estimator.

Table 2 demonstrates that applied researchers who are already comfortable with linear

shrinkage and would like to upgrade to nonlinear shrinkage for performance enhancement,

but have been concerned by the numerical complexity of the earlier techniques, can now

safely upgrade to the analytical formula.

5.4 Convergence

5.4.1 Large-Dimensional Asymptotic Performance

Under large-dimensional asymptotics, the matrix dimension p and the sample size n go to

infinity together, while their ratio p/n converges to some limit c. In the first experiment,
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we let p and n vary together, with their ratio fixed at the baseline value of 1/3. The

results are displayed in Figure 4.
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Figure 4: Evolution of the PRIAL of various estimators as the matrix dimension and the

sample size go to infinity together.

The three nonlinear shrinkage methods perform approximately the same as one another.

They do well even in small dimensions, but do better as the dimension grows large. The

difference between the PRIALs of QuEST and Analytical is never more than 2%, which

is very small.

5.4.2 Speed

Apart from minimizing the expected loss, a key advantage of the direct kernel estimator

proposed in the present paper is that it is fast regardless of the matrix dimension. The

computation times needed to produce Figure 4 are displayed in Figure 5.
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Figure 5: Computational speed of various shrinkage estimators as the matrix dimension

and the sample size go to infinity together, measured in seconds, with log-scale on the

vertical axis.

There is a clear gap between, on the one hand, QuEST and NERCOME and, on the other

hand, Analytical, Linear and FSOPT. Analytical nonlinear shrinkage is typically 1,000

times faster than its numerical counterparts.

5.4.3 Ultra-Large Dimension

The direct kernel estimation method enables us to apply nonlinear shrinkage in much

larger dimensions than was previously imaginable within reasonable time. To prove the

point, we reproduce Table 2 for 50-times larger dimension and sample size, with the fast

estimators only. The results are presented in Table 3.

Estimator Sample Linear Analytical FSOPT

Average Loss 2.679 2.086 1.488 1.487

PRIAL 0% 49.74% 99.90% 100%

Time (s) 21 43 113 108

Table 3: Result of 100 Monte Carlo simulations for dimension p = 10, 000 and sample

size n = 30, 000.
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The first item of note is that the PRIAL of the analytical nonlinear shrinkage estimator

gets ever closer to 100%, as expected from theory.

Speed-wise, it takes less than two minutes to compute the analytical nonlinear

shrinkage formula in dimension 10, 000. Most of the time is spent computing the

sample covariance matrix (O(p2n) computational cost), extracting its eigenvalues and

eigenvectors (O(p3) cost), and recombining the sample eigenvectors with the shrunk

eigenvalues as per (4.4) (also O(p3) cost). These operations would be necessary for

any nonlinear shrinkage estimator — even if we knew the unobservable population

covariance matrix, as evidenced by the FSOPT speed in the right most column. The

actual computation of the kernel estimator of the Hilbert transform Hf̃n
as defined in

Section 4.3 and of the shrunk eigenvalues themselves (4.3), which are the only steps

specific to this method as opposed to any other nonlinear shrinkage, just take 4 seconds

in total because they require one order of magnitude fewer floating point operations:

only O(p2).

Further (unreported) simulations in dimension p = 20, 000 with sample size n =

60, 000 show computation times 7.6 to 8.9 times longer for the four estimators of Table 3,

which tightly brackets the theoretical prediction of 23 = 8 based on the reasoning of the

previous paragraph.

5.5 Concentration Ratio

We vary the concentration ratio p/n from 0.1 to 0.9 while holding the product p × n

constant at the level it had under the baseline scenario, namely, p × n = 120, 000. The

PRIALs are displayed in Figure 6.
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Figure 6: Evolution of the PRIAL of various estimators as a function of the ratio of the

matrix dimension to the sample size.

Linear shrinkage performs very well in high concentrations but does not beat the sample

covariance matrix for low concentrations. Appendix B.1 shows that this finding is due to

the fact that linear shrinkage is optimized for a different loss function than the minimum

variance loss, namely, the Frobenius loss. Under Frobenius loss, linear shrinkage always

beats the sample covariance matrix in the same simulation experiment.

The three nonlinear shrinkage methods perform approximately the same as one

another, with Analytical in particular being very close to QuEST and above the 96% mark

across the board.

5.6 Condition Number

We start again from the baseline scenario and, this time, vary the condition number θ of

the population covariance matrix. We set 20% of the population eigenvalues equal to 1,

40% equal to (2θ + 7)/9, and 40% equal to θ. Thus, the baseline scenario corresponds

to θ = 10. In this experiment, we let θ vary from θ = 3 to θ = 30. This corresponds to

linearly squeezing or stretching the distribution of population eigenvalues. The resulting

PRIALs are displayed in Figure 7.
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Figure 7: Evolution of the PRIAL of various estimators as a function of the condition

number of the population covariance matrix.

Linear shrinkage performs very well for low condition numbers, but not so well for high

condition numbers; once again, one must bear in mind that this is due to the fact that it
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is optimized for a different loss function that the one we use here. Appendix B.2 verifies

it by running the same simulations again under Frobenius loss and showing that linear

shrinkage dominates the sample covariance matrix across the board in this metric.

The three nonlinear shrinkage formulas all capture a very high percentage of the

potential for variance reduction, with Analytical in particular being very close to QuEST

and above the 97% mark across the board.

5.7 Non-Normality

In this experiment, we start from the baseline scenario and change the distribution of

the variates. We study the Bernoulli coin toss distribution, which is the most platykurtic

of all distributions, the Laplace distribution, which is leptokurtotic, and the “Student”

t-distribution with 5 degrees of freedom, also leptokurtotic. All of these are suitably

normalized to have mean zero and variance one, if necessary. The results are presented

in Table 4.

Distribution Linear Analytical QuEST NERCOME

Bernoulli 51% 97% 98% 92%

Laplace 50% 97% 98% 92%

‘Student’ t5 49% 97% 98% 92%

Table 4: Simulation results for various variate distributions (PRIAL).

This experiment confirms that the results of the baseline scenario are not sensitive to the

distribution of the variates.

5.8 Shape of the Distribution of Population Eigenvalues

Relative to the baseline scenario, we now move away from the clustered distribution for

the population eigenvalues and try a variety of continuous distributions drawn from the

Beta family. They are linearly shifted and stretched so that the support is [1, 10]. A

graphical illustration of the densities of the various Beta shapes studied below can be

found in Ledoit and Wolf (2012, Figure 7). The results are presented in Table 5.
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Beta Parameters Linear Analytical QuEST NERCOME

(1, 1) 83% 98% 99% 96%

(1, 2) 95% 99% 99% 98%

(2, 1) 94% 99% 99% 99%

(1.5, 1.5) 92% 99% 99% 98%

(0.5, 0.5) 50% 98% 98% 94%

(5, 5) 98% 100% 100% 99%

(5, 2) 97% 100% 100% 98%

(2, 5) 99% 99% 99% 99%

Table 5: Simulation results for various distributions of the population eigenvalues

(PRIAL).

Note that the 100% PRIALs are due to rounding effect: no PRIAL ever exceeds 99.8%.

This time, linear shrinkage does much better overall, except perhaps for the bimodal shape

(0.5, 0.5). This is due to the fact that, in the seven other cases, the optimal nonlinear

shrinkage formula happens to be almost linear. The three nonlinear shrinkage formulas

capture a very high percentage of the potential for variance reduction in all cases, with

Analytical being virtually indistinguishable from QuEST and above the 97% mark across

the board.

5.9 Fixed-Dimensional Asymptotics

An instructive experiment that falls outside the purview of large-dimensional asymptotics

is to keep the dimension p constant at the level specified by the baseline scenario, while

letting the sample size n go to infinity. This is standard, or fixed-dimensional, asymptotics.

