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Abstract

This article develops a comparably simple approach towards uniqueness of pure-

strategy equilibria in symmetric games with potentially many players by separating be-

tween multiple symmetric equilibria and asymmetric equilibria. Our separation approach

is useful in applications for investigating, for example, how different parameter constel-

lations may affect the scope for multiple symmetric or asymmetric equilibria, or how

the equilibrium set of higher-dimensional symmetric games depends on the nature of the

strategies. Moreover, our approach is technically appealing as it reduces the complexity

of the uniqueness-problem to a two-player game, boundary conditions are less critical

compared to other standard procedures, and best-replies need not be everywhere differ-

entiable. The article documents the usefulness of the separation approach with several

examples, including applications to asymmetric games and to a two-dimensional price-

advertising game, and discusses the relationship between stability and multiplicity of

symmetric equilibria.
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1 Introduction

Whether or not there is a unique (Nash) equilibrium is an interesting and important question in

many game-theoretic settings. Many applications concentrate on games with identical players,

as the equilibrium outcome of an ex-ante symmetric setting frequently is of self-interest, or

comparably easy to handle analytically, especially in presence of more than two players. The

index theorem - often referred to as the most general approach to uniqueness in nice games

(e.g. Vives (1999)) - can be hard to exploit in applications (especially with many players) as

it involves analyzing the determinant of a potentially large matrix, and also requires boundary

conditions to hold, which not infrequently are violated1 by important examples.

This article presents a comparably simple approach to analyze the equilibrium set of a symmet-

ric game in thus that the symmetry inherent in these games is exploited by separating between

the two natural types of equilibria - symmetric and asymmetric equilibria. What makes this

separation approach appealing for applications are its simplicity (as the problem is essentially

reduced to a two-player game) and its applicability (as boundary conditions are less problem-

atic, or best-replies may have kinks). At a more theoretical level we can also use this approach

to investigate how the scope for multiple symmetric equilibria or asymmetric equilibria depends

on certain parameter constellations in a game, or, more fundamentally, on the nature of the

strategies of a game.

The practical usefulness of the approach for all these aspects is demonstrated with several

applications. For example, we show that a symmetric game with a two-dimensional strategy

space (e.g. price and quality) can never possess strictly ordered asymmetric equilibria (where

one player sets both a higher price and quality) if either price or quality is non-decreasing

in the opponents’ actions. Further, it is shown that sum-aggregative symmetric games with

homogeneous revenue functions (e.g. contests) naturally have a unique symmetric equilibrium,

or that the classical assumption c′′−P ′ > 0 is key for uniqueness in the Cournot model because

it rules out the possibility of asymmetric equilibria. The separation approach is also used to

discuss uniqueness in a two-dimensional information-pricing game both at an abstract level and

in a particular example.

1Consider the examples in sections 4.3 and 4.4.
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Analyzing the equilibrium set of a symmetric game may not only be of self-interest, but matters

also because we can learn more about the equilibrium set of asymmetric variations of that game.

For example, it is shown that there is an intimate link between the (in)existence of asymmetric

equilibria in a symmetric game and the order of the equilibrium strategies in asymmetric

variations of the game. Moreover, uniqueness of equilibria in a symmetric game is preserved

under small asymmetric variations of the game. Finally, the relationship between symmetric

stability (i.e. stability under symmetric initial conditions) and the multiplicity of symmetric

equilibria is investigated. It is shown that the existence of exactly one symmetric equilibrium is

the same formal property as symmetric stability in one-dimensional nice games, and symmetric

stability implies that there only is one symmetric equilibrium in higher-dimensional games.

Moreover, in one-dimensional games a single symmetric equilibrium is globally stable under

symmetric adjustments. To summarize, the separation approach provides us with powerful and

yet comparably simple tools to examine the equilibrium set of symmetric games that may have

eluded a formal assessment so far e.g. because of the sheer complexity of the problem under

standard methods.

The paper is structured as follows. After introducing the notation, the separation approach

is developed in section 3, and section 4 applies the approach to several examples. Finally,

section 5 is concerned with the relationship between stability and the multiplicity of symmetric

equilibria.

2 Basic notation and assumptions

Consider a game of N ≥ 2 players indexed by 1, ..., N . Let xg ≡ (xg1, ..., xgk) ∈ S(k) denote

a strategy of player g, where S ≡ S(k) = ×ki=1Si with Si =
[
0, S̄i

]
⊂ R. The interior of Si is

non-empty and denoted by Int(Si). All players have the same compact and convex strategy

space S, and the joint strategy space is SN . Throughout this article strategies are defined to be

pure strategies. For any player g the vector x−g ∈ SN−1 is a strategy profile of g’s opponents.

