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Abstract

This paper reviews important concepts and methods that are useful for hypothesis test-

ing. First, we discuss the Neyman-Pearson framework. Various approaches to optimality

are presented, including finite-sample and large-sample optimality. Then, some of the most

important methods are summarized, as well as resampling methodology which is useful to

set critical values. Finally, we consider the problem of multiple testing, which has witnessed

a burgeoning literature in recent years. Along the way, we incorporate some examples that

are current in the econometrics literature. While we include many problems with well-

known successful solutions, we also include open problems that are not easily handled

with current technology, stemming from issues like lack of optimality or poor asymptotic

approximations.

KEY WORDS: Asymptotics, multiple testing, optimality, resampling.

JEL CLASSIFICATION NOS: C12.

ACKNOWLEDGMENTS: Special thanks to Tim Bresnahan for helpful comments. Research

of Romano supported by the National Science Foundation grant DMS-0707085. Research of

Shaikh supported by the National Science Foundation grant DMS-0820310. Research of Wolf

supported by the Swiss National Science Foundation (NCCR FINRISK, Module A3).

1



1 INTRODUCTION

This paper highlights many of the current approaches to hypothesis testing in the econometrics

literature. We consider the general problem of testing in the classical Neyman-Pearson frame-

work, reviewing the key concepts in Section 2. As such, optimality is defined via the power

function. Section 3 briefly addresses control of the size of a test. Because the ideal goal of

the construction of uniformly most powerful tests (defined below) cannot usually be realized,

several general approaches to optimality are reviewed in Section 4, which attempt to bring

about a simplification of the problem. First, we consider restricting tests by the concepts of

unbiasedness, conditioning, monotonicity, and invariance. We also discuss notions of optimal-

ity which do not place any such restrictions, namely maximin tests, tests maximizing average

power, and locally most powerful tests. Large-sample approaches to optimality are reviewed

in Section 5. All of these approaches, and sometimes in combination, have been successfully

used in econometric problems.

Next, various methods which are used to construct hypothesis tests are discussed. The

generalized likelihood ratio test and the tests of Wald and Rao are first introduced in Section 6

in the context of parametric models. We then describe how these tests extend to the extremum

estimation framework, which encompasses a wide variety of semiparametric and nonparamet-

ric models used in econometrics. Afterwards, we discuss in Section 7 the use of resampling

methods for constructing of critical values, including randomization methods, the bootstrap,

and subsampling.

Finally, Section 8 expands the discussion from tests of a single null hypothesis to the

simultaneous testing of multiple null hypotheses. This scenario occurs whenever more than

one hypothesis of interest is tested at the same time, and therefore is very common in applied

economic research. The easiest, and most common, approach to deal with the problem of

multiple tests is simply to ignore it and test each individual hypothesis at the usual nominal

level. However, such an approach is problematic because the probability of rejecting at least

one true null hypothesis increases with the number of tests, and can even become very close

to one. The procedures presented in Section 8 are designed to account for the multiplicity of

tests so that the probability of rejecting any true null hypothesis is controlled. Other measures

of error control are considered as well. Special emphasis is given to construction of procedures

based on resampling techniques.
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2 THE NEYMAN-PEARSON PARADIGM

Suppose data X is generated from some unknown probability distribution P in a sample

space X . In anticipation of asymptotic results, we may write X = X(n), where n typically

refers to the sample size. A model assumes that P belongs to a certain family of probability

distributions {Pθ, θ ∈ Ω}, though we make no rigid requirements for Ω; it may be a parametric,

semiparametric or nonparametric model. A general hypothesis about the underlying model

can be specified by a subset of Ω.

In the classical Neyman-Pearson setup that we consider, the problem is to test the null

hypothesis H0 : θ ∈ Ω0 against the alternative hypothesis H1 : θ ∈ Ω1. Here, Ω0 and Ω1 are

disjoint subsets of Ω with union Ω. A hypothesis is called simple if it completely specifies the

distribution of X, or equivalently a particular θ; otherwise, a hypothesis is called composite.

The goal is to decide whether to reject H0 (and thereby decide that H1 is true) or accept H0.

A nonrandomized test assigns to each possible value X ∈ X one of these two decisions, thus

dividing the sample space X into two complementary regions S0 (the region of acceptance of

H0) and S1 (the rejection or critical region). Declaring H1 is true when H0 is true is called a

Type 1 error, while accepting H0 when H1 is true is called a Type 2 error. The main problem of

constructing hypothesis tests can be described as constructing a decision rule, or equivalently

the construction of a critical region S1, which keeps the probabilities of these two types of errors

to a minimum. Unfortunately, both probabilities cannot be controlled simultaneously (except

in a degenerate problem). In the Neyman-Pearson paradigm, a Type 1 error is considered

the more serious of the errors. As a consequence, one selects a number α ∈ (0, 1) called the

significance level, and restricts attention to critical regions S1 satisfying

Pθ{S1} ≤ α for all θ ∈ Ω0 .

It is important to note that acceptance of H0 does not necessarily show H0 is indeed true; there

simply may be insufficient data to show inconsistency of the data with the null hypothesis. So,

the decision which “accepts” H0 should be interpreted as a failure to reject H0.

More generally, it is convenient for theoretical reasons to allow for the possibility of a

randomized test. A randomized test is specified by a test (or critical) function φ(X), taking

values in [0, 1]. If the observed value of X is x, then H0 is rejected with probability φ(x).

For a nonrandomized test with critical region S1, the corresponding test function is just the

indicator of S1. In general, the power function, βφ(·) of a particular test φ(X) is given by

βφ(θ) = Eθ

[

φ(X)
]

=

∫

φ(x)dPθ(x) .
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Thus, βφ(θ) is the probability of rejecting H0 if θ is true. The level constraint of a test φ is

expressed as

Eθ

[

φ(X)
]

≤ α for all θ ∈ Ω0 . (1)

A test satisfying (1) is said to be level α. The supremum over θ ∈ Ω0 of the left side of (1) is

the size of the test φ.

3 CONTROL OF THE SIZE OF A TEST

Typically, a test procedure is specified by a test statistic T = T (X), with the rejection region

S1 = S1(α) taking the form T (X) > c. For a pre-specified significance level α, the critical

value c is chosen (possibly in a data-dependent way and on α) to control the size of the test,

though one often resorts to asymptotic approximations, some of which are described later.

3.1 p-Values

Suppose that, for each α ∈ (0, 1), nonrandomized tests are specified with nested rejection

regions S1(α), i.e.

S1(α) ⊆ S1(α
′) if α < α′ .

Then, the usual practice is to report the p-value, defined as

p̂ = inf{α : X ∈ S1(α)} . (2)

If the test with rejection region S1(α) is level α, then it is easy to see that,

θ ∈ Ω0 =⇒ Pθ{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 . (3)

3.2 The Bahadur-Savage Result

The problem of constructing a level α test can be nontrivial, in the sense that the level con-

straint may prohibit the construction of a test that has any power to detect H1. To put it

another way, there may exist situations where it is impossible to construct a level α test that

has power bigger than α against even one alternative. A classical instance of the nonexistence

of any useful level α test was provided by Bahadur and Savage (1956). The result is stated

in terms of testing the mean of a population in a nonparametric setting. Suppose X1, . . . ,Xn

are i.i.d. with c.d.f. F on the real line, where F belongs to some large class of distributions F.
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Let µ(F ) denote the mean of F . Here, F (rather than θ) is used to index the model F. The

family F is assumed to satisfy the following:

(i) For every F ∈ F, µ(F ) exists and is finite.

(ii) For every real m, there is an F ∈ F with µ(F ) = m.

(iii) If Fi ∈ F and γ ∈ (0, 1), then, γF1 + (1 − γ)F2 ∈ F.

Consider the problem of testing the null hypothesis H0 : µ(F ) = 0 against H1 : µ(F ) 6= 0.

Suppose φ = φ(X1, . . . ,Xn) is a level α test. Then, for any F with µ(F ) 6= 0, EF (φ) ≤ α; that

is, the power of the test cannot exceed α for any F ∈ F.

For example, the result applies when F is the family of all distributions having infinitely

many moments. Unfortunately, the result has consequences for testing any (mean-like) pa-

rameter which is influenced by tail behavior. The only remedy is to restrict F, for example by

assuming the support of F lies in a fixed compact set; see Romano and Wolf (2000). For other

nonexistence results, see Dufour (1997) and Romano (2004). In summary, the main point of

the example is that, in some problems, there may not exist methods controlling the Type 1

error that are any better than the test that rejects H0 with probability α, independent of the

data, and the only way to avoid this is “reduce” the size of the model.

4 OPTIMALITY CONSIDERATIONS

For a given alternative θ1 ∈ Ω1, the problem of determining φ to maximize βφ(θ1) subject to

(1) is one of maximizing a real-valued function from the space of test functions satisfying the

level constraint; it can be shown that such a test exists under weak conditions. Such a test

is then called most powerful (MP) level α. Typically, the optimal φ will depend on the fixed

alternative θ1. If a test φ exists that maximizes the power for all θ1 ∈ Ω1, then φ is called

uniformly most powerful (UMP) level α.