We let the sample size grow from n = 250 to n = 20, 000. The results are displayed in

Figure 8.
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Figure 8: Evolution of the PRIAL as the sample size grows towards infinity, while the

matrix dimension remains fixed.

Linear shrinkage performs well for small sample sizes but not for large ones. This is to

be expected given Figure 6 because small (large) sample sizes correspond to large (small)

concentration ratios. Appendix B.3 shows that linear shrinkage does not suffer from any

such weakness in the Frobenius loss.

The three nonlinear shrinkage formulas all capture a very high percentage of the

potential for variance reduction, with Analytical in particular being very close to QuEST

and above the 96% mark across the board.

5.10 Arrow Model

A standard assumption under large-dimensional asymptotics is that the largest population

eigenvalue remains uniformly bounded even as the dimension goes to infinity. However, in

the real world, it is possible to encounter a pervasive factor that generates an eigenvalue

of the same order of magnitude as p. Therefore, it is useful to see how shrinkage would

perform under such a violation of the original assumptions.

Inspired by a factor model where all pairs of variables have 50% correlation and

all variables have unit standard deviation, and by the ‘arrow model’ introduced by

Ledoit and Wolf (2018, Section 7), we set the largest eigenvalue (the ‘arrow’ eigenvalue)

equal to 1 + 0.5(p − 1). The other eigenvalues (the ‘bulk’ are drawn from the left-

skewed Beta(5, 2) distribution, shifted and stretched linearly so that it has support [1, 10].

The results are displayed in Figure 9, where the matrix dimension varies from p = 50

26



to p = 500.
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Figure 9: Evolution of the PRIAL as the matrix dimension, the top eigenvalue and the

sample size all go to infinity together.

Linear shrinkage improves upon the sample covariance matrix, but it overshrinks the

arrow eigenvalue and undershrinks the bulk. The three nonlinear shrinkage estimators

do not have this problem, and analytical is always above the 94% mark.

5.11 Summary

The results of this extensive set of Monte Carlo simulations are very consistent. Linear

shrinkage does a good job in most cases, and in some cases an excellent one. Appendix B

shows that any instance of below-par performance is solely due to the ‘unfair’ choice of

a loss criterion with respect to which it was not optimized.

The three nonlinear shrinkage estimators perform very well across the board. Their

performance levels are roughly similar to one another and of high standard. If anything,

QuEST tends to be better than Analytical, which tends to be better than NERCOME,

but the differences are relatively small, and there are exceptions. Between QuEST and

Analytical there is hardly any difference at all.

The analytical nonlinear shrinkage formula is very simple to implement, as proven

by the 20-line Matlab code in Appendix D. It captures 90% or more of the potential for

variance reduction that comes from shrinking the sample eigenvalues. It is typically 1,000

times faster than the other nonlinear shrinkage methods, and is the only one that can

handle ultra-large dimensions up to 10, 000 in reasonable time.

27



6 Robustness Checks for Kernel and Bandwidth

The goal of this section is to examine the extent to which the performance of the analytical

nonlinear shrinkage estimator is sensitive to the choices of kernel and bandwidth.

6.1 Test Bench

To start with, we design a so-called “Test Bench” that spans most of the parameter

variations reported above to comprehensively assess the performances of alternative

estimation strategies. To this end, we scan 12 different combinations of (p, n) and 12

distributions of population eigenvalues, for a total of 12× 12 = 144 scenarios.

For the dimension p, we use a low value of 50, a medium value of 100, and a high

value of 200. For the concentration ratio c, we use four levels: 0.2, 0.4, 0.6, and 0.8. The

condition number θ varies in the set {2, 10, 40}. Finally, we investigate four shapes for

the population eigenvalues: uniform density; continuous bimodal Beta(0.5, 0.5); discrete

mass points conforming to the baseline scenario of Section 5.3; and the arrow model of

Section 5.10. For each of the 144 scenarios, we run 100 Monte Carlo simulations.

6.2 Volatility Multiplier

Although the PRIAL is informative in controlled settings where we move one parameter

at a time, it is not so easy to interpret across aggregated test bench results: Beating the

sample covariance matrix decisively when it is much worse than FSOPT is more valuable

than beating it when it is almost as good as FSOPT. To address this concern, we focus

on a performance measure that has broad-spectrum practical interpretability. As shown

by Engle et al. (2017, Section 4), and in line with the loss function of Section 2.2, the

quantity

SD(Σ̂n,Σn) ..=

√
Tr
(
Σ̂−1

n ΣnΣ̂
−1
n

)/
p

Tr
(
Σ̂−1

n

)/
p

. (6.1)

is equivalent under large-dimensional asymptotics to the true (out-of-sample) standard

deviation of a minimum-risk portfolio formed under arbitrary linear constraint, suitably

normalized. In expression (6.1), Σn represents the population covariance matrix and Σ̂n

a generic rotation-equivariant estimator of it, as described in Section 2. Proposition 2.1

shows that the finite-sample optimal (FSOPT) estimator S∗
n minimizes (6.1). Therefore,

we report the “Volatility Multiplier”

VM(Σ̂n,Σn) ..=
SD(Σ̂n,Σn)

SD(S∗
n,Σn)

.

The volatility multiplier is the factor by which the out-of-sample volatility of a portfolio

gets amplified due to less-than-perfect covariance matrix estimation. It is greater than or
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equal to 1.00 in every single one of the 14, 400 simulations by construction. In practice it

is always strictly greater than 1.00 because hitting the lower bound of one would require

oracle knowledge of the unobservable population covariance matrix Σn. Obviously, a lower

VM is better, so the only question is how close bona fide estimators can get to the “speed

of light” of 1.00. The main advantage of the VM is that it is easy to interpret economically

in three complementary ways:

1. If the VM is 1.20 for example, it means that a portfolio manager who would have

an annualized volatility of 10% (a common number) under ideal circumstances will

experience instead 12% volatility due to covariance matrix estimation error, which

constitutes an economically significant violation of her risk budget.

2. Conversely, if his investment acumen entitled her theoretically to an annualized

Sharpe ratio of 1 (a fairly typical number also), covariance matrix estimation error

would degrade his Sharpe ratio to 1/1.20 = 0.83, once again an economically

significant hit to a performance metric followed by investors.

3. Yet another way to see this is that the ‘Student’ t-statistic for her 5-year track

record (a duration often looked at) moves from
√
5 = 2.24, which is statistically

significant at the usual level of 5%, down to
√
5/1.20 = 1.86, which is not (for a

two-sided test).

There is nothing magical about a VM of 1.20: It was just chosen to illustrate how the

variance multiplier directly impacts metrics that have intuitive meaning and importance.

The VM for any candidate estimator is averaged over the 144 scenarios of the test bench

in Section 6.1, and across 100 Monte Carlo simulations per scenario, for a total of 14, 400

simulations per candidate estimator of the covariance matrix.

6.3 Initial Results

To inaugurate the test bench, Table 6 reports the VM for the competing estimators listed

in Section 5.1.

Estimator Sample Linear Analytical QuEST NERCOME FSOPT

VM 1.45 1.07 1.01 1.01 1.01 1.00

Time (ms) < 1 < 1 2 1, 683 1, 814 2

Table 6: Volatility amplification caused by covariance matrix estimation error.

Note that FSOPT has a volatility multiplier of 1.00 by construction. Although linear

shrinkage goes a long way towards fixing the flaws of the sample covariance matrix, it

leaves some room for another round of improvement. This is delivered by the three main
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nonlinear shrinkage estimators: QuEST, NERCOME and Analytical enjoy near-perfect

track record across the parameter space. Among them, only Analytical is as fast as

FSOPT.