The payoff of g is represented by a function Πg (x1, ..., xg, ..., xN) ≡ Π (xg, x−g). Unless stated

otherwise, the following properties of the payoff functions are assumed throughout this article:
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• Symmetry: Payoff functions are permutation-invariant2, meaning that for any permuta-

tion σ of {1, ..., N}, payoff functions satisfy

Πg (x1, ..., xg, ..., xN) = Πσ(g)
(
xσ(1), ..., xσ(g), ..., xσ(N)

)
on SN , i.e. all players have the same payoff function.

• Π (xg, x−g) ∈ C2
(
ON ,R

)
, where O ⊃ S is open in Rk, and Π is strongly quasiconcave3 in

xg ∈ S for any x−g ∈ S(N−1).

Let ∇Πg(x) denote the gradient (a k-vector) of Π(xg, x−g) with respect to xg, and ∇F (x) ≡

(∇Πg(x))Ng=1 is the pseudogradient (a Nk vector, Rosen (1965)). The triple
(
N,S(k)N ,Π

)
denotes a symmetric, differentiable k-dimensionalN -player game, and the formulation ”a game”

in text refers to this triple.

Player g’s best reply ϕg(x−g) solves max
xg∈S

Π(xg, x−g). As a consequence of the above assump-

tions, individual best-replies ϕ(x−g) ≡ ϕg(x−g) as well as the joint best-reply φ (x1, ..., xN) =

(ϕ (x−1) , ..., ϕ (x−N)) are continuous functions. A (Nash) equilibrium is a fixpoint (FP) φ(x∗) =

x∗, x∗ ∈ SN . If x∗1 = ... = x∗N , then the equilibrium is symmetric. Note that any symmetric

equilibrium x∗ ∈ SN is identified e.g. by its first projection x∗1 ∈ S. To find symmetric equilibria

a simplified approach, called Symmetric Opponents Form Approach (SOFA) hereafter, is use-

ful (applied e.g. by Salop (1979), Dixit (1986) or Hefti (2012)). The SOFA takes an arbitrary

indicative player (e.g. g = 1), and then restricts all opponents to play the same strategies, i.e.

x̄−g = (x̄, ..., x̄), where x̄ ∈ S. Let Π̃ (x1, x̄) ≡ Π1 (x1, x̄−1), Π̃ : S2 → R, with corresponding

best-reply function ϕ̃(x̄) ≡ ϕ(x̄−1). Note that ϕ̃ inherits continuity from ϕ1. The derivative

of ϕ̃ at x̄ is denoted by ∂ϕ̃(x̄). The following result, which we include mainly for clarity and

completeness, is a direct consequence of the above definitions and assumptions:

Proposition 1 x∗ is a symmetric equilibrium iff x∗1 = ϕ̃(x∗1).

2See Dasgupta and Maskin (1986).
3Strong quasiconcavity means that z · z = 1 and z · ∂Πg(x)

∂xg
= 0 imply z · ∂

2Πg(x)
∂xg∂xg

z < 0 (see Avriel et al.

(1981)).
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As an immediate consequence of the assumptions imposed on Π and the strategy space we

obtain the following existence result:

Proposition 2 A symmetric game has a symmetric equilibrium, and the set of symmetric

equilibria is compact.

Proof: Continuity and strong quasiconcavity of Π together with compactness and convexity of

S imply the continuity of ϕ̃(x̄). Existence and compactness then follow from ϕ̃ ∈ C(S, S) and

the Brouwer FP theorem.

�

3 The separation approach

The standard approaches to verify uniqueness (see e.g. Vives (1999)) are i) the contraction

mapping approach, ii) the univalence approach and iii) the Poincare-Hopf index theorem ap-

proach. Obviously, these methods can be applied to symmetric games. Their shortcomings are

that they may be restrictive, involve boundary conditions or require calculating the determinant

of potentially very large matrices. Furthermore, we cannot use these methods to investigate, for

example, what parameter constellations might cause a game to have multiple symmetric equi-

libria versus asymmetric equilibria. Moreover, multiplicity of equilibria in symmetric games can

mean multiple symmetric equilibria, asymmetric equilibria or both. This simple observation

is the starting point of the now proposed approach towards uniqueness in symmetric games.