In the restricted situation where both hypotheses are simple and specified as Ωi = {θi},
then the Neyman-Pearson Lemma provides necessary and sufficient conditions for a test to be

the MP level α test. Specifically, if pi denotes the density of X under Hi (with respect to

any dominating measure), then a sufficient condition for a level α test to be most powerful is

that, for some constant k, φ(X) = 1 if p1(X) > k · p0(X) and φ(X) = 0 if p1(X) < k · p0(X).

Evidence against H0 is ordered by the value of the likelihood ratio p1(X)/p0(X).

For parametric models indexed by a real-valued parameter θ, UMP tests exist for one-

sided hypotheses H0 specified by Ω0 = {θ : θ ≤ θ0} for some fixed θ0, assuming the underlying

5



family has monotone likelihood ratio. For two-sided hypotheses, UMP tests are rare. In

multiparameter models where θ ∈ R
d or where Ω is infinite-dimensional, UMP tests typically

do not exist. The nonparametric sign test is an exception; see Example 3.8.1 of Lehmann

and Romano (2005b). The following is an example where a UMP test exists in a multivariate

setting. Its importance stems from the fact that, in large samples, many testing problems can

be approximated by the one in the example; see Section 5.1 for details.

Example 4.1 (Multivariate Normal Mean) Suppose X is multivariate normal with un-

known mean vector θ ∈ R
d and known covariance matrix Σ. Fix a vector (a1, . . . , ad)

T ∈ R
d

and a number δ. For testing the null hypothesis

Ω0 = {θ :
d

∑

i=1

aiθi ≤ δ}

against Ω1 = R
d \Ω0, there exists a UMP level α test which rejects H0 when

∑

i aiXi > σz1−α,

where σ2 = aT Σa and z1−α is the 1 − α quantile of the standard normal distribution.

The lack of UMP tests in many applications has led to the search for tests under less

stringent requirements of optimality. We now review several successful approaches.

4.1 UMPU Tests

A test φ is called level α unbiased if

βφ(θ) ≤ α if θ ∈ Ω0,

βφ(θ) ≥ α if θ ∈ Ω1,
(4)

so that the probability of rejecting H0 if any alternative θ ∈ Ω1 is true is no smaller than the

probability of rejecting H0 when θ ∈ Ω0. A test φ is called UMP unbiased (or UMPU) at level

α if βφ(θ) is maximized uniformly over θ ∈ Ω1 among all level α unbiased tests.

The restriction to unbiasedness is most successful in one- and two-sided testing about a

univariate parameter in the presence of a (possibly multivariate) nuisance parameter in a large

class of multiparameter models. In particular, many testing problems in multiparameter ex-

ponential family models of full rank admit UMPU level α tests. Exponential families are

studied in Brown (1986). Some other success stories include: the comparison of binomial (or

Poisson) parameters; testing independence in a two-by-two contingency table; inference for

the mean and variance from a normal population. The notion of unbiasedness also applies to

some nonparametric hypotheses, leading to the class of randomization tests described later.
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A well-known example where unbiasedness does not lead to an optimal procedure is the famous

Behrens-Fisher problem, which is the testing of equality of means of two normal populations

with possibly different unknown variances. We also mention the testing of moment inequal-

ities (in a simplified parametric setting), which has led to a recent burgeoning literature in

econometrics; see Example 4.3.

4.2 Conditional Tests

The usual approach to determining a UMPU test is to condition on an appropriate statistic T

so that the conditional distribution of X given T = t is free of nuisance parameters. If T

has Neyman structure, and other conditions hold, as described in Chapter 4 of Lehmann

and Romano (2005b), UMPU tests can be derived. But even without these assumptions,

conditioning is often successful because it reduces the dimension of the problem. However, it

reduces the class of tests considered because we now demand that not only (1) hold, but also

the stronger conditional level constraint that, for (almost) all outcomes t of a conditioning

statistic T ,

Eθ

[

φ(X)|T = t
]

≤ α for all θ ∈ Ω0 . (5)

An optimal test may exist within this smaller class of tests, though the reduction to such a

class may or may not have any compelling merit to it, since better tests may exist outside the

class. The philosophical basis for conditioning is strongest when the statistic T is chosen to

be ancillary, i.e., when its distribution does not depend on θ. See Section 10.3 of Lehmann

and Romano (2005b) for some optimal conditional tests, where conditioning is done using an

ancillary statistic. We now mention a recent important example where the conditioning statistic

is not ancillary, though conditioning does reduce the problem from a curved two-parameter

exponential family to a one-parameter exponential family.

Example 4.2 (Unit Root Testing) The problem of testing for a unit root has received

considerable attention by econometricians, dating back to Dickey and Fuller (1979). We discuss

some of the issues with the following simplified version of the problem with an autoregressive

process of order one with Gaussian errors. Specifically, let X0 = 0 and

Xt = θXt−1 + ǫt t = 1, . . . , n ,

where θ ∈ (−1, 1] and the ǫt are unobserved and i.i.d. Gaussian with mean 0 and known

variance σ2. Consider the problem of testing θ = 1 against θ < 1. The likelihood function
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Ln(θ) is given by

Ln(θ) = exp

[

n(θ − 1)Un − n2(θ − 1)2

2
Vn

]

· h(X1, . . . ,Xn) ,

where

Un =
1

nσ2

n
∑

t=1

Xt−1(Xt − Xt−1) and Vn =
1

n2σ2

n
∑

t=1

X2
t−1 ,

and the function h does not depend on θ. This constitutes a curved exponential family. For a

fixed alternative θ′, the MP test rejects for large values of

(θ′ − 1)Un − (θ′ − 1)2

2
Vn.

Since the optimal rejection region is seen to depend on θ′, no UMP test exists. An interesting

way to choose θ′ is suggested in Elliot et al. (1996), though using a particular θ′ does not

imply any optimality of the power function at another θ. In Crump (2008), optimal tests are

constructed conditional on Un, since conditionally, the family of distributions becomes a one-

parameter exponential family with monotone likelihood ratio. Although he gives an interesting

case for conditioning on Un, one can instead condition on Vn. To date, no particular test has

any strong optimality property, and the problem warrants further study.

4.3 UMPI Tests

Some testing problems exhibit symmetries, which lead to natural restrictions on the family of

tests considered. The mathematical expression of symmetry is now described. Suppose G is

a group of one-to-one transformations from the sample space X onto itself. Suppose that, if

g ∈ G and if X is governed by the parameter θ, then gX also has a distribution in the model;

that is, gX has distribution governed by some θ′ ∈ Ω. The element θ′ obtained in this manner

is denoted by ḡθ. In general, we say a parameter set ω ⊆ Ω remains invariant under g if ḡθ ∈ ω

whenever θ ∈ ω, and also if for any θ′ ∈ ω, there exists θ ∈ ω such that ḡθ = θ′. We then

say the problem of testing Ω0 against Ω1 remains invariant under G if both Ω0 and Ω1 remain

invariant under any g ∈ G. This structure implies that a statistician testing Ω0 against Ω1

based on data X is faced with the identical problem based on data X ′ = gX, for any g ∈ G.

Therefore, the idea of invariance is that the decision based on X and X ′ be the same. So,

we say a test φ is invariant under G if φ(gx) = φ(x) for all x ∈ X and g ∈ G. A test that

uniformly maximizes power among invariant level α tests is called uniformly most powerful

invariant (UMPI) at level α.

Invariance considerations apply to some interesting models, such as location and scale mod-

els. Perhaps the greatest success is testing parameters in some Gaussian linear models, encom-
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passing applications like regression and analysis of variance, where least squares procedures

and standard F tests are shown to have optimality properties among invariant procedures.

Note, however, UMPI tests may be inadmissible in some problems. See Andrews et al. (2006)

for the use of invariance restrictions in instrumental variables regression. Both conditioning

and invariance considerations are utilized in Moreira (2003).

4.4 Monotone Tests

In some problems, it may be reasonable to impose monotonicity restrictions on the testing

procedure. We illustrate the idea with two examples.

Example 4.3 (Moment Inequalities) Suppose X = (X1, . . . ,Xd)
T is multivariate normal

with unknown mean vector θ = (θ1, . . . , θd)
T and known nonsingular covariance matrix Σ.

The null hypothesis specifies Ω0 = {θ : θi ≤ 0 ∀i}. In fact, the only unbiased test for

this problem is the trivial test φ ≡ α; see Problem 4.8 in Lehmann and Romano (2005b).

Nor do any invariance considerations generally apply. In the special case that Σ exhibits

compound symmetry (meaning the diagonal elements are all the same, and the off-diagonal

elements are all the same as well), then the problem remains invariant under permutations

of the coordinates of X, leading to procedures which are invariant under permutations. Even

so, such transformations do not reduce the problem sufficiently far to lead to any optimal

procedure.

However, a natural monotonicity restriction on a test φ is the following. Specifically, if φ

rejects based on data X, so that φ(X) = 1, and Y = (Y1, . . . , Yd)
T with Yi ≥ Xi for all i, then

a monotonicity requirement demands that φ(Y ) = 1. We will return to this example later.

We point out now, however, that many currently suggested tests for this problem do not obey

such a monotonicity constraint.

Example 4.4 (Testing for Superiority or Stochastic Dominance) Assume the model of

Example 4.3, except now the problem is to demonstrate that θ satisfies θi > 0 for all i. The

null hypothesis parameter space is specified by Ω0 = {θ : not all θi > 0}. This problem is a

simplified version of the problem of testing for stochastic dominance; see Davidson and Duclos

(2006). Among tests obeying the same monotonicity restriction as in Example 4.3, there exists

a UMP level α test; see Lehmann (1952).