6.4 Numerical Isotonization

Stein (1986) launched the whole literature on optimal rotation-equivariant estimation

of large-dimensional covariance matrices. His analytical formula was eerily prescient of

ours, as detailed by Ledoit and Wolf (2018, p. 3810), even though he worked outside

of Random Matrix Theory. Because Stein did not use nonparametric estimation of the

Hilbert transform of the sample spectral density, his original estimator suffered much

violation of eigenvalues ordering, which led him to post-processing through the ad hoc

numerical method of isotonization. Rajaratnam and Vincenzi (2016) showed that this

isotonization – a notoriously difficult procedure to analyze and justify theoretically –

was the hidden key to the empirical success of Stein’s (modified) estimator. So the first

question mark is whether we should overlay isotonization to enforce perfect ordering of

our nonlinearly shrunk eigenvalues?

To address this question, we compare the percentage of nearest-neighbor order

violations for FSOPT with that for Analytical across the test bench. More formally,

these percentages are defined as

1

p− 1

p−1∑

i=1

1{d∗n,i>d∗n,i+1
} and

1

p− 1

p−1∑

i=1

1{d̃n,i>d̃n,i+1} ,

for FSOPT and Analytical respectively. On average across the test bench, FSOPT has

53% violations whereas Analytical has only 34%. We also record the average magnitudes

of the violations defined as

1

a∗n

p−1∑

i=1

d∗n,i − d∗n,i+1

1

2

(
d∗n,i + d∗n,i+1

)1{d∗n,i>d∗n,i+1
} and

1

ãn

p−1∑

i=1

d̃n,i − d̃n,i+1

1

2

(
d̃n,i + d̃n,i+1

)1{d̃n,i>d̃n,i+1} ,

for FSOPT and Analytical respectively, where

a∗n
..=

p−1∑

i=1

1{d∗n,i>d∗n,i+1
} and ãn ..=

p−1∑

i=1

1{d̃n,i>d̃n,i+1} .

On average across the test bench, the average magnitude of violations is 4.4% for FSOPT

versus 1.9% for Analytical. These findings indicate that there is no pressing necessity to

restore order, as the finite-sample optimal estimator has even more disordered eigenvalues

than our asymptotically optimal estimator.

Just to be sure, we also tried post-processing the analytical estimator through the so-

called Pool Adjacent Violators (PAV) algorithm of Ayer et al. (1955), the most widespread

numerical method of isotonization and obtained the same volatility multiplier of 1.01.

For all these reasons, we keep our estimator purely analytical and forgo isotonization.
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6.5 Alternative Kernel Choices

In this section, we hold the bandwidth constant; therefore, all kernels are standardized

to have unit variance like the Epanechnikov kernel of Equation (4.5) for the purpose of

an apples-to-apples comparison.

6.5.1 Gaussian Kernel

First, we consider the well-known Gaussian kernel, also used by Jing et al. (2010):

∀x ∈ R κG(x) ..=
1√
2π

e−x2/2 .

This kernel violates Assumption 4.1 because its support is not compact, so from the point

of view of theory we are in limbo. The expression for its Hilbert transform is not exactly

trivial either. Gautschi and Waldvogel (2001) prove that

∀x ∈ R PV

∫ +∞

−∞

e−t2

t− x
dt = −2

√
πD(x), (6.2)

where D(x) ..= e−x2

∫ x

0

et
2

dt

is the Dawson (1897) function. Dawson’s integral is directly related to the imaginary

error function erfi throughD(x) =
√
πe−x2

erfi(x)/2 , and erfi itself is simply the imaginary

extension of the more famous real error function erf:

∀x ∈ R erfi(x) ..= −i erf(ix) , where i ..=
√
−1 and erf(x) ..=

2√
π

∫ x

0

e−t2dt .

The real error function is just a translation and rescaling of the standard normal

cumulative distribution function Φ via the relation erf(x) = 2Φ(x
√
2)− 1.

The Dawson function is easy to invoke because it is prominent enough for standard

numerical packages such as Matlab and Mathematica to include it pre-programmed.

However, the underlying numerics are very slow. Rescaling expression (6.2) yields

∀x ∈ R HκG(x) = −
√
2

π
D

(
x√
2

)

6.5.2 Triangular Kernel

Another kernel is often encountered due to its simplicity: the triangular kernel

∀x ∈ R κT (x) ..=

√
6− |x|
6

1{|x|≤
√
6} .

Poularikas (1998, Table 15.2) shows its Hilbert transform is

∀x /∈
{
−
√
6, 0,

√
6
}

HκT (x) =
1√
6π

(
log

∣∣∣∣∣
x−

√
6

x+
√
6

∣∣∣∣∣+
x√
6
log

∣∣∣∣
x2

x2 − 6

∣∣∣∣

)
,

which is extended by continuity through HκT

(
±
√
6
)
= ∓2 log(2)/

(√
6π
)
and HκT (0) = 0.
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6.5.3 Quartic Kernel

Its main attraction is that it is continuously differentiable even at the edges of the support:

∀x ∈ R κQ(x) ..=
15

16
√
7

(
1− x2

7

)2

1{|x|≤
√
7} .

Its Hilbert transform does not appear to have been computed in the literature. We derive

it in the following proposition.

Proposition 6.1.

∀x ∈ R HκQ(x) =
15x3 − 175x

392π
+





15

16
√
7π

(
x2

7
− 1

)2

log

∣∣∣∣∣

√
7− x√
7 + x

∣∣∣∣∣ if |x| 6=
√
7

0 if |x| =
√
7 .

6.5.4 Semicircular Kernel

The last alternative kernel is one that is not famous in the density estimation literature,

but launched the whole literature on large-dimensional random matrices. It is known as

the Wigner (1955) semicircular kernel. Wigner showed that the semicircle is the limiting

sample spectral density of a class of real symmetric matrices under large-dimensional

asymptotics. Given the direct lineage into our problem, we include the semicircular

kernel for historical reasons. Its density and Hilbert transform have the relatively simple

expressions already given in Table 1:

∀x ∈ R κS(x) =

√
[4− x2]+

2π
and HκS(x) =

−x+ sgn(x)
√
[x2 − 4]+

2π
.

6.5.5 Comparison of Kernels

In order to build intuition, Figure 10 compares the alternative kernels and their Hilbert

transforms with Epanechnikov. The semicircular kernel is omitted because it was already

graphed in Figure 1.
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Figure 10: Comparison of unit-variance kernels and their Hilbert transforms.

Even though their formulas differ greatly, all Hilbert transforms behave similarly in that

they signal which side is the closest mass: They are positive if more mass lies to the

immediate right, are negative if more mass lies to the immediate left, and asymptote to

zero away from mass. The results are presented in Table 7.

Kernel Gaussian Triangular Quartic Semicircular

VM 1.01 1.01 1.24 1.01

Time (ms) 10, 066 2 3 2

Table 7: Robustness of performance to choice of kernel.

The triangular and semicircular kernels give the same accuracy and speed as Epanech-

nikov. The Gaussian kernel is extremely slow due to the evaluation of Dawson’s integral,

so this is an another reason to avoid it (in addition to its non-compact support).

An in-depth analysis of the woeful performance of the quartic kernel reveals that it is

not attributable to a theoretical failure of the kernel itself, but to Matlab’s inability to

accurately computeHκQ(x) for large x, due to the inherent limitations of double-precision

arithmetic. When x > 3, 000, Matlab has to subtract two quantities of order 1011;

and with 10−14 accuracy, the result is way off. The main culprit is the term 15x3 in
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Proposition 6.1. Thus, we disqualify the quartic kernel for being guilty of numerical

instability.