By taking advantage of the dichotomy of equilibrium types and the symmetry in the game, it

is possible to reduces the dimensionality of the FP problem from an N -player to a two-player

game. First, we will look at the possibility of multiple symmetric equilibria, then we turn to

asymmetric equilibria.

3.1 Multiple symmetric equilibria

For investigating whether or not there are multiple symmetric equilibria the index theorem,

applied to the SOFA, gives a powerful tool, especially as this restricted version of the index
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theorem may still be applicable if the unrestricted version is not. While the adaptation of

the index theorem to investigate the multiplicity of symmetric equilibria is not completely

surprising to readers very familiar with index theory, the results by themselves are useful for

further exploring e.g. the relationship between stability and uniqueness of symmetric equilibria

(see section 5). Moreover, the index results below also indicate how to proceed in the case,

where the symmetric version of the index theorem cannot be applied, e.g. because boundary

conditions fail, as is the case in some applications.4

Let Crs = {x1 ∈ S : ∇Π̃ (x1) = 0} denote the set of critical points, where ∇Π̃ (x1) is the

gradient of Π̃(x1, x̄) with respect to x1, evaluated at x̄ = x1. Further ∇Π̃ (x1) : S → Rk ,

x1 7→ ∇Π̃ (x1) is a C1-vector field with corresponding k×k Jacobian J̃(x1). The index I(x1) of

a zero of ∇Π̃ is defined as I(x1) = +1 if Det(−J̃(x1)) > 0 and I(x1) = −1 if Det(−J̃(x1)) < 0.

I call a symmetric game an index game if i) ∇Π̃ has only regular zeroes5 and ii) ∇Π̃ points

inwards at the boundary of S.

Theorem 1 There is an odd number of symmetric equilibria in an index game, and only inte-

rior symmetric equilibria exist. Moreover, there is only one symmetric equilibrium iff for x1 ∈

Crs one of the following conditions is satisfied: i) Det(−J̃(x1)) > 0, ii) Det (I − ∂ϕ̃(x1)) > 0,

iii)
k∏
i=1

(1− λi) > 0, where λi is an eigenvalue of ∂ϕ̃(x1).

Proof: Oddness, x1 ∈ Int(S) and i) are index theorem results (see e.g. Vives (1999)). To

see ii) decompose J̃ as J̃ = A + B, where A = ∂2Π̃(x1,x̄)
∂x1∂x1

and B = ∂2Π̃(x1,x̄)
∂x1∂x̄

, both evaluated at

x̄ = x1. The Implicit Function Theorem (IFT) asserts that ∂ϕ̃ = −A−1B, which shows that

Det(−J̃(x1)) > 0 ⇔ Det (I − ∂ϕ̃(x1)) > 0. Finally, iii) is equivalent to ii) because for any

eigenvalue λ of ∂ϕ̃(x1) the number (1− λ) is an eigenvalue of I − ∂ϕ̃(x1).

�

Note that the dimensionality of the objects involved in theorem 1 is k rather thanNk. Moreover,

regularity and the symmetric boundary conditions evoked in the definition of a symmetric index

game are weaker than the corresponding regularity and boundary conditions of the unrestricted

4See section 4.3 for a one-dimensional, and section 4.4 for a two-dimensional application, where the symmetric
index theorem boundary conditions naturally fail.

5Det(J̃(x1)) 6= 0 whenever x1 is a zero of ∇Π̃.
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vector field induced by ∇F , i.e. the index conditions may be satisfied under ∇Π̃ even if they

are violated under ∇F . For example, the conventional index theorem cannot be applied to the

two-player game with FOC’s ∇Πi = −xi − xj and S = [−1, 1] as there are no regular points.

But as ∇Π̃(x1) = −2x1 and J̃(x1) = −2 the symmetric index theorem (theorem 1) immediately

tells us that x = 0 is the only symmetric equilibrium, which obviously is correct. From the

different conditions in theorem 1 several new conditions asserting that only one symmetric

equilibrium exists can be derived.

Corollary 1 There exists only one symmetric equilibrium if for x1 ∈ Crs one of the following

local conditions is satisfied: i) J̃(x1) has a dominant negative diagonal, ii) there is a matrix

norm ‖·‖ such that ‖∂ϕ̃(x1)‖ < 1.