The restrictions to unbiased, invariant, conditional, or monotone tests imposes certain

constraints on the class of available procedures. We now mention some notions of optimality
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which do not limit the class of available procedures, at the expense of weaker notions of

optimality.

4.5 Maximin Tests

For testing Ω0 against Ω1, let ω1 ⊆ Ω1 be a (possibly strict) subset of Ω1. A level α test φ is

maximin with respect to ω1 at level α if it is level α and it maximizes infθ∈ω1
Eθ

[

φ(X)
]

among

level α tests.

Example 4.5 (Moment Inequalities, Continued) In Example 4.3, it is possible to com-

bine monotonicity and maximin restrictions to obtain an optimal test. For example, if Σ has

all diagonal elements equal, and also all off-diagonal elements equal, then the test that rejects

for large max Xi is optimal; see Lehmann (1952) in the case d = 2. The result generalizes,

and it can also be shown (in unpublished work) that such a test is admissible among all tests

(obeying the level constraint) without any monotonicity restriction.

4.6 Tests Maximizing Average or Weighted Power

Let Λ1 be a probability distribution (or generally a nonnegative measure) over Ω1. The average

or weighted power of a test φ with respect to Λ1 is given by
∫

Ω1
Eθ

[

φ(X)
]

dΛ1(θ). A level α

test φ maximizing this quantity among all level α tests maximizes average power with respect

to Λ1. The approach to determining such a test is to note that this average power of φ can be

expressed as the power of φ against the mixture distribution M which assigns to a set E the

probability

M{E} =

∫

Ω1

Pθ{E}dΛ1(θ) ,

and so the problem is reduced to finding the most powerful level α test of Ω0 against the simple

alternative hypothesis X ∼ M .

Example 4.6 (Moment Inequalities, Example 4.3, Continued) In the setup of Exam-

ple 4.3, Chiburis (2008) considers tests which (approximately) maximize average power. Also,

see Andrews (1998). Such an approach can provide tests with reasonably good power proper-

ties, though the choice of the averaging distribution Λ is unclear.

10



4.7 Locally Most Powerful Tests

Let d(θ) be a measure of distance of an alternative θ ∈ Ω1 to the given null hypothesis

parameter space Ω0. A level α test φ is said to be locally most powerful (LMP) if, given any

other level α test φ′, there exists ∆ > 0 such that

Eθ

[

φ(X)
]

≥ Eθ

[

φ′(X)
]

for all θ with 0 < d(θ) < ∆ .

Example 4.7 (Unit Root Testing, Continued) In the setup of Example 4.2, it is easily

seen that the LMP test rejects for small values of Un.

5 LARGE-SAMPLE CONSIDERATIONS

Outside a narrow class of problems, finite-sample optimality notions do not directly apply.

However, an asymptotic approach to optimality applies in a much broader class of models.

Furthermore, control of the size of a test is often only approximated, and it is important to

distinguish various notions of approximation.

As before, suppose that data X(n) comes from a model indexed by a parameter θ ∈ Ω.

Consider testing Ω0 against Ω1. We will be studying sequences of tests φn = φn(X(n)).

For a given level α, a sequence of tests {φn} is pointwise asymptotically level α if, for any

θ ∈ Ω0,

lim sup
n→∞

Eθ

[

φn(X(n))
]

≤ α . (6)

Condition (6) does not guarantee the size of φn is asymptotically no bigger than α since

the convergence is stated pointwise in θ. For this purpose, uniform convergence is required.

The sequence {φn} is uniformly asymptotically level α if

lim sup
n→∞

sup
θ∈Ω0

Eθ

[

φn(X(n))
]

≤ α . (7)

If instead of (7), the sequence {φn} satisfies

lim
n→∞

sup
θ∈Ω0

Eθ

[

φn(X(n))
]

= α , (8)

then this value of α is called the limiting size of {φn}. Of course, we also will study the

approximate behavior of tests under the alternative hypothesis. For example, a sequence {φn}
is pointwise consistent in power if, for any θ ∈ Ω1,

lim
n→∞

Eθ

[

φn(X(n))
]

= 1 . (9)

11



Note that the Bahadur-Savage result is not just a finite sample phenomenon. In the context

of their result, any test sequence whose size tends to α cannot have limiting power against any

fixed alternative (or sequence of alternatives) bigger than α. Uniformity is particularly impor-

tant when the test statistic has an asymptotic distribution which is in some sense discontinuous

in θ. Some recent papers where uniformity plays a key role are Mikusheva (2007), and Andrews

and Guggenberger (2009). Note, however, knowing that φn is uniformly asymptotically level

α does not alone guarantee anything about the size of φn for a given n; one would also need

to know how large an n is required for the size to be within a given ǫ of α.

5.1 Asymptotic Optimality

A quite general approach to asymptotic optimality is based on Le Cam’s notion of convergence

of experiments. The basic idea is that a general statistical problem (not just a testing problem)

can often be approximated by a simpler problem (usually in the limit as the sample size tends to

infinity). For example, it is a beautiful and astounding finding that the experiment consisting

of observing n i.i.d. observations from an appropriately smooth parametric model {Pθ, θ ∈ Ω},
where Ω is an open subset of R

k, can be approximated by the experiment of observing a single

multivariate normal vector X in R
k with unknown mean and known covariance matrix.

The appropriate smoothness conditions are known as quadratic mean differentiability, which

we now define. The context is that X(n) = (X1, . . . ,Xn) consists of n i.i.d. observations

according to Fθ, where θ ∈ Ω, an open subset of R
k. In other words, Pθ = Fn

θ . Assume

Fθ is dominated by a common σ-finite measure µ, and let fθ(x) = dFθ(x)/dµ. The family

{Fθ, θ ∈ Ω} is quadratic mean differentiable (abbreviated q.m.d.) at θ0 if there exists a vector

of real-valued functions η(·, θ0) =
(

η1(·, θ0), . . . , ηk(·, θ0)
)T

such that

∫

X

[

√

fθ0+h(x) −
√

fθ0
(x)− < η(x, θ0), h >

]2

dµ(x) = o
(

|h|2
)

(10)

as |h| → 0. For such a model, the Fisher Information matrix is defined to be the matrix I(θ)

with (i, j) entry

Ii,j(θ) = 4

∫

ηi(x, θ)ηj(x, θ) dµ(x) .

The important consequence of q.m.d. models is Le Cam’s expansion of the log of the

likelihood function, which we now describe. Let Ln(θ) =
∏n

i=1 fθ(Xi) denote the likelihood

function. Fix θ0. Define the normalized score vector Zn by

Zn = Zn,θ0
= n−1/2

n
∑

i=1

η̃(Xi, θ0) , (11)
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where η̃(x, θ) = 2η(x,θ)

f
1/2

θ (x)
. Then, if I(θ0) is nonsingular,

log
[

Ln(θ0 + hn−1/2)/Ln(θ0)
]

= [hT Zn − 1

2
hT I(θ0)h] + oPθ0

(1). (12)

If X is distributed as Qh, the multivariate normal distribution with mean vector h and co-

variance matrix I(θ0), then the term in brackets on the right side of (12) with Z = I(θ0)X in

place of Zn is exactly log(dQh/dQ0). In this sense, the log of the likelihood ratios approximate

those from an experiment consisting of observing X from a multivariate normal distribution

with unknown mean h and covariance matrix I(θ0).

Such a local asymptotically normal (LAN) expansion implies, among other things, the

following. Suppose φn = φn(X1, . . . ,Xn) is any sequence of tests. For fixed θ0, let βn(h) =

Eθ0+hn−1/2(φn) be the local power function. Suppose that βn(h) converges to some function

β(h) for every h. Then, β(h) = Eh

(

φ(X)
)

is the power function of a test φ in the limit

experiment consisting of observing X from a multivariate normal distribution with unknown

mean h and covariance matrix I(θ0). Thus, the best achievable limiting power can be obtained

by determining the optimal power in the limiting normal experiment. The above results are

developed in Chapter 13 of Lehmann and Romano (2005b), including numerous applications.

To provide one example, suppose θ = (θ1, . . . , θk)
T and the problem is to test H0 : θ1 ≤ 0 versus

H1 : θ1 > 0. The limit problem corresponds to testing h1 ≤ 0 versus h1 > 0 based on X, and a

UMP test exists for this problem as described above in Example 4.1. For a test whose limiting

size is no bigger than α, the resulting optimal limiting power against alternatives θ1 = h1n
−1/2

with θ2, . . . , θk fixed, is

1 − Φ
(

z1−α − h1

{

I−1(0, θ2, . . . , θk)1,1

}−1/2
)

. (13)

Tests that achieve this limiting power will be described later.

Even in nonparametric problems, the above development is useful because one can consider

optimal limiting power among all appropriately smooth parametric submodels. The submodel

yielding the smallest asymptotic power is then least favorable; see Theorem 25.44 of van der

Vaart (1998).

On the other hand, there are many important nonstandard problems in econometrics, where

the LAN expansion does not hold. Even so, the idea of approximating by a limit experiment

is still quite useful, as in the unit root problem.