From these findings we conclude that the analytical nonlinear shrinkage formula of

Section 4.7 is not sensitive to the choice of kernel, as long as we eschew the kernels with

glaring numerical flaws: Gaussian (slow) and quartic (unstable). By default we keep

Epanechnikov over triangular and semicircular because it has more established theoretical

credentials and is more widely used, but the other two kernels seem to do just as well.

6.6 Locally Adaptive vs. Globally Uniform Bandwidth

Next, we scrutinize the contention of Section 4.2 that the intrinsic scale-equivariance of the

problem demands that the bandwidth applied to sample eigenvalue λn,i be proportionate

to λn,i itself (i = 1, . . . , p). To this end, we modify the bandwidth hn,i of Section 4.6 to

make it globally uniform, in the sense that it is scaled only to the average eigenvalue:

∀i = 1, . . . , p hF
n,i

..=

(
1

p

p∑

j=1

λj

)
n−1/3 .

The second subscript i is redundant because the bandwidth is independent of i, but

we preserve it for notational coherence with (4.9). For example, multiplying the data

by two should result in a covariance matrix estimator multiplied by four: this universally

accepted equivariance principle justifies multiplication by the average eigenvalue.

If we are going to consider globally uniform bandwidths, we might as well throw into

the ring the often used data-driven rule-of-thumb of Silverman (1986):

∀i = 1, . . . , p hS
n,i

..=
2.345√

5
n−1/5 min

(
σ̂(λn),

IQR(λn)

1.349

)
,

where σ̂ denotes the sample standard deviation and IQR denotes the inter-quartile range.

Note that Cameron and Trivedi (2005, p. 304) do not divide by
√
5 because they rescale

the Epanechnikov kernel to have support [−1, 1]. As required, multiplying the data by

two makes hS
n,i four times as large.

Putting the globally uniform bandwidths hF
n,i and hS

n,i through the test bench yields

volatility multipliers of 1.04 and 1.06, respectively. Unlike for linear shrinkage, they would

eventually converge to 1.00 in the large-dimensional asymptotic limit, but for reasonable

matrix dimensions p ∈ {50, 100, 200}, these performances lack luster, which vindicates

our championing proportional bandwidth. Silverman’s rule-of-thumb may be acceptable

for generic density estimation; however, nonlinear shrinkage is not generic because the

sample eigenvalues are not i.i.d. Our proportional bandwidth is a natural adaptation to

the problem’s idiosyncrasy.
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6.7 Choices of Bandwidth Exponent and Scalar Multiplier

Finally, we revisit the decision made in Section 4.6 to set the global bandwidth hn equal

to n−1/3. There was good ex ante justification to do so because 1/3 is the exponent

championed by the only published paper on kernel estimation of the sample spectral

density in large dimensions (Jing et al., 2010). Nonetheless, for the sake of completeness,

we should also consider other exponents. Given that such exponents must be strictly less

than 2/5 due to Theorem 4.1 and that 1/5 is a familiar exponent used in Silverman’s rule

of thumb, we consider the choices α ∈ {0.2, 0.25, 0.30, 0.35}.
An additional degree of freedom is that it is possible to imagine putting a scalar K

in front of n−α. We did not, which is the most neutral stance, but even this is implicitly

a choice because it means we de facto chose K = 1. So we will consider variants

K ∈ {0.5, 1, 2}. For the purpose of this section, hn
..= Kn−α and hn,i

..= Kλin
−α

(i = 1, . . . , p). The results are in presented Table 8.

VM K = 0.5 K = 1 K = 2

α = 0.20 1.01 1.01 1.04

α = 0.25 1.01 1.01 1.02

α = 0.30 1.02 1.01 1.01

α = 0.35 1.02 1.01 1.01

Table 8: Effect of varying the exponent and scalar multiplier of the global bandwidth.

There certainly does not seem to be any case for introducing a scalarK 6= 1 as an artificial

multiplier in front of n−α. For K = 1, the performance is essentially insensitive to the

exponent, so by default we are happy to conserve α = 1/3 unless and until new research

supersedes the original paper of Jing et al. (2010).

6.8 Summary of Robustness Checks

This thorough investigation of potential variants to the analytical formula of Section 4.7

reveals that nothing of value can be gained from changing any of the specification choices

in the kernel estimation part. Nothing is lost either by using the triangular or the

semicircular kernel, or by varying the global bandwidth exponent α in the reasonable

range of [0.2, 0.35]. These findings show that our approach is robust and that its value

lies not in some happenstance specification of kernel and bandwidth, but in correctly

identifying and mathematically exploiting the deep connection between kernel estimation

of the sample spectral density and optimal nonlinear shrinkage of large-dimensional

covariance matrices through the Hilbert transform.
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7 Conclusion

This paper develops the first analytical formula for asymptotically optimal nonlinear

shrinkage of large-dimensional covariance matrices. The formula was derived by

introducing kernel estimation, not of the density itself (which has been done before), but

of its Hilbert transform as a worthy mathematical procedure. A density and its Hilbert

transform are “joined at the hip” in the sense that they are, respectively, the imaginary

and real part of the unique analytic extension of a real function into the complex plane.

Venturing into the complex plane is a technical necessity not only for large-dimensional

random matrix theory but also for signal processing, among other fields.

Another innovation is to estimate the two ingredients in the optimal nonlinear

shrinkage formula, namely, the limiting sample spectral density and its Hilbert transform,

with a proportional-bandwidth kernel estimator reflective of the scale-equivariance of

the problem. The resulting computations are analytical in nature, easy to understand,

straightforward to implement, fast, and scalable.

Extensive Monte Carlo simulations show that the analytical nonlinear shrinkage

estimator captures a very high percentage (typically 96%+) of the potential for variance

reduction that opens up when we shrink the eigenvalues of the sample covariance matrix.

This means, in the context of finance, that one can design investment strategies that are

as safe as they could possibly be, thus overcoming the so-called “curse of dimensionality”

which is often associated with portfolio selection involving large covariance matrices of

stock returns.

The dimension of covariance matrices that can be handled successfully now is at least

10,000, one order of magnitude larger compared to the numerical nonlinear shrinkage

methods of Ledoit and Wolf (2015) and Lam (2016), which is important in the age of

Big Data. We trust that this feature will make nonlinear shrinkage even more attractive

to applied researchers.
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A Proofs

The way to prove Theorem 4.1 is to extend the proof of Theorem 1 in Jing et al. (2010). As

a result, the first priority is to shift from the Hilbert transform, which is the mathematical

tool favored in the main body of the text of our own paper, to a closely related complex

transform called the Stieltjes (1894) transform, the instrument utilized by Jing et al.

(2010). Like the Hilbert transform, the Stieltjes transform convolves with the Cauchy

kernel. The only difference is that its argument lies in C
+, the half-plane of complex

numbers with strictly positive imaginary part, whereas the argument of the Hilbert

transform is instead a real number.

For notational simplicity, all the proofs assume that the support of F , denoted by

Supp(F ), is a finite interval [a, b], where 0 < a < b < ∞. At the cost of increased

notational complexity, all the proofs also extend to the general case where Supp(F ) is

the union of a finite number ν ≥ 1 of compact intervals: Supp(F ) =
⋃ν

k=1[ak, bk], where

0 < a1 < b1 < · · · < aν < bν < ∞.

A.1 Stieltjes Transform

Given any c.d.f. G, its Stieljes transform mG is defined as

∀z ∈ C
+ mG(z) ..=

∫ +∞

−∞

1

x− z
dG(x) .

When G is sufficiently regular, its Stieltjes transform admits an extension to the real line,

which we denote as

m̆G(x) ..= lim
z∈C+→x

mG(z) for all x ∈ R .

Note that, although m̆G is a function of real argument, it is generally complex-valued.

Both its real and imaginary parts have nice interpretations, as the following equation

shows:

m̆G(x) = π
[
HG′(x) +

√
−1G′(x)

]
.