Proof: To see i) consider the decomposition J̃ = Ã + B̃, where Ã is a diagonal matrix with

∂Π̃i(x1,x1)
∂x1i

as its ii-th entry. Hence Det(−J̃(x1)) > 0⇔ Det
(
I + Ã−1B̃

)
> 0⇔

k∏
i=1

(1 + λ̃i) > 0,

where λ̃ is eigenvalue of Ã−1B̃. But diagonal dominance of J̃ implies that every row sum of the

absolute values of the entries of Ã−1B̃ must be strictly smaller than one, which by a standard

result of matrix analysis implies the spectral radius of Ã−1B̃ to be less than one (Horn and

Johnson (1985)), and the claim follows. Similarly, ii) implies iii) of theorem 1 as the spectral

radius of ∂ϕ̃(x1) is bounded from above by any matrix norm.

�

If k = 1 then it follows from ii) of theorem 1 that there is exactly one symmetric equilibrium

if and only if ϕ̃(x̄) crosses the 45◦-degree line from above. If theorem 1 cannot be applied, this

simple geometric insight provides a constructive way of using the SOFA to establish that only

one symmetric equilibrium exists (see sections 4.3 and 4.4 for examples).

3.2 Asymmetric equilibria

If (x1, ..., xN) is an asymmetric equilibrium, then a permutation
(
xσ(1), ..., xσ(N)

)
gives a further

asymmetric equilibrium. The main theorems of this section exploit this symmetry property.

We first consider the case of a one-dimensional game. Let ϕ(x2;X) ≡ ϕ1(x2;X) where X ≡
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(x3, ..., xN) ∈ SN−2, and ∂ϕ(x2;X) denotes the derivative of ϕ(·;X) with respect to x2. For

given X ∈ SN−2 let

T ≡ {x2 ∈ S : ϕ (x2;X) ∈ Int(S), ϕ (·;X) not differentiable in x2}

We concentrate on one-dimensional symmetric games satisfying:

T = ∅ or every x2 ∈ T is locally isolated (1)

Note that if Π satisfies strong quasiconcavity and differentiability as introduced in section 2,

and additionally it is known that ϕ
(
SN−1

)
⊂ Int(S), then T = ∅.

Theorem 2 Suppose that a one-dimensional symmetric game satisfies ϕ(x−1) ∈ C
(
SN−1, S

)
and (1) for any given X ∈ SN−2. This game has no asymmetric equilibria if

x2 ∈ Int(S)\T, ϕ(x2;X) ∈ Int(S)⇒ ∂ϕ(x2;X) > −1 (2)

Proof: While the formal proof can be found in the appendix (7.2), its main idea is illustrated

below.

Theorem 2 applies, but is not limited to, games that satisfy the assumptions of section 2.

For example, if condition (2) holds for a game with an only piecewise differentiable best-reply

function then this game has no asymmetric equilibria. Further, it is noteworthy that while

ϕ(x−1) ∈ ∂S is possible, condition (2) requires to evaluate the slope of ϕ only at interior

points, and if (2) is satisfied, this also rules out asymmetric boundary equilibria. Moreover, the

theorem imposes no restrictions on the position or the shape of the best-reply function (up to

condition (2)). For example, theorem 2 can be applied to games with non-monotonic behavior

(e.g. contests, see section 4.3). Finally, rather than evaluating a N × N -matrix as would be

required e.g. by the index theorem, condition (2) needs only information about the behavior

of the reply-function in a two-player game (as X can be treated as fixed). Condition (2) is

appealing for applied work because, by the IFT, it can be expressed in terms of the second

partial derivatives of Π:
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Corollary 2 If in a one-dimensional symmetric game for all x1, x2 ∈ Int(S) and any given

X ∈ SN−2 the condition

Π1 (x1, x2;X) = 0, x2 /∈ T ⇒ Π11 (x1, x2;X) < Π12 (x1, x2;X) (3)

is satisfied, then no asymmetric equilibria exist.

It should be mentioned that additional information about ϕ(x−1) can further restrict the x2-

range in theorem 2 (or corollary 2). For example, it suffices to verify condition (2) only at

points x2 ∈ Int(S)∩ ϕ(SN−1). I now provide the geometric intuition behind theorem 2 for the

simple case where N = 2 and ϕ−1(S) ⊂ Int(S). In essence, it is an application of the Mean

Value Theorem, and the idea is illustrated in figure 1. Suppose that the point A = (xa1, x
a
2)

x2

x1

S

S

 x2

 x1
0

A

A'

x1
a

x2
a x1

a

x2
a

x2

−1

−1

Figure 1: Theorem 2

corresponds to an asymmetric equilibrium. By symmetry its reflection, the point A′ = (xa2, x
a
1),

also is an asymmetric equilibrium. Hence the line that connects A and A′ must have a slope of