Example 5.1 (Unit Root Testing, Continued) In the setup of Example 4.2, the log like-

lihood ratio is given by

log
[

Ln(1 + hn−1)/Ln(1)
]

= hUn − 1

2
h2V 2

n . (14)
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As is well-known, (Un, Vn) tends to a limit law (under θ = θn(h) = 1 + h/n), which depends

on the local parameter h. Even though the right sides of both (14) and (12) are quadratic

in h, note some crucial differences. First, the local parameter is of order n−1 from θ0 = 1,

as opposed to the more typical case where it is of order n−1/2. More important is that Vn

tends to a limit law which is nondegenerate, which prevents the existence of a UMP or even

an asymptotically UMP one-sided tests; e.g., see Lemma 1 of Crump (2008). Nevertheless,

the limit experiment approach offers important insight into the behavior of power functions of

various tests; see Jansson (2008) who removes the Gaussian assumption, among other things.

6 METHODS FOR HYPOTHESIS TESTING

There is no single method for constructing tests that is desirable or even applicable in all

circumstances. We therefore instead present several general principles that have been useful

in different situations. We begin by considering parametric models and describe likelihood

methods for testing certain hypotheses in such models. Then, a broad class of possibly non-

parametric models is introduced in which the parameter of interest is defined as the minimizer

of a criterion function. This setup is sometimes referred to as the extremum estimation frame-

work.

6.1 Testing in Parametric Models using Likelihood Methods

In this section, assume that Ω is a subset of R
k. For concreteness, we assume throughout

this section that Pθ = Fn
θ , where each Fθ is absolutely continuous with respect to a common,

σ-finite dominating measure µ. Denote by fθ the density of Fθ with respect to µ. In this

notation,

Ln(θ) =
∏

1≤i≤n

fθ(Xi) .

6.1.1 Generalized Likelihood Ratio Tests

As mentioned earlier, when both the null and alternative hypotheses are simple and specified

as Ωi = {θi}, MP tests are given by the likelihood ratio test, which rejects for large values of

Ln(θ1)/Ln(θ0). More generally, when either Ω0 or Ω1 is not simple, the generalized likelihood

ratio test rejects for large values of

supθ∈Ω Ln(θ)

supθ∈Ω0
Ln(θ)

.
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Example 6.1 (Multivariate Normal Mean) Suppose that Fθ is the multivariate normal

distribution with unknown mean vector θ ∈ R
k and known covariance matrix Σ. Consider first

testing the null hypothesis

Ω0 = {0}

versus the alternative Ω1 = R
k \ Ω0. The generalized likelihood ratio test rejects for large

values of

nX̄T
n Σ−1X̄n . (15)

If the critical value is chosen to be the ck,1−α, the 1 − α quantile of the χ2
k distribution, then

the resulting test has exact level α. Now consider testing the null hypothesis

Ω0 = {θ : θi ≤ 0 ∀i}

versus the alternative Ω1 = R
k \ Ω0. In this case, the generalized likelihood ratio test rejects

for large values of

inf
θ∈Ω0

n(X̄n − θ)TΣ−1(X̄n − θ) .

If the critical value is chosen such that P0

{

infθ∈Ω0
n(X̄n − θ)TΣ−1(X̄n − θ) > c

}

= α, then the

resulting test again has exact level α.

6.1.2 Wald Tests

Wald tests are based on a suitable estimator of θ. In order to describe this approach, we will

specialize to the case in which

Ω0 = {θ0} ,

Ω1 = R
k \ Ω0, and the family {Fθ : θ ∈ R

k} is quadratic mean differentiable at θ0 with

nonsingular Fisher Information matrix I(θ0) and score function Zn defined in (11). Assume

further that θ̂n is an estimator of θ satisfying

√
n(θ̂n − θ0) = I−1(θ0)Zn + oPθ0

(1) . (16)

In some instances, such an estimator may be given by the maximum likelihood estimator (MLE)

of θ, defined as

θ̂n = arg max
θ∈Rk

Ln(θ) .

For sufficient conditions for the existence of an estimator θ̂n satisfying (16), see, for example,

Lehmann and Casella (1998). From (16), it follows that

√
n(θ̂n − θ0)

d→ N
(

0, I−1(θ0)
)

under Pθ0
.
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An example of a Wald test is the test that rejects for large values of

n(θ̂n − θ0)
T I(θ0)(θ̂n − θ0) .

If the critical value is chosen to be ck,1−α, then the resulting test is pointwise asymptotically

level α.

6.1.3 Rao Score Tests

Consider again the problem of testing the null hypothesis

Ω0 = {θ0}

versus the alternative Ω1 = R
k \Ω0. Suppose, as before, that {Fθ : θ ∈ R

k} is differentiable in

quadratic mean at θ0 with nonsingular Fisher Information I(θ0) and score function Zn defined

in (11). A disadvantage of Wald tests is that it involves the computation of a suitable estimator

satisfying (16). An alternative due to Rao that avoids this difficulty is based directly on Zn

defined in (11). Under these assumptions,

Zn
d→ N

(

0, I(θ0)
)

under Pθ0
.

An example of a Rao test in this case is the test that rejects for large values of

ZT
n I−1(θ0)Zn .

If the critical value is chosen, as before, to be ck,1−α, then the resulting test is pointwise

asymptotically level α.

Typically, the three preceding tests will behave similarly against alternatives local to the

null hypothesis. For example, when testing the null hypothesis

Ω0 = {θ : θ1 ≤ 0}

versus the alternative Ω1 = R
k \ Ω0, each of these three tests has limiting power given by

(13) against alternatives θ1 = h/
√

n with θ2, . . . , θk fixed. On the other hand, there may

still be important differences in the behavior of the three tests at nonlocal alternatives. A

classical instance is provided by the Cauchy location model; see Example 13.3.3 of Lehmann

and Romano (2005b).
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6.2 Testing in the Extremum Estimation Framework

We now introduce a class of models in which Ω is not required to be a subset of R
k. The

extremum estimation framework provides a broad class of models that includes many nonpara-

metric models. For ease of exposition, we also assume throughout this section that Pθ = Fn
θ ,

where each Fθ is absolutely continuous with respect to a common, σ-finite dominating measure

µ. Denote by fθ the density of Fθ with respect to µ. In this framework, we assume that the

parameter of interest, γ(Fθ), may be written as

γ(Fθ) = arg min
γ∈Γ

Q(γ, Fθ) ,

where

Γ =
{

γ(Fθ) : θ ∈ Ω
}

⊆ R
d

and Q : Γ×{Fθ : θ ∈ Ω} → R. Denote by Q̂n(γ) an estimate of Q(γ, Fθ) computed from X(n).

The following examples describe some important special cases of this framework that en-

compass a wide variety of applications in econometrics.

Example 6.2 (M-Estimators) In many instances, Q(γ, Fθ) = Eθ

[

q(Xi, γ)
]

. Here, it is rea-

sonable to choose

Q̂n(γ) =
1

n

∑

1≤i≤n

q(Xi, γ) .

The estimator γ̂n = arg minγ∈Γ Q̂n(γ) is referred to as an M -estimator in this case.

Example 6.3 (Generalized Method of Moments (GMM)) Hansen (1982) consider the

choice

Q(γ, Pθ) = Eθ

[

h(Xi, γ)
]T

W (Fθ)Eθ

[

h(Xi, γ)
]

,

where W (Fθ) is a positive definite matrix. Note that the dimension of h may exceed the

dimension of γ. Here, it is reasonable to choose

Q̂n(γ) =
[ 1

n

∑

1≤i≤n

h(Xi, γ)
]T

Ŵn

[ 1

n

∑

1≤i≤n

h(Xi, γ)
]

,

where Ŵn is a consistent estimator of W (Fθ). The estimator γ̂n = arg minγ∈Γ Q̂n(γ) is referred

to as the GMM estimator in this case. If one wishes to minimize the asymptotic variance of

the GMM estimator, then it is optimal to choose

W (Fθ) = Eθ

[

h
(

Xi, γ(Fθ)
)

h
(

Xi, γ(Fθ)
)T

]−1
. (17)
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A consistent estimate of (17) can be obtained in two steps, where in the first step γ(Fθ) is con-

sistently estimated. The large-sample efficiency of such estimators is studied in Chamberlain

(1987).

Remark 6.1 If we take Γ = Θ and q(Xi, γ) = − log fγ(Xi) in Example 6.2, then we see that

the MLE is an M -estimator. In some cases, the MLE may also be characterized by the system

of equations 1
n

∑

1≤i≤n ∇γ log fγ(Xi) = 0. When this is true, it can be thought of as a GMM

estimator by taking Γ = Θ and h(Xi, γ) = ∇γ log fγ(Xi) in Example 6.3. But it is important

to note that the MLE may not always be characterized in this fashion. To see this, simply

consider the example where Fθ is the uniform distribution on [0, θ].

Remark 6.2 In many applications, the parameter of interest may not be uniquely determined

by the distribution of the observed data. We say that the parameter of interest in such models is

partially identified. See Manski (2003) for numerous examples. For this reason, it is interesting

to allow for the possibility of multiple minimizers of Q(γ, Fθ). Inference for such models is an

active area of research. See Chernozhukov et al. (2007) and Romano and Shaikh (2006a, 2008)

for some recent contributions.