Thus, any statement about the extension to the real line of the Stieltjes transform of a

c.d.f. is really a statement about the corresponding p.d.f. and its Hilbert transform.

Under Assumptions 3.1–3.3, Theorem 1.1 of Silverstein and Choi (1995) implies that

m̆F (x) exists and is continuous. Our approach is to estimate it with the kernel estimator

∀x ∈ R m̆F̃n
(x) ..=

1

p

p∑

i=1

1

hn,i

m̆K

(
x− λn,i

hn,i

)
= lim

z∈C+→x

∫
f̃n(t)

t− z
dt ,

where F̃n is the kernel estimator of the limiting sample spectral c.d.f. defined by

∀x ∈ R F̃n(x) ..=
1

p

p∑

i=1

K

(
x− λn,i

hn,i

)
=

∫ x

−∞
f̃n(t)dt ,

and K is the kernel’s c.d.f.: K(x) ..=
∫ x

−∞ k(t)dt.

40



A.2 Assumptions

The assumptions in our paper are couched in slightly different terms than those made by

Jing et al. (2010). Therefore it is necessary, before proceeding any further, to establish

that one set of assumptions maps into the other.

First, given that Assumption 4.1 requires the kernel k to be continuous with compact

support, Jing et al.’s (2010) Equation (2.3)

sup
−∞<x<∞

|k(x)| < ∞, lim
|x|→∞

|xk(x)| = 0

is satisfied. In addition, their Equation (2.4)

∫
k(x)dx = 1,

∫
|k′(x)|dx < ∞

is satisfied because Assumption 4.1 requires k to be a p.d.f. on the one hand, and

a function of bounded variation on the other hand. Therefore the assumptions of

Jing et al.’s (2010) Theorem 1 are satisfied here.

In our proofs below, we will make use of the following result:

∫ ∣∣∣∣
dm̆K

dx
(x)

∣∣∣∣ dx < ∞ . (A.1)

This result holds under our stated assumptions, which is seen as follows. The imaginary

part has already been taken care of, as it is π times the derivative of the kernel density.

As for the real part, it follows from the statement in Assumption 4.1 that requires the

Hilbert transform Hk to be a function of bounded variation. So (A.1) holds. From now

on, we define m̆′
K(x)

..= dm̆K

dx
(x).

A.3 Lemmas

Lemma A.1. Under the assumptions of Theorem 4.1, let Fcn,Hn
(x) be the c.d.f. obtained

from Fc,H(x) by replacing c and H with cn and Hn, respectively. Furthermore, let

m̆Fcn,Hn
(x) denote the extension to the real line of the Stieltjes transform of Fcn,Hn

(x).

Then, there exists M < ∞ such that

sup
n,x

∣∣m̆Fcn,Hn
(x)
∣∣ < ∞ . (A.2)

Proof of Lemma A.1. Lemma A.1 follows immediately from Equation (5.5) of Jing et al.

(2010).

Corollary A.1. Under the assumptions of Lemma A.1, it then also holds that

sup
x

∣∣m̆Fc,H
(x)
∣∣ < ∞ . (A.3)
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Lemma A.2. lim
x→+∞

1

x

∫ x

−x

|m̆K(t)|dt = 0 .

Proof of Lemma A.2.

∀x ≥ R + 1

∫ x

R+1

|m̆K(t)|dt =
∫ x

R+1

∫ R

−R

k(u)

t− u
du dt ≤

∫ x

R+1

1

t−R
dt = log(x−R) ,

therefore
1

x

∫ x

−x

|m̆K(t)|dt ≤
1

x

[
2 log(x−R) +

∫ R+1

−R−1

|m̆K(t)|dt
]

,

which vanishes as x → +∞.

A.4 Proof of Theorem 4.1

We work on an interval [a′, b′] such that 0 < a′ < a and b < b′ < +∞. Without loss

of generality, in the following developments, we will work on a set of probability one

on which Fn converges almost surely to F . We then take n large enough such that both

Fn(a
′) = 0 and Fn(b

′) = 1, which can be done by the results of Bai and Silverstein (1998);

in addition, n needs also to be large enough that both Fcn,Hn
(a′) = 0 and Fcn,Hn

(b′) = 1.

First, we claim that

sup
x∈[a′,b′]

∣∣∣∣∣m̆F̃n
(x)−

∫ b′

a′

1

thn

m̆K

(
x− t

thn

)
dFcn,Hn

(t)

∣∣∣∣∣ −→ 0 (A.4)
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in probability. Indeed, from integration by parts,

E sup
x∈[a′,b′]

∣∣∣∣∣

∫ b′

a′

1

thn

m̆K

(
x− t

thn

)
dFn(t)−

∫ b′

a′

1

thn

m̆K

(
x− t

thn

)
dFcn,Hn

(t)

∣∣∣∣∣

= E sup
x∈[a′,b′]

∣∣∣∣∣

∫ b′

a′

1

thn

m̆K

(
x− t

thn

)[
dFn(t)− dFcn,Hn

(t)
]
∣∣∣∣∣

= E sup
x∈[a′,b′]

∣∣∣∣∣

∫ b′

a′

1

t2hn

[
m̆K

(
x− t

thn

)
+

x

thn

m̆′
K

(
x− t

thn

)]
× [Fn(t)− Fcn,Hn

(t)] dt

∣∣∣∣∣

= E sup
x∈[a′,b′]

∣∣∣∣∣

∫ x−a′

a′hn

x−b′

b′hn

(1 + uhn)
2

x2hn

[
m̆K (u) +

1 + uhn

hn

m̆′
K (u)

]

×
[
Fn

(
x

1 + uhn

)
− Fcn,Hn

(
x

1 + uhn

)]
xhn

(1 + uhn)2
du

∣∣∣∣∣

= E sup
x∈[a′,b′]

∣∣∣∣∣

∫ x−a′

a′hn

x−b′

b′hn

1

x

[
m̆K (u) +

1 + uhn

hn

m̆′
K (u)

]

×
[
Fn

(
x

1 + uhn

)
− Fcn,Hn

(
x

1 + uhn

)]
du

∣∣∣∣∣

≤ 1

hn

E sup
x

|Fn(x)− Fcn,Hn
(x)| ×

[
hn

∫ b′−a′

a′hn

a′−b′

a′hn

|m̆K (u)| du+
b′

a′

∫ +∞

−∞
|m̆′

K (u)| du
]

= O

(
1

n2/5hn

)
−→ 0 ,

where we have used Theorem 3 of Jing et al. (2010) in the last line, together with the fact

that the multiplier between square brackets is O(1) due to Lemma A.2 and result (A.1).

The next aim is to show that
∫

1

thn

m̆K

(
x− t

thn

)
dFcn,Hn

(t)−
∫

1

thn

m̆K

(
x− t

thn

)
dFc,H(t) −→ 0 (A.5)

uniformly in x ∈ Supp(F ). This is equivalent to, for any sequence {xn, n ≥ 1} in Supp(F )

converging to x,
∫

1

1 + uhn

m̆K(u)

[
F ′
cn,Hn

(
xn

1 + uhn

)
− F ′

c,H

(
xn

1 + uhn

)]
du −→ 0 . (A.6)

From Theorem 1.1 of Silverstein and Choi (1995), F ′
c,H is uniformly bounded on

Supp(F ). Therefore, (A.6) follows from the dominated convergence theorem, Lemma A.1,

Corollary A.1, and Lemma 2 of Jing et al. (2010).

The final step is divided into two sub-items, by considering the real part (which is

the Hilbert transform of the density) and the imaginary part (which is the density itself)

separately. Recall that PV denote the Cauchy Principal Value of an improper integral.