−1. As ϕ(x2) remains in Int(S), ϕ is differentiable on Int(S). According to the Mean Value

Theorem there is a point x̃2 ∈ (xa2, x
a
1) with ∂ϕ(x̃2) = −1. Hence if in such a game ∂ϕ(x̃2) > −1

for all x2 ∈ Int(S), then there cannot be any asymmetric equilibria.6

6The general proof (see appendix) is complicated by the fact that ϕ(x2) is allowed to be on the boundary or
not differentiable everywhere, which requires extending the Mean Value Theorem appropriately (see lemmata
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I now turn to the higher-dimensional case, and provide an in-depth discussion for k = 2.

In the appendix (section 7.3) it is shown that the main result (theorem 3) extends beyond

k = 2. In the two-dimensional case the best-reply of player 1 is a vector-valued function

ϕ(x2;X) = (ϕ1(·), ϕ2(·)). For notational simplicity I set (α, β, γ, δ) ≡
(
∂ϕ1

∂x21
, ∂ϕ1

∂x22
, ∂ϕ2

∂x21
, ∂ϕ2

∂x22

)
,

where all partial derivatives are evaluated at (x2;X).

Theorem 3 below is the two-dimensional extension of theorem 2 for the case where ϕ(x2;X) ∈

Int(S) everywhere and, if any, points where ϕ(x2;X) is not differentiable are locally isolated.

Theorem 3 Let k = 2 and suppose that ϕ ∈ C
(
SN−1,S

)
, ϕ
(
SN−1

)
⊂ Int(S), and ϕ(x−1) is

differentiable except possibly for a set of isolated points. If for all x2, x
′
2 ∈ S and any given

X ∈ SN−2 the condition

α(x2), δ(x′2) > −1 (1 + α(x2))(1 + δ(x′2)) > β(x2)γ(x′2) (4)

holds, then no asymmetric equilibria exist.

Proof: Appendix (7.3)

Under the assumptions on Π from section 2, ϕ(x2;X) ∈ Int(S) everywhere implies differen-

tiability of ϕ(x2;X) everywhere7, which is included in theorem 3 as a special case. Also note

that, unlike in the one-dimensional case, ϕ(x2;X) ∈ Int(S) everywhere is necessary but not

sufficient8 for the index boundary conditions to be satisfied.

In practice we can use the IFT to express (4) in terms of the second partial derivatives of

Π. If ϕ(x2;X) ∈ Int(S) then ∂ϕ(x2;X) = −H−1B, where H is the Hessian ∂2Π(x1,x2;X)
∂x1∂x1

and

B = ∂2Π(x1,x2;X)
∂x1∂x2

. It is possible to adapt theorem 3 to the case where ϕ(x−1) ∈ ∂S may

occur. The IFT remains the essential tool to calculate the slopes in applications with boundary

solutions, but it must be applied to an extended system of equations. As the central insights

1 and 2, section 7.2).
7Follows from strong quasiconcavity and the IFT.
8Counterexamples can easily be constructed, see e.g. section 4.4. Hence theorem 3 may be applicable even

if the index boundary conditions are violated.

10



about the existence and properties of asymmetric equilibria remain the same, but the analogue

statement to (4) and the proof become messier to write in case of boundary solutions, the result

is postponed to the appendix (see remark I in section 7.3).

Theorem 3 sheds light on the nature of asymmetric equilibria in symmetric two-dimensional

games. First, as is intuitively clear from k = 1, the best-reply function ϕi(x2;X) may not fall

to quickly in the i-th component strategy of player two, so suppose that α, δ > −1. Then,

interestingly, the cross derivatives β and γ crucially influence whether and what type of asym-

metric equilibria may occur in the game. Suppose that xa = (xa1, x
a
2, ..., x

a
N) is an asymmetric

equilibrium. I refer to xa as a strictly ordered equilibrium if xag > xah for any pair of strategies

in xa. I call an equilibrium with xaji > xahi but xaji′ < xahi′ strictly unordered.

Corollary 3 The following facts are satisfied under the presumptions of theorem 3:

i) If β (x2) ≥ 0, α (x2) > −1 or γ (x2) ≥ 0, δ (x2) > −1, for any x2 ∈ S and any given

X ∈ SN−2, then there cannot be any strictly ordered equilibria.

ii) If β (x2) ≤ 0, α (x2) > −1 or γ (x2) ≤ 0, δ (x2) > −1, for any x2 ∈ S and any given

X ∈ SN−2, then there cannot be any strictly unordered equilibria.