We consider testing the null hypothesis

Ω0 =
{

θ ∈ Ω : γ(Fθ) ∈ Γ0

}

,

where Γ0 is a fixed subset of Γ, versus the alternative

Ω1 =
{

θ ∈ Ω : γ(Fθ) ∈ Γ \ Γ0

}

.

The generalized likelihood ratio, Wald and Rao tests have natural analogs in the extremum

estimation framework. We now briefly describe these tests. The reader is referred to Newey

and McFadden (1994) for further details.

6.2.1 Distance Tests

By analogy with generalized likelihood ratio tests, distance tests are based on comparisons of

infγ∈Γ0
Q̂n(γ) and infγ∈Γ Q̂n(γ). For example, one such test would reject the null hypothesis

for large values of

n
(

inf
γ∈Γ0

Q̂n(γ) − inf
γ∈Γ

Q̂n(γ)
)

. (18)
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Example 6.4 (GMM, Continued) Recall the setup of Example 6.3 and suppose further

that

Γ0 =
{

θ ∈ Ω : a(γ(Fθ)) = 0
}

,

where a : Γ → R
r is differentiable and ∇γa(γ(Fθ)) has rank r for all θ ∈ Ω0. Newey and

West (1987) propose rejecting the null hypothesis for large values of (18). If the critical value

is chosen to be cr,1−α, then the resulting test is pointwise asymptotically level α under weak

assumptions on Ω.

6.2.2 Wald Tests

As before, Wald tests are based on a suitable estimator of γ(Fθ). In order to describe this

approach, we specialize to the case in which

Γ0 = {γ0} .

We assume further that there is an estimator of γ(Fθ) satisfying

√
n
(

γ̂n − γ(Fθ)
) d→ N

(

0, V (Fθ)
)

,

where V (Fθ) is nonsingular, under Pθ with θ ∈ Ω0. In some instances, such an estimator may

be given by

γ̂n = arg min
γ∈Γ

Q̂n(γ) .

For sufficient conditions for the existence of such an estimator, see, for example, Newey and

McFadden (1994). See also van der Vaart and Wellner (1996) for empirical process techniques

that are especially relevant for M -estimators. An example of a Wald test in this case is the

test that rejects for large values of

n(γ̂n − γ0)
T V̂ −1

n (γ̂n − γ0) ,

where V̂n is a consistent estimate of V (Fθ) under Pθ with θ ∈ Ω0. If the critical value is chosen

to be cd,1−α, then the resulting test is pointwise asymptotically level α.

6.2.3 Lagrange Multiplier Tests

Consider again the special case in which

Γ0 = {γ0} .
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As before, a disadvantage of Wald tests is that it requires the computation of a suitable

estimator of γ(Fθ). Suppose that Q̂n(γ) is differentiable and that

√
n∇γQ̂n

(

γ(Fθ)
) d→ N

(

0, V (Fθ)
)

,

where V (Fθ) is nonsingular, under Pθ with θ ∈ Ω0. In this case, one may overcome this

difficulty by considering instead tests based on

∇γQ̂n(γ0) .

An example of a Lagrange Multiplier Test in this case is the test that rejects for large values

of

n∇γQ̂n(γ0)
T V̂ −1

n ∇γQ̂n(γ0) ,

where V̂n is a consistent estimate of V (Fθ) under Pθ with θ ∈ Ω0. If the critical value is chosen

to be cd,1−α, then the resulting test is again pointwise asymptotically level α.

7 CONSTRUCTION OF CRITICAL VALUES

In the preceding section, we described several principles for constructing tests in both para-

metric and nonparametric models. Critical values were typically chosen by exploiting the fact

that the test statistics under consideration were either pivots or asymptotic pivots, that is,

their distributions or limiting distributions under Pθ with θ ∈ Ω0 did not depend on Pθ. We

now introduce some approaches for constructing critical values that may be applicable even

when the test statistics are not so well behaved. In particular, we will discuss randomization

methods, bootstrap, and subsampling. Even when the test statistics are pivots or asymptotic

pivots, we will see that there may be compelling reasons to use these methods instead.

7.1 Randomization Methods

We now introduce a general construction of tests that have exact level α for any sample size

n whenever a certain invariance restriction holds. In order to describe this approach in more

detail, let G be a group of transformations of the data X. We require that gX
d
= X for any

g ∈ G and X ∼ Pθ with θ ∈ Ω0. This assumption is sometimes referred to as the randomization

hypothesis. For an appropriate choice of G, the Randomization Hypothesis holds in a variety

of commonly encountered testing problems.
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Example 7.1 (One Sample Tests) Let X(n) = (X1, . . . ,Xn) consist of n i.i.d. observations

from a distribution Fθ on the real line. Consider testing the null hypothesis

Ω0 = {θ ∈ Ω : Fθ symmetric about 0} .

The randomization hypothesis holds in this case with

G = {−1, 1}n

and the action of g = (ǫ1, . . . , ǫn) ∈ G on X defined by gX = (ǫ1X1, . . . , ǫnXn).

Example 7.2 (Two Sample Tests) Let X(n) = (X1, . . . ,Xn) = (Y1, . . . , Yℓ, Z1, . . . , Zm) be

distributed according to Pθ, where Y1, . . . , Yℓ are i.i.d. with distribution F Y
θ and Z1, . . . , Zm

are i.i.d. with distribution FZ
θ . Consider testing the null hypothesis

Ω0 = {θ ∈ Ω : F Y
θ = FZ

θ } .

The randomization hypothesis holds in this case with G given by the group of permutations

of n elements and the action of g on X defined by gX = (Xg(1), . . . Xg(n)).

We now describe the construction. Let T (X) be any real-valued test statistic such that we

reject the null hypothesis for large values of T (X). Suppose the group G has M elements and

let

T (1)(X) ≤ · · · ≤ T (M)(X)

denote the ordered values of {T (gX) : g ∈ G}. Define k = ⌈M(1 − α)⌉, where ⌈·⌉ denotes the

function that returns the least integer greater than or equal to its argument. Let

a(X) =
Mα − M+(X)

M0(X)
,

where

M0(X) =
∣

∣{1 ≤ j ≤ M : T (j)(X) = T (k)(X)}
∣

∣

M+(X) =
∣

∣{1 ≤ j ≤ M : T (j)(X) > T (k)(X)}
∣

∣ .

The test φ(X) that equals 1, a(X), or 0 according to whether T (X) > T (k)(X), T (X) =

T (k)(X), or T (X) < T (k)(X), respectively, has exact level α whenever the randomization

hypothesis holds.

Remark 7.1 Even though it has exact size α, the test constructed above may not be very

interesting if it has poor power. After all, the test that simply rejects the null hypothesis with
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probability α also has this feature. It is therefore interesting to examine the power properties

of tests constructed using randomization methods. For example, when testing whether the

mean is less than or equal to zero versus greater than zero in a normal location model, the

UMP test is, of course, the t-test. One may instead consider using the randomization test

based on the group of transformations described in Example 7.1 and the t-statistic for this

same problem. The randomization test is not UMP, but has the benefit of not requiring the

assumption of normality. On the other hand, it is possible to show that the randomization

test has the same limiting power against contiguous alternatives, so there is no great loss of

power, at least in large samples.

7.2 Bootstrap

Unfortunately, randomization methods apply only to a restricted class of problems. The boot-

strap was introduced in Efron (1979) as a broadly applicable method for approximating the

sampling distribution of a statistic or, more generally, a root. A root is simply a real-valued

function of the parameter of interest and the data. For ease of exposition, we assume that

Pθ = Fn
θ . Denote by Jn(x, Fθ) the distribution of a root Rn(X(n), γ(Fθ)) under Pθ = Fn

θ , that

is,

Jn(x, Fθ) = Pθ

{

Rn(X(n), γ(Fθ)) ≤ x
}

.

Our goal is to estimate Jn(x, Fθ) or its appropriate quantiles, which are typically unknown

because Fθ is unknown. The bootstrap estimate of Jn(x, Fθ) is simply the plug-in estimate

given by Jn(x, F̂n), where F̂n is an estimate of Fθ. Since the data X(n) = (X1, . . . ,Xn) consists

of n i.i.d. observations, one can use Efron’s (1979) bootstrap (i.e., non-parametric bootstrap)

or a suitable model-based bootstrap (i.e., parametric bootstrap); e.g., see Davison and Hinkley

(1997).

Sufficient conditions required for the validity of the bootstrap can be described succinctly

in terms of a metric d(·, ·) on the space of distributions. In this notation, if we assume that (i)

Jn(x, Fn) converges weakly to a continuous limiting distribution J(x, Fθ) whenever d(Fn, Fθ) →
0 and θ ∈ Ω0 and (ii) d(F̂n, Fθ)

Fθ→ 0 whenever θ ∈ Ω0, then

Pθ

{

Rn(X(n), γ(Fθ)) > J−1
n (1 − α, F̂n)

}

→ α

for all θ ∈ Ω0. Here,

J−1
n (1 − α, F̂n) = inf

{

x ∈ R : Jn(x, F̂n) ≥ 1 − α)
}

.