Regarding the real part, we observe that
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∫
1

thn

Re

[
m̆K

(
x− t

thn

)]
dFc,H(t) =

1

π

∫
1

thn

PV

∫ R

−R

k(v)

v − x−t
thn

dFc,H(t)dv

=
1

π

∫ R

−R

k(v)PV

∫
1

thn

F ′
c,H(t)

v − x−t
thn

dtdv

=
1

π

∫ R

−R

1

1 + vhn

k(v)PV

∫
F ′
c,H(t)

t− x
1+vhn

dtdv

=

∫ R

−R

1

1 + vhn

k(v)Re

[
m̆Fc,H

(
x

1 + vhn

)]
dv .

Therefore,

sup
x∈[a,b]

∣∣∣∣
∫

1

thn

Re

[
m̆K

(
x− t

thn

)]
dFc,H(t)− Re[m̆Fc,H

(x)]

∣∣∣∣

= sup
x∈[a,b]

∣∣∣∣
∫ R

−R

1

1 + vhn

k(v)Re

[
m̆Fc,H

(
x

1 + vhn

)]
dv − Re[m̆Fc,H

(x)]

∣∣∣∣

≤ sup
x∈[a,b]

∣∣∣∣∣

∫ R

−R

1

1 + vhn

k(v)

{
Re

[
m̆Fc,H

(
x

1 + vhn

)]
− Re[m̆Fc,H

(x)]

}
dv

∣∣∣∣∣

+ sup
x∈[a,b]

∣∣Re[m̆F (x)]
∣∣×
∣∣∣∣1−

∫ R

−R

1

1 + vhn

k(v)dv

∣∣∣∣ . (A.7)

Note that, by the dominated convergence theorem,

lim
n→∞

∫ R

−R

1

1 + vhn

k(v)dv =

∫ R

−R

k(v)dv = 1 . (A.8)

Therefore, the second term in (A.7) is o(1). And for the first term it holds that

sup
x∈[a,b]

∣∣∣∣∣

∫ R

−R

1

1 + vhn

k(v)

{
Re

[
m̆Fc,H

(
x

1 + vhn

)]
− Re[m̆Fc,H

(x)]

}
dv

∣∣∣∣∣

≤ sup
x∈[a,b]

∫ R

−R

1

1 + vhn

k(v)

∣∣∣∣Re
[
m̆Fc,H

(
x

1 + vhn

)]
− Re[m̆Fc,H

(x)]

∣∣∣∣ dv

≤ sup
x,y∈[a− Rhn

1−Rhn
,b+

Rhn
1−Rhn ]

|x−y|≤ Rhn
1−Rhn

∣∣Re
[
m̆Fc,H

(y)
]
− Re[m̆Fc,H

(x)]
∣∣×
∣∣∣∣
∫ R

−R

1

1 + vhn

k(v)dv

∣∣∣∣

≤ sup
x,y∈[a2 ,b+a

2 ]

|x−y|≤ Rhn
1−Rhn

∣∣Re
[
m̆Fc,H

(y)
]
− Re[m̆Fc,H

(x)]
∣∣×
∣∣∣∣
∫ R

−R

1

1 + vhn

k(v)dv

∣∣∣∣ for large n.

(A.9)

By the Heine-Cantor theorem, the first term of expression (A.9) converges to zero and

by (A.8) the second expression of (A.9) converges to one. This guarantees that the

bound (A.9) converges to zero as n → ∞. This ends the proof for the real part.
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Concerning the proof for the imaginary part, the statement we seek to establish is

sup
x∈[a,b]

∣∣∣∣
∫

1

thn

Im

[
m̆K

(
x− t

thn

)]
dFc,H(t)− Im[m̆Fc,H

(x)]

∣∣∣∣ −→ 0 . (A.10)

A closely related statement, namely

sup
x∈[a,b]

∣∣∣∣
∫

1

hn

Im

[
m̆K

(
x− t

hn

)]
dFc,H(t)− Im[m̆Fc,H

(x)]

∣∣∣∣ −→ 0 , (A.11)

was proven by Jing et al. (2010) in the course of proving their Theorem 1 at the end of

Section 5.1. It can be verified that their method of proof can be adapted to establish the

truth of (A.10), using the techniques developed above for the real part. The adaptation

is not mathematically difficult, as all the hard work has been already done by Jing et al.

(2010). But the details are tedious, so they are left to the reader.

Note that (A.9) and (A.10) together imply

sup
x∈[a,b]

∣∣∣∣
∫

1

thn

m̆K

(
x− t

thn

)
dFc,H(t)− m̆Fc,H

(x)

∣∣∣∣ −→ 0 . (A.12)

Results (A.4), (A.5), and (A.12) together conclude the proof of Theorem 4.1.

A.5 Proof of Corollary 4.1

By Theorem 4.1, the shrinkage function

x 7−→ x∣∣1− (p/n)− (p/n)xm̆F̃n
(x)
∣∣2

converges in probability to the oracle shrinkage function do(x) for all x ∈ Supp(F ).

Therefore, the estimator S̃n has the same asymptotic loss as the oracle So
n, which is

the minimum in its class by Theorem 3.1.

A.6 Proof of Proposition 4.1

We rescale the kernel to streamline calculations:

∀x ∈ R κE ..=
√
5 κE

(√
5x
)
=

3

4

[
1− x2

]+
.

Elementary algebra enables us to verify that

∀t 6= x
1− t2

t− x
= −(t− x)− 2x+

1− x2

t− x
.

Therefore, if x /∈ [t1, t2],

∫ t2

t1

1− t2

t− x
dt =

∫ t2

t1

[
−(t− x)− 2x+

1− x2

t− x

]
dt =

∫ t2−x

t1−x

[
−u− 2x+

1− x2

u

]
du ,
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where we applied the change of variable u = t − x. Outside the support of the rescaled

kernel κE, the Cauchy Principal Value is a standard integral:

∀x /∈ [−1, 1] HκE(x) =
1

π

∫ 1

−1

3

4

1− t2

1− x
dt =

3

4π

[
−u2

2
− 2xu+ (1− x2) log |u|

]1−x

−1−x

=
3

4π

[
−2x+ (1− x2) log

∣∣∣∣
1− x

1 + x

∣∣∣∣
]

.

Computations in the interior of the support are more complicated:

∀x ∈ (−1, 1) HκE(x) = −3x

2π
+

3(1− x2)

4π
lim
εց0

{[
log |u|

]−ε

−1−x
+
[
log |u|

]1−x

ε

}

= −3x

2π
+

3(1− x2)

4π
lim
εց0

{
log

∣∣∣∣
ε

1 + x

∣∣∣∣+ log

∣∣∣∣
1− x

ε

∣∣∣∣
}

=
3

4π

[
−2x+ (1− x2) log

∣∣∣∣
1− x

1 + x

∣∣∣∣
]

,

but they come up with the same formula in the end. Values at the edge of the support are

obtained by continuity as HκE(±1) = ∓3/(2π). Proposition 4.1 then follows by applying

formula (4) of Erdélyi (1954, Section 15.1):

∀x ∈ R HκE(x) =
1√
5
HκE

(
x√
5

)
.

A.7 Proof of Proposition 4.2

Simply from its definition, it is obvious that the Epanechnikov kernel (4.5) is a p.d.f., is

continuous, symmetric, and nonnegative, that it has mean zero, variance one, and that

its support is a compact interval. The fact that its Hilbert transform exists follows from

Proposition 4.1. It is continuous because

lim
x→±

√
5

(
1− x2

5

)
log

∣∣∣∣∣

√
5− x√
5 + x

∣∣∣∣∣ = 0 .

The Epanechnikov kernel (4.5) is a function of bounded variation because it is increasing

on [−
√
5, 0], decreasing on [0,

√
5], and constant everywhere else. As for proving that its

Hilbert transform (4.6) is a function of bounded variation, first notice that by symmetry,

we need only consider the positive half of the real line. For every ε in (0,
√
5), HκE

is of bounded variation on [0,
√
5 − ε] because it is continuously differentiable on a

compact interval. Furthermore, HκE is of bounded variation on [
√
5 + ε,+∞) because

it is nondecreasing on this interval (this is because the support of κE is to the left of

the interval), so it is bounded below by −3
√
5/(10π) and above by zero. All that is left

is to elucidate is the behavior in a neighborhood of
√
5. We can ignore the linear part

−3x/(10π) because it is evidently of bounded variation, so we are left with the function

∀x ∈
[√

5− ε,
√
5
)
∪
(√

5,
√
5 + ε

]
gE(x) ..=

(
1− x2

5

)
log

∣∣∣∣∣

√
5− x√
5 + x

∣∣∣∣∣ ,
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extended by continuity through gE(
√
5) = 0. It is also of bounded variation for sufficiently

small ε > 0. This because its derivative

dgE

dx
(x) = −2x

5
log

∣∣∣∣∣

√
5− x√
5 + x

∣∣∣∣∣−
2√
5
,

tends to +∞ as x tends to
√
5 from either side and is therefore strictly positive on[√

5−ε,
√
5
)
∪
(√

5,
√
5+ε

]
for sufficiently small ε. This fact, together with the continuity

of the function gE itself, implies that gE is monotonically increasing, and thus of bounded

variation, on
[√

5− ε,
√
5 + ε

]
for sufficiently small ε.

A.8 Proof of Proposition 6.1

The rescaled function

∀x ∈ R κQ(x) ..=
16
√
7

15
κQ
(√

7x
)
=
(
1− x2

)2
1{|x|≤1}

is easier to analyze. Tedious algebra confirms that for all t, x ∈ R,

(1− t2)
2

t− x
= (t− x)3 + 4x(t− x)2 + (6x2 − 2)(t− x) + 4x(x2 − 1) +

(x2 − 1)2

t− x
.

The change of variable u = t− x yields for any x /∈ [t1, t2]

∫ t2

t1

(1− t2)
2

t− x
dt =

∫ t2−x

t1−x

[
u3 + 4xu2 + (6x2 − 2)u+ 4x(x2 − 1) +

(x2 − 1)
2

u

]
du

=

[
u4

4
+

4xu3

3
+ (3x2 − 1)u2 + 4x(x2 − 1)u+

(
x2 − 1

)2
log |u|

]t2−x

t1−x

.

Outside the support of κQ, the Principal Value is a standard integral: for all x /∈ [−1, 1]

HκQ(x) =
1

π

∫ 1

−1

(1− t2)
2

1− x
dt

=
1

π

[
u4

4
+

4xu3

3
+ (3x2 − 1)u2 + 4x(x2 − 1)u+

(
x2 − 1

)2
log |u|

]1−x

−1−x

=
1

π

[
2x3 − 10

3
x+ (x2 − 1)2 log

∣∣∣∣
1− x

1 + x

∣∣∣∣
]

.

Computations in the interior of the support are more complicated:

∀x ∈ (−1, 1) HκQ(x) =
1

π

[
2x3 − 10

3
x+ (x2 − 1)2 lim

εց0

{[
log |u|

]−ε

−1−x
+
[
log |u|

]1−x

ε

}]

=
1

π

[
2x3 − 10

3
x+ (x2 − 1)2 lim

εց0

{
log

∣∣∣∣
ε

1 + x

∣∣∣∣+ log

∣∣∣∣
1− x

ε

∣∣∣∣
}]

=
1

π

[
2x3 − 10

3
x+ (x2 − 1)2 log

∣∣∣∣
1− x

1 + x

∣∣∣∣
]

,
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but they end up with the same formula. Values at the edge of the support are obtained

by continuity as HκE(±1) = ∓4/(3π). Proposition 6.1 then follows from formula (4) of

Erdélyi (1954, Section 15.1):

∀x ∈ R HκQ(x) =
15

16
√
7
HκQ

(
x√
7

)

=
15x3 − 175x

392π
+





15

16
√
7π

(
x2

7
− 1

)2

log

∣∣∣∣∣

√
7− x√
7 + x

∣∣∣∣∣ if |x| 6=
√
7

0 if |x| =
√
7 .

B Frobenius Loss

The linear shrinkage estimator of Ledoit and Wolf (2004) has two scalar parameters that

are optimized with respect to the Frobenius loss. Given the poor performance of linear

shrinkage in Sections 5.5, 5.6, and 5.9 — namely, its inability to dominate the sample

covariance matrix over certain parts of the parameter space in terms of the Minimum

Variance loss function — it is important to verify that this is solely due to the fact that

linear shrinkage has been unfairly handicapped by the switch of the loss function. The

many applied researchers who use linear shrinkage because they believe that it improves

over the sample covariance matrix need to be reassured about its performance. The key

quantity in this investigation is the Frobenius PRIAL, defined in a manner analogous to

Equation (5.1) as

PRIALFR
n

(
Σ̂n

)
..=

E
[
LFR

n

(
Sn,Σn)

]
− E

[
LFR

n

(
Σ̂n,Σn)

]

E
[
LFR

n

(
Sn,Σn)

]
− E

[
LFR

n

(
S∗
n,Σn)

] × 100% . (B.1)

B.1 Concentration Ratio

First we revisit the results of Section 5.5, where the concentration ratio varies while the

other simulation parameters remain fixed as per the baseline scenario. The equivalent to

Figure 6 in terms of the Frobenius loss is Figure 11 below.
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Figure 11: Evolution of the Frobenius PRIAL of various estimators as a function of the

ratio of matrix dimension to sample size.

Linear shrinkage is now comfortably above the sample covariance matrix. This confirms

that any underperformance observed in Section 5.5 is solely attributable to the choice of

a loss function that is the ‘wrong’ one for linear shrinkage.

B.2 Condition Number

Second we revisit the results of Section 5.6, where the condition number varies from θ = 3

to θ = 30 while the other simulation parameters remain fixed as per the baseline scenario.

The equivalent to Figure 7 in terms of the Frobenius loss is Figure 12 below.
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Figure 12: Evolution of the Frobenius PRIAL of various estimators as a function of the

condition number of the population covariance matrix.

Linear shrinkage is also comfortably above the sample covariance matrix. Any

underperformance observed in Section 5.5 is solely attributable to the loss function.

B.3 Fixed-Dimensional Asymptotics

Third and last, we revisit the results of Section 5.9, where the sample size goes from

n = 250 to n = 20, 000 while all the other simulation parameters remain fixed as per the

baseline scenario. The equivalent to Figure 8 in terms of the Frobenius loss is Figure 13

below.
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Figure 13: Evolution of the Frobenius PRIAL of various estimators as the sample size

grows towards infinity, while the matrix dimension remains fixed.

Linear shrinkage again improves over the sample covariance matrix.

B.4 Overall Assessment

The ultimate conclusion of this investigation is that any weakness of linear shrinkage

relative to the sample covariance matrix in terms of the minimum variance loss is solely

due to the fact that the linear shrinkage estimator of Ledoit and Wolf (2004) is based on

the Frobenius loss instead.

C Singular Case

When the matrix dimension p exceeds the sample size n, the p − n smallest eigenvalues

(λ1, . . . , λp−n) are all equal to zero. Thus, the attention shifts away from the sample

spectral e.d.f. Fn towards the e.d.f. of the n nonzero sample eigenvalues, which is defined as

∀x ∈ R F n(x)
..=

1

n

p∑

i=p−n+1

1{x≥λn,i} .