In other words, we require that Jn(x, Fθ) must be sufficiently smooth in Fθ for the bootstrap

to succeed.
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There are often benefits to using the bootstrap even in very simple problems. To illustrate

this feature, suppose Fθ is a distribution on the real line with finite, nonzero variance for all

θ ∈ Ω. Consider testing the null hypothesis

Ω0 =
{

θ ∈ Ω : µ(Fθ) ≤ 0
}

versus the alternative Ω1 = Ω \ Ω0. For this problem, one possible test rejects when

√
nX̄n

σ̂n
> z1−α . (19)

Instead of using z1−α, one could use J−1
n (1 − α, F̂n), where F̂n is the empirical distribution of

X1, . . . ,Xn and

Rn

(

X(n), γ(Fθ)
)

=

√
n
(

X̄n − µ(Fθ)
)

σ̂n
.

Both of these tests are pointwise asymptotically level α, but, under further technical conditions

ensuring the validity of Edgeworth expansions, it is possible to show that for any Fθ with θ ∈ Ω0

the difference between the rejection probability and the nominal level is of order O(n−1/2) for

the first test and O(n−1) for the second test. Informally, the reason for this phenomenon is that

the bootstrap approximation to the distribution of left-hand side of (19), unlike the standard

normal approximation, does not assume the skewness of the finite-sample distribution of the

t-statistic is zero. See Hall and Horowitz (1996) for related results in the context of GMM and

Horowitz (2001) and MacKinnon (2007) for other applications of the bootstrap in econometrics.

In the above example, one could also use the bootstrap to approximate the distribution of

the left-hand side of (19) directly. In that case, one should use an estimate of Fθ that satisfies

the constraints of the null hypothesis since critical values should be determined as if the null

hypothesis were true. Such an approach is most useful for problems in which the hypotheses

can not be framed nicely in terms of parameters, such as testing for goodness-of-fit or for

independence.

Unfortunately, there are many instances in which the required smoothness of Jn(x, Fθ) for

the validity of the bootstrap does not hold. Examples include extreme order statistics, Hodges’

superefficient estimator, and situations where the parameter lies on the boundary. See Beran

(1984), Chapter 1 of Politis et al. (1999), and Andrews (2000) for further details.

7.3 Subsampling

While the bootstrap is not universally applicable, an approach based on subsamples is often

valid, at least in the sense that the probability of rejection tends to α under every Pθ with
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θ ∈ Ω0, under very weak assumptions. In order to describe this approach, we also assume

that Pθ = Fn
θ , but the approach can be easily modified for dependent data; see Chapter 3 of

Politis et al. (1999). The key insight underlying this approach is that each subset of size b from

these n observations constitutes b i.i.d. observations from Fθ. This suggests that the empirical

distribution of the statistic of interest computed over these
(n

b

)

subsets of data should provide

a reasonable estimate of the unknown distribution of the statistic.

More formally, let J̃n(x, Fθ) be the distribution of a statistic Tn under Pθ. Index by i =

1, . . . ,
(

n
b

)

the subsets of data of size b and denote by Tn,b,i the statistic Tn computed using the

ith subset of data of size b. Define

Ln,b(x) =
1

(n
b

)

∑

1≤i≤(n
b)

I{Tn,b,i ≤ x} .

For the validity of this approach, we require that b → ∞ so that b/n → 0 and J̃n(x, Fθ)

converges weakly to a continuous limiting distribution J̃(x, Fθ) whenever θ ∈ Ω0. Under these

assumptions,

Pθ

{

Tn > L−1
n,b(1 − α)

}

→ α (20)

for all θ ∈ Ω0. Here,

L−1
n,b(1 − α) = inf

{

x ∈ R : Ln,b(x) ≥ 1 − α
}

.

Remarkably, it is possible to show that

sup
θ∈Ω

Pθ

{

sup
x∈R

|Ln,b(x) − J̃b(x, Fθ)| > ǫ
}

→ 0

for any ǫ > 0 regardless of Ω. This suggests that whenever J̃b(x, Fθ) is suitably “close” to

J̃n(x, Fθ), then subsampling may yield tests controlling the probability of a false rejection

more strictly than (20). For example, if

lim sup
n→∞

sup
θ∈Ω

sup
x∈R

{

J̃b(x, Fθ) − J̃n(x, Fθ)
}

≤ α ,

then one has in fact

lim sup
n→∞

sup
θ∈Ω

Pθ

{

Tn > L−1
n,b(1 − α)

}

≤ α . (21)

See Romano and Shaikh (2008) for further details. Related results have also been obtained

independently by Andrews and Guggenberger (2009), who go on to establish formulae for the

left-hand side of (21). Using these formulae, they establish in a variety of problems that the

left-hand side of (21) exceeds α, sometimes by a large margin. This problem may occur when

the limiting distribution of the test statistic is discontinuous in Fθ. On the other hand, even
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when this is the case, subsampling may yield tests satisfying (21), as shown by the following

example.

Example 7.3 (Moment Inequalities) The recent literature on partially identified models

has focused considerable attention on testing the null hypothesis

Ω0 =
{

θ ∈ Ω : Eθ

[

h(Xi, γ0)
]

≤ 0
}

for some fixed γ0 ∈ Γ versus the alternative Ω1 = Ω\Ω0. Note here that the dimension of h(·, ·)
is allowed to be greater than one. This problem is closely related to the parametric problem

described in Example 4.3. For this problem, subsampling leads to tests satisfying (21) under

very weak assumptions on Ω. For details, see Romano and Shaikh (2008) and Andrews and

Guggenberger (2009).

8 MULTIPLE TESTING

8.1 Motivation

Much empirical research in economics involves simultaneous testing of several hypotheses.

To list just three examples: (i) one fits a multiple regression model and wishes to decide

which coefficients are different from zero; (ii) one compares several investment strategies to a

benchmark and wishes to decide which strategies are outperforming the benchmark; (iii) one

studies a number of active labor market programs and wishes to decide which programs are

successful at bringing back the unemployed to the active labor force.

If one does not take the multiplicity of tests into account, there typically results a large

probability that some of the true hypotheses will get rejected by chance alone. Take the case

of S = 100 hypotheses being tested at the same time, all of them being true, with the size

and level of each test exactly equal to α. For α = 0.05, one expects five true hypotheses to be

rejected. Further, if all tests are mutually independent, then the probability that at least one

true null hypothesis will be rejected is given by 1 − 0.95100 = 0.994.

Of course, there is no problem if one focuses on a particular hypothesis, and only one

of them, a priori. The decision can still be based on the corresponding individual p-value.

The problem only arises if one searches the list of p-values for significant results a posteriori.

Unfortunately, the latter case is much more common.
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8.2 Notation and Various Error Rates

The term false discovery refers to the rejection of a true null hypothesis.1 Also, let I(θ) denote

the set of true null hypotheses if θ is true; that is, s ∈ I(θ) if and only if (iff) θ ∈ Ω0,s.

Again, we assume that data X = X(n) is generated from some probability distribution Pθ,

with θ ∈ Ω. The problem is to simultaneously test the S null hypotheses H0,s : θ ∈ Ω0,s, with

H0,s being tested against H1,s : θ ∈ Ω1,s. We also assume a test of the individual hypothesis

H0,s is based on a test statistic Tn,s with large values indicating evidence against H0,s. An

individual p-value for testing H0,s is denoted by p̂n,s.

Accounting for the multiplicity of individual tests can be achieved by controlling an ap-

propriate error rate. The traditional familywise error rate (FWE) is the probability of one or

more false discoveries:

FWEθ = Pθ

{

reject at least one hypothesis H0,s : s ∈ I(θ)
}

.

Of course, this criterion is very strict; not even a single true hypothesis is allowed to be

rejected. When S is very large, the corresponding multiple testing procedure (MTP) might

result in low power, where we loosely define ‘power’ as the ability to reject false null hypothe-

ses.2 Therefore, it can be beneficial to relax the criterion in return for higher power. There

exist several possibilities to this end.

The generalized familywise error rate (k-FWE) is concerned with the probability of k or

more false discoveries, where k is some positive integer:

k-FWEθ = Pθ

{

reject at least k hypotheses H0,s : s ∈ I(θ)
}

.

Obviously, the special case k = 1 simplifies to the traditional FWE.

A related measure of error control is the average number of false discoveries, also known

as the per-family error rate (PFER). To this end, let F denote the number of false rejections

made by a MTP. Then, PFERθ = Eθ(F ), where the concern now is to ensure PFERθ ≤ λ for

some λ ∈ [0,∞).

1Analogously, the term discovery refers to the rejection of any null hypothesis and the term true discovery

refers to the rejection of a false null hypothesis.
2If there is more than one null hypothesis under test, there no longer exists a unique definition of power.

Some reasonable definitions include: (i) the probability of rejecting at least one false null hypothesis; (ii) the

probability of rejecting all false null hypotheses; (iii) the average probability of rejection over the set of false

null hypotheses.
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Instead of error rates based only on the number of false discoveries, one can consider error

rates based on the fraction of false discoveries (among all discoveries). Let R denote the

total number of rejections. Then the false discovery proportion (FDP) is defined as FDP =

(F/R) · 1{R > 0}, where 1{·} denotes the indicator function. One then is concerned with the

probability of the FDP exceeding a small, pre-specified proportion: Pθ{FDP > γ}, for some

γ ∈ [0, 1). The special choice of γ = 0 simplifies to the traditional FWE.

Finally, the false discovery rate (FDR) is given by the expected value of the FDP. Namely,

FDRθ = Eθ(FDP), where the concern now is to ensure FDRθ ≤ γ for some γ ∈ [0, 1).

The k-FWE, PFER, FDP, and FDR can all be coined generalized error rates in the sense

that they relax and generalize the FWE. While they are distinct, they share a common phi-

losophy: by relaxing the FWE criterion and allowing for a small number (k-FWE), a small

expected number (PFER), a small proportion (FDP), or a small expected proportion (FDR)

of false discoveries, one is afforded greater power in return.

Having defined the various error rates, we next discuss what is meant by control of these

error rates and what sort of conclusions one is afforded when applying corresponding MTPs

to a set of data.

Control of the k-FWE means that, for a given significance level α,

k-FWEθ ≤ α for any θ . (22)

Control of the PFER means that, for a given integer k, PFERθ ≤ k for any θ.

Control of the FDP means that, for a given significance level α and for a given proportion

γ ∈ [0, 1), Pθ{FDP > γ} ≤ α for any θ.

Finally, control of the FDR means that, for a given proportion γ ∈ [0, 1), FDRθ ≤ γ for

any θ.

Which conclusions can be drawn when the various error rates are controlled?

Control of the k-FWE allows one to be 1 − α confident that there are at most k − 1 false

discoveries among the rejected hypotheses. In particular, for k = 0, one can be 1−α confident

that there are no false discoveries at all.

On the other hand, control of the PFER does not really allow one to draw any meaningful

conclusion about the realized value of F at all (except for some very crude bounds, based on

Markov’s inequality). The general reason is that by controlling an expected value, one can

conclude little about the realization of the underlying random variable.
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Control of the FDP allows one to be 1−α confident that the proportion of false discoveries

among all rejected hypotheses is at most γ. Or, in other words, that the realized FDP is at

most γ.

On the other hand, control of the FDR does not really allow one to draw any meaningful

conclusion about the realized FDP at all. The general reason is, again, that by controlling an

expected value, one can conclude little about the realization of the underlying random variable.

Unfortunately, this important point is not always appreciated by researchers applying MTPs

which control the FDR. Instead, by a law of large numbers, one might conclude that the average

realized FDP—when FDR control is repeatedly applied to large number of data sets—will be

at most γ (plus some small ε).

Remark 8.1 (Finite-sample vs. Asymptotic Control) For this remark, we restrict at-

tention to the FWE. The issues are completely analogous for the other error rates. ‘Control’

of the FWE is equated with ‘finite-sample’ control: (22), with k = 1, is required to hold for

any given sample size n. However, such a requirement can sometimes only be achieved under

strict parametric assumptions (such as multivariate normality with known covariance matrix

when testing a collection of individual means) or for special permutation set-ups. Instead, one

settles for (pointwise) asymptotic control of the FWE:

lim sup
n→∞

FWEθ ≤ α for any θ . (23)

(In this section, all asymptotic considerations are restricted to pointwise asymptotics.)

Next, we discuss MTPs that (asymptotically) control these error rates. Such procedures

can roughly be classified according to two criteria. The first criterion is whether the method

is based on the individual p-values p̂n,s only or whether it is something more complex, trying

to account for the dependence structure between the individual test statistics Tn,s. In general,

methods of the latter type are more powerful. The second criterion is whether the method is

a single-step method or a stepwise method. In general, methods of the latter type are more

powerful. We begin by discussing the second criterion.

8.3 Single-step vs. Stepwise Methods

In single-step methods, individual test statistics are compared to their critical values simul-

taneously, and after this simultaneous ‘joint’ comparison, the multiple testing method stops.

Often there is only one common critical value, but this need not be the case. More generally,
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the critical value for the sth test statistic may depend on s. An example is the weighted

Bonferroni method discussed below.

Often, single-step methods can be improved in terms of power via stepwise methods, while

nevertheless maintaining control of the desired error rate. Stepdown methods start with a

single-step method but then continue by possibly rejecting further hypotheses in subsequent

steps. This is achieved by decreasing the critical values for the remaining hypotheses depending

on the hypotheses already rejected in previous steps. As soon as no further hypotheses are

rejected anymore, the method stops. An example is given by the Holm (1979) method discussed

below.

Such stepwise methods which improve upon single-step methods by possible rejecting ‘less

significant’ hypotheses in subsequent steps are called stepdown methods. Intuitively, this

is because such methods start with the most significant hypotheses, having the largest test

statistics, and then ‘step down’ to further examine the remaining hypotheses corresponding to

smaller test statistics.

In contrast, there also exist stepup methods that start with the least significant hypothe-

ses, having the smallest test statistics, and then ‘step up’ to further examine the remaining

hypotheses having larger test statistics. The crucial difference is that, at any given step, the

question is whether to reject all remaining hypotheses or not. And so the hypotheses ‘sorted

out’ in previous steps correspond to not-rejected hypotheses rather than rejected hypotheses,

as in stepdown methods. A prominent example is the FDR controlling method of Benjamini

and Hochberg (1995) discussed below.

8.4 Methods Based on Individual p-Values

MTPs falling in this category only work with the ‘list’ of the individual p-values. They do

not attempt to incorporate any dependence structure between these p-values. There are two

advantages to such methods. First, one might only have access to the list of p-values from a

past study, but not to the underlying complete data set. Second, such methods can be very

quickly implemented on the computer or even be carried out with paper and pencil. On the

other hand, as we will see later, such methods are generally sub-optimal in terms of power.

To show that such methods control the desired error rate, one needs a condition on the

p-values corresponding to the true null hypotheses:

θ ∈ Ω0,s =⇒ Pθ{p̂n,s ≤ u} ≤ u for any u ∈ (0, 1) . (24)
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The classical method to control the FWE is the Bonferroni method. It is a single-step

method providing control of the FWE. Specifically, it rejects H0,s iff p̂n,s ≤ α/S. More gener-

ally, the weighted Bonferroni method is a single-step method with the sth cutoff value given

by ws · α/S, where the constants ws reflect the ‘importance’ of the individual hypotheses,

satisfying ws ≥ 0 and
∑

ws = 1.

A stepdown improvement is obtained by the method of Holm (1979). The individual

p-values are ordered from smallest to largest: p̂n,(1) ≤ p̂n,(2) ≤ . . . ≤ p̂n,(S) with their corre-

sponding null hypotheses labeled accordingly: H0,(1),H0,(2), . . . ,H0,(S). Then, H0,(s) is rejected

iff p̂n,(j) ≤ α/(S − j + 1) for j = 1, . . . , s. In other words, the method starts with testing the

most significant hypothesis by comparing its p-value to α/S, just as in the Bonferroni method.

If the hypothesis is rejected, the method moves on to the second most significant hypothesis by

comparing its p-value to α/(S−1), and so on, until the procedure comes to a stop. Necessarily,

all hypotheses rejected by Bonferroni will also be rejected by Holm, but potentially a few more.

So, trivially, the method is more powerful. But it still controls the FWE under (24).

Both the Bonferroni and Holm methods can be easily generalized to control the k-FWE;

these generalizations are due to Hommel and Hoffman (1988) and Lehmann and Romano

(2005a). For Bonferroni, simply change the cutoff value from α/S to k · α/S. For Holm,

change the cutoff values for the k most significant hypotheses to also k · α/S and only then

start subtracting one from the denominator in each subsequent step: so for j > k, the cutoff

value in the jth step is given by k · α/(S − j + k). It becomes quite clear that even for a

small value of k > 1, potentially many more hypotheses can be rejected as compared to FWE

control.

The (generalized) Bonferroni and Holm methods are robust against the dependence struc-

ture of the p-values. They only need (24) in order to provide control of the FWE and the

k-FWE, respectively. Intuitively, they achieve this by ensuring control under a ‘worst-case’

dependence structure.3 In contrast, the most widely known p-value based methods to control

the FDP and the FDR assume certain restrictions on the dependence structure.

Lehmann and Romano (2005a) develop a stepdown method to control the FDP. The indi-

vidual p-values are ordered from smallest to largest again, like for the Holm method. Then,

3For example, as far as the Bonferroni method is concerned, this worst-case dependence structure is “close”

to independence. Under independence, the cutoff value could be chosen as 1 − (1 − α)1/S which tends to be

only slighter larger than α/S for ‘non-extreme’ values of α and S; e.g., for α = 0.05 and S = 100, one obtains

0.000513 instead of 0.0005.
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H0,(s) is rejected if p̂n,j ≤ αj for j = 1, . . . , s, with:

αj =

(

⌊γj⌋ + 1
)

α

S + ⌊γj⌋ + 1 − j
,

where ⌊·⌋ denotes the integer part. This method provides control of the FDP under (24) and

the additional assumption that the p-values are mutually independent, or at least positively

dependent in a certain sense; see Lehmann and Romano (2005a).

Benjamini and Hochberg (1995) propose a stepup method to control the FDR based on the

ordered p-values. Define:

j∗ = max{j : p̂n,(j) ≤ γj} where γj =
j

S
γ

and then reject H0,(1), . . . ,H0,(j∗). If no such j∗ exists, reject no hypothesis. Unlike the

previous stepdown methods, this MTP starts with examining the least significant hypothesis.