The function F n is the spectral e.d.f. of the matrix YnY
′
n/n = XnΣnX

′
n/n. The

relationship between the two e.d.f.’s is

∀x ∈ R Fn(x) =
p− n

p
1{x≥0} +

n

p
F n(x) .
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When c ∈ (1,+∞), there exists a limiting c.d.f. F such that ∀x ∈ R F n(x)
a.s.−→ F (x).

The limiting c.d.f. F admits a continuous derivative f on R. Its Hilbert transform Hf

also exists and is continuous. The following relationships hold:

∀x ∈ (0,+∞) f(x) = cf(x) (C.1)

Hf (x) =
c− 1

πx
+ cHf (x) . (C.2)

All of this follows directly from Silverstein (1995) and Silverstein and Choi (1995), if we

replace c ∈ (0, 1) with c ∈ (1,+∞) in Assumption 3.1. The oracle nonlinear shrinkage

function defined in Equation (3.3) can be rewritten in terms of these new objects as

do(x) =
x

π2x2
[
f(x)2 +Hf (x)2

] . (C.3)

A similar formulation is attained in Equation (8) of Ledoit and Wolf (2017a).

We adapt the kernel method developed in Section 4 to estimate the limiting density f

by

∀x ∈ R f̃
n
(x) ..=

1

n

p∑

i=p−n+1

1

hn,i

k

(
x− λn,i

hn,i

)
,

and its Hilbert transform Hf by

∀x ∈ R Hf̃
n

(x) ..=
1

n

p∑

i=p−n+1

1

hn,i

Hk

(
x− λn,i

hn,i

)
= PV

∫
f̃
n
(t)

x− t
dt .

From these two estimators we deduce the shrunk eigenvalues in a manner analogous to

Equation (4.3):

∀i = p− n+ 1, . . . , n d̃n,i ..=
λn,i

π2λ2
n,i

[
f̃
n
(λn,i)

2 +Hf̃
n

(λn,i)
2
] . (C.4)

The only question remaining is how to handle the null eigenvalues (λ1, . . . , λp−n).

Theorem 2 of Ledoit and Wolf (2017a), building on Equation (13) of Ledoit and Péché

(2011), shows that the oracle shrinkage formula is a different one, namely,

do(0) ..=
1

π(c− 1)Hf (0)
.

In keeping with the procedure adopted so far, we estimate it by

∀i = 1, . . . , p− n d̃n,i ..=
1

π
p− n

n
Hf̃

n

(0)
. (C.5)
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As before, we operationalize these formulas with the Epanechnikov (1969) kernel κE(x)

and the proportional bandwidth hn,i = λn,ihn: From this we deduce for all i =

p− n+ 1, . . . , p,

f̃
n
(λn,i) =

1

n

p∑

j=p−n+1

3

4
√
5λn,jhn

[
1− 1

5

(
λn,i − λn,j

λn,jhn

)2
]+

(C.6)

Hf̃
n

(λn,i) =
1

n

p∑

j=p−n+1

{
−3(λn,i − λn,j)

10πλ2
n,jh

2
n

+
3

4
√
5πλn,jhn

[
1− 1

5

(
λn,i − λn,j

λn,jhn

)2
]

× log

∣∣∣∣∣

√
5λn,jhn − λn,i + λn,j√
5λn,jhn + λn,i − λn,j

∣∣∣∣∣

}
. (C.7)

Hf̃
n

(0) =

[
3

10h2
n

+
3

4
√
5hn

(
1− 1

5h2
n

)
log

(
1 +

√
5hn

1−
√
5hn

)]
× 1

πn

p∑

j=p−n+1

1

λn,j

︸ ︷︷ ︸
HF ′

n
(0)

. (C.8)

Note that, as n → ∞, the bracketed expression in front of HF ′
n
(0) in (C.8) converges

to one, so Hf̃
n

(0) and HF ′
n
(0) are asymptotically equivalent. Finally, we regroup the

nonlinearly shrunk eigenvalues from (C.4) and (C.5) into the vector d̃n and recompose

them with the sample eigenvectors to compute the covariance matrix estimator S̃n
..=∑p

i=1 d̃n,i · un,iu
′
n,i.

Doing so enables us to run a counterpart of the Monte Carlo simulations in Section 5.5

for the case c > 1. We vary the concentration ratio p/n from 1.1 to 10 while holding

the product p × n constant at the level it had under the baseline scenario, namely,

p × n = 120, 000. The PRIALs are displayed in Figure 14. Given that the minimum

variance loss LMV
n of the sample covariance matrix is undefined, due to Sn being singular

in this case, we report the PRIAL with respect to the Frobenius loss LFR
n instead, as in

Appendix B. Qualitatively, there is no difference across the two loss functions in terms

of rankings between estimators and proximity to the ideal FSOPT benchmark.

53



0 2 4 6 8 10
p/n

96

97

98

99

100

F
ro
b
en
iu
s
L
os
s
P
R
IA

L
(%

)

Monte Carlo Simulations: Singular

QuEST
Analytical
NERCOME
Linear

Figure 14: Evolution of the Frobenius PRIAL of various estimators when the matrix

dimension exceeds the sample size.

We draw the attention of the reader to the vertical scale of the figure: It starts at 96%.

This confirms the trend that could be inferred from Figure 6: Higher concentration ratios

make all shrinkage estimators look good. At this level of performance, the exact ordering

becomes relatively less important, but NERCOME seems to pull ahead of the pack for

p/n > 2, perhaps due to the fact that the sample size n is now not so large anymore.

54



D Programming Code

The Matlab function that computes the nonlinear shrinkage estimator of the covariance

matrix based on our new methodology has only about 20 to 30 lines of actual Matlab

code, which makes for easy debugging and customization.

function sigmatilde=analytical_shrinkage(X)

% extract sample eigenvalues sorted in ascending order and eigenvectors

[n,p]=size(X); % important: sample size n must be >= 12

sample=(X’*X)./n;

[u,lambda]=eig(sample,’vector’);

[lambda,isort]=sort(lambda);

u=u(:,isort);

% compute analytical nonlinear shrinkage kernel formula

lambda=lambda(max(1,p-n+1):p);

L=repmat(lambda,[1 min(p,n)]);

h=n^(-1/3); % Equation (4.9)

H=h*L’;

x=(L-L’)./H;

ftilde=(3/4/sqrt(5))*mean(max(1-x.^2./5,0)./H,2); % Equation (4.7)

Hftemp=(-3/10/pi)*x+(3/4/sqrt(5)/pi)*(1-x.^2./5) ...

.*log(abs((sqrt(5)-x)./(sqrt(5)+x))); % Equation (4.8)

Hftemp(abs(x)==sqrt(5))=(-3/10/pi)*x(abs(x)==sqrt(5));

Hftilde=mean(Hftemp./H,2);

if p<=n

dtilde=lambda./((pi*(p/n)*lambda.*ftilde).^2 ...

+(1-(p/n)-pi*(p/n)*lambda.*Hftilde).^2); % Equation (4.3)

else

Hftilde0=(1/pi)*(3/10/h^2+3/4/sqrt(5)/h*(1-1/5/h^2) ...

*log((1+sqrt(5)*h)/(1-sqrt(5)*h)))*mean(1./lambda); % Equation (C.8)

dtilde0=1/(pi*(p-n)/n*Hftilde0); % Equation (C.5)

dtilde1=lambda./(pi^2*lambda.^2.*(ftilde.^2+Hftilde.^2)); % Eq. (C.4)

dtilde=[dtilde0*ones(p-n,1);dtilde1];

end

sigmatilde=u*diag(dtilde)*u’; % Equation (4.4)

The analytical nonlinear shrinkage function transforms an n × p matrix X containing n

iid samples of p variables into the p× p nonlinear shrinkage covariance matrix estimator

sigmatilde.
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