If p̂n,(S) ≤ γ, then all hypotheses are rejected. If not, p̂n,(S−1) is compared to (S−1)/S ·γ, and

so on. Benjamini and Hochberg (1995) prove control of this method under the assumption of

independence. Benjamini and Yekutieli (2001) extend the validity of the method to a more

general ‘positive regression dependency’.

Both the Lehmann and Romano (2005a) method to control the FDP and the Benjamini

and Hochberg (1995) method to control the FDR can be modified to provide control under

any dependence structure of the p-values. To this end, the cutoff values need to be suitably

enlarged. However, the modified methods then turn quite conservative, so some users might

shy away from them. For the details, see Benjamini and Yekutieli (2001) as well as Lehmann

and Romano (2005a) and Romano and Shaikh (2006b), respectively.

Stepup methods based on individual p-values to control the FWER, k-FWER, and FDP

are discussed by Romano and Shaikh (2006c).

Remark 8.2 (Adaptive Benjamini and Hochberg Method) Under conditions which en-

sure finite-sample control of the Benjamini and Hochberg (1995) method, it can be shown that

FDRθ = (S0/S) · γ, where S0 =
∣

∣I(θ)
∣

∣. So the method will generally be conservative, unless

all null hypotheses are true. Therefore, power could be improved, while maintaining control of

the FDR, by replacing the cutoff values by γj = (j/S0) · γ. Of course, S0 is unknown in prac-

tice. But there exist several strategies to first come up with a (conservative) estimator of S0,

denoted by Ŝ0 and to then apply the method with cutoff values γj = (j/Ŝ0) · γ. The literature

in this field is quite extensive and we refer the reader to Storey et al. (2004), Benjamini et al.

(2006), Gavrilov et al. (2009), and the references therein.
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Remark 8.3 (Finite-sample vs. Asymptotic Control) So far, this subsection has assumed

‘finite-sample validity’ of the null p-values expressed by (24). However, often p-values are de-

rived by asymptotic approximations or resampling methods, only guaranteeing ‘asymptotic

validity’ instead: for any (fixed) θ,

θ ∈ Ω0,s =⇒ lim sup
n→∞

Pθ{p̂n,s ≤ u} ≤ u for any u ∈ (0, 1) . (25)

Under this more realistic condition, the MTPs presented in this subsection only provide asymp-

totic control of their target error rates.

8.5 Resampling Methods Accounting for Dependence

As discussed before, p-value based methods often achieve (asymptotic) control of their target

error rates by assuming (i) a worst-case dependence structure or (ii) a ‘convenient’ dependence

structure (such as mutual independence). This has two potential disadvantages. In case (i),

the method can be quite sub-optimal in terms of power if the true dependence structure is

quite far away from the worst-case scenario. In case (ii), asymptotic control may fail if the

dependence structure does not hold.

As an example of case (i), consider the Bonferroni method. If there were perfect dependence

between the p-values, the cut-off value could be changed from α/S to α. Perfect dependence

rarely happens in practice, of course. But this example is just to make a point. In the

realistic set-up of ‘strong cross dependence’, the cut-off value could be changed to something

a lot larger than α/S while still maintaining control of the FWE. As an example of case (ii),

consider the adaptive method of Storey et al. (2004) to control the FDR. It assumes (near)

mutual independence of the individual p-value. If this assumption is violated, the method can

turn quite anti-conservative, failing to control the FDR; see Romano et al. (2008a). Hence,

both in terms of power and controlling an error rate, it is desirable to account for the underlying

dependence structure.

Of course, this dependence structure is unknown and must be (implicitly) estimated from

the available data. Consistent estimation, in general, requires that the sample size grow to

infinity. Therefore, in this subsection, we will settle for asymptotic control of the various error

rates. In addition, we will specialize to making simultaneous inference on the elements of a

parameter vector θ = (θ1, . . . , θS)T . The individual hypotheses can be all one-sided of the

form:

H0,s : θs ≤ 0 vs. H1,s : θs > 0 (26)
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or they can be all two-sided of the form:

H0,s : θs = 0 vs. H1,s : θs 6= 0 . (27)

For the time being, we will treat the one-sided case (26); the necessary modifications for the

two-sided case (27) will be given later.

The test statistics are of the form Tn,s = θ̂n,s/σ̂n,s. Here, θ̂n,s is an estimator of θs computed

from X(n). Further, σ̂n,s is either a standard error for θ̂n,s or simply equal to 1/
√

n in case

such a standard error is not available or only very difficult to obtain.

We start by discussing a single-step method for asymptotic control of the k-FWE. An

idealized method would reject all H0,s for which Tn,s ≥ d1 where d1 is the 1 − α quantile

under Pθ of the random variable k-maxs(θ̂n,s − θs)/σ̂n,s. Here, the k-max function selects the

kth largest element of an input vector. Naturally, the quantile d1 does not only depend on

the marginal distributions of the centered statistics (θ̂n,s − θs)/σ̂n,s but, crucially, also on their

dependence structure.

Since Pθ is unknown, the idealized critical value d1 is not available. But it can be estimated

consistently, under weak regularity conditions, as follows. Take d̂1 as the 1−α quantile under P̂n

of k-maxs(θ̂
∗
n,s− θ̂n,s)/σ̂

∗
n,s. Here, P̂n is an unrestricted estimate of Pθ. Further θ̂∗n,s and σ̂∗

n,s are

the estimator of θs and its standard error (or simply 1/
√

n), respectively, computed from X(n),∗

where X(n),∗ ∼ P̂n. In other words, we use the bootstrap to estimate d1. The particular choice

of P̂n depends on the situation. If the data are i.i.d., one can use Efron’s (1979) bootstrap (i.e.,

non-parametric bootstrap) or a suitable model-based bootstrap (i.e., parametric bootstrap);

e.g., see Davison and Hinkley (1997). If the data are dependent over time, one must use a

suitable time-series bootstrap; e.g., see Lahiri (2003).

We have thus described a single-step MTP. However, a stepdown improvement is possible.

Unfortunately, it is rather complex for general k; the reader is referred to Romano et al. (2008b)

for the details. However, it is straightforward for the special case of k = 1. In any given step

j, one simply discards the hypotheses that have been rejected so far and applies the single-

step MTP to the remaining family of non-rejected hypotheses. The resulting critical value d̂j

necessarily satisfies d̂j ≤ d̂j−1 so that new rejections may result; otherwise the method stops.

The modifications to the two-sided case (27) are straightforward. First, the individual test

statistics are now given by zn,s = |θ̂n,s|/σ̂n,s. Second, the idealized critical constants are now

given by quantiles under Pθ of the random variable k-maxs|θ̂n,s − θs|/σ̂n,s, with the obvious

implication for their estimation via the bootstrap.
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Being able to control the k-FWE for any k, enables us to easily control the FDP, accounting

for the dependence structure. Set k = 1 and apply k-FWE control. If the number of rejections

is less than k/γ − 1, stop. If not, let k = k + 1 and continue. In other words, one applies

successive control of the k-FWE, with increasing k, until a stopping rule dictates termination.

Remark 8.4 (Asymptotic Validity) The MTPs presented so far provide asymptotic con-

trol of their target error rates, namely k-FWE and FDP under remarkably weak regularity

conditions. Mainly, it is assumed that
√

n(θ̂ − θ) converges in distribution to a (multivariate)

continuous limit distribution and that the bootstrap consistently estimates this limit distribu-

tion. In addition, if standard errors are employed for σ̂n,s, as opposed to simply using 1/
√

n,

it is assumed that they converge to the same non-zero limiting values in probability, both in

the ‘real world’ and in the ‘bootstrap world’. Under even weaker regularity conditions, a sub-

sampling approach could be used instead. Furthermore, when a randomization setup applies,

randomization methods can be used as an alternative. See Romano and Wolf (2005, 2007) for

details.

Remark 8.5 (Alternative Methods) Related bootstrap methods are developed in White

(2000) and Hansen (2005). However, both works only treat the special case k = 1 and are

restricted to single-step methods. In addition, White (2000) does not consider studentized test

statistics.

Stepwise bootstrap methods to control the FWE are already proposed in Westfall and

Young (1993). An important difference in their approach is that they bootstrap under the joint

null, that is, they use a restricted estimate of Pθ where the contraints of all null hypotheses

jointly hold. This approach requires the so-called subset pivotality condition and is generally

less valid than the approaches discussed so far based on an unrestricted estimate of Pθ; e.g.,

see Example 4.1 of Romano and Wolf (2005).

There exist alternative MTPs to control the k-FWE and the FDP. Namely, augmentation

procedures of van der Laan et al. (2004) and empirical Bayes procedures of van der Laan et al.

(2005). However, the former are sub-optimal in terms of power while the latter do not always

provide asymptotic control and can be quite anti-conservative; see Romano and Wolf (2007).

We finally turn to FDR control. Since these methods are very lengthy to describe, we

restrict ourselves to a brief listing. Yekutieli and Benjamini (1999) propose a bootstrap method

without discussing asymptotic properties. Dudoit et al. (2008) propose an empirical Bayes

method which does not always provide asymptotic control and can be quite anti-conservative.
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Romano et al. (2008a) propose a bootstrap method and prove asymptotic control under suitable

regularity conditions. Also, in the simulations they consider, their method is more powerful

than the Benjamini and Hochberg (1995) method and its adaptive versions which also are

robust to a general dependence structure.
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