Proof: Appendix (7.4)

If α(x2), δ(x2) > −1 for all x2 ∈ S and any givenX, the conclusions of corollary 3 extend to weak

inequalities. For example, if additionally β ≥ 0, then there cannot be any asymmetric equilibria

with xag ≥ xah. A direct consequence of this is e.g. that games with weakly increasing best-replies

can have only (pairwise) strictly unordered asymmetric equilibria, whereas a game with weakly

decreasing best-replies (and α, δ > −1) can only have strictly ordered asymmetric equilibria.

Finally, provided that α, δ > −1, a game with both partially increasing and decreasing replies

(e.g. β ≥ 0 and γ ≤ 0) can never have any asymmetric equilibria.

A compact way of expressing (4) is to say that, for any given X ∈ SN−2, the matrix

 1 + α(x2) β(x2)

γ(x2
′) 1 + δ(x2

′)

 = I +

 ∂ϕ1(x2)

∂ϕ2(x2
′)


︸ ︷︷ ︸
≡A(x2,x2′)

(5)
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has only positive principal minors for x2, x
′
2 ∈ S. Moreover, if ϕ is everywhere differentiable,

(4) can be reduced to the requirement that, for given X ∈ SN−2, every principal minor of (5)

is non-zero for any x2, x
′
2 ∈ Int(S) (see section 7.3). From (5) we can derive further sufficient

conditions to rule out asymmetric equilibria. For example, if α, δ > −1 and the spectral radius

of the matrix A(x2, x
′
2) is less than one, no asymmetric equilibrium exists. Put differently, if for

any (x2, x
′
2) we have α(x2), δ(x′2) > −1 and there is a matrix norm ‖·‖ such that ‖A(x2, x

′
2)‖ < 1,

then there cannot be any asymmetric equilibria.

Finally, one can use the IFT to show that if for any x1, x2 ∈ S and any given X ∈ SN−2 the

local diagonal dominance condition

Π1 (x1, x2;X) = 0 or Π2 (x1, x2;X) = 0⇒ |Πii| >
∑

j 6=i,j≤4

|Πij| i = 1, 2

holds, then (4) is satisfied9, i.e. such a game cannot have any asymmetric equilibria.

3.3 Summary

If the conditions of theorem 1 and of theorem 2 (for k = 1) or theorem 3 (for k = 2) are satisfied,

then the game only has one equilibrium, the interior symmetric equilibrium. Compared to the

necessity of evaluating the determinant of a Nk × Nk matrix as would be required by the

univalence or index theorem, the separation approach enables us to reduce the dimensionality

of the problem from Nk to k, and allows us to learn more about the nature of equilibria

in particular games. This is generally not possible with standard approaches to uniqueness.

For example, even if ∇F satisfies the index conditions, and critical symmetric points have an

algebraic index sum of +1, we may not conclude that there are no asymmetric equilibria, as

there still could be an even number of asymmetric equilibria. Similarly, an index sum of −1

from critical symmetric points does not necessarily imply the existence of multiple symmetric

equilibria (see section 7.1 for more on what possibly could be inferred from the index theorem).

Moreover, the index conditions may be violated e.g. because ϕ ∈ ∂S, which is not unusual

for many interesting applications (e.g. the contest in section 4.3 or the information-pricing

9Using the boundary version of theorem 3 (see section 7.3), it can be shown that this condition also rules
out asymmetric equilibria if ϕ(x2;X) ∈ ∂S is possible.
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game in section 4.4). Theorems 2 and 3 can potentially be applied to non-index games to

rule out asymmetric equilibria. Finally, even if ∇Π̃ does not satisfy the index conditions, we

may still make use of the SOFA to rule out multiple symmetric equilibria, which is repeatedly

demonstrated by several examples in the next section.

4 Applications

First, I show that there is an intimate link between the existence of asymmetric equilibria in

a symmetric game and the equilibrium set of asymmetric variations of that game. Second,

it is proved that uniqueness in symmetric games regularly extends to uniqueness in almost

symmetric games. Finally, the separation approach is applied to several examples.

4.1 Equilibria in asymmetric games

Let cg ∈ P denote player g′s parameter vector, where P ⊂ Rm is a compact parameter space.

Γ(c) ≡
(
N,SN , {Πg(x, cg)}Ng=1

)
, c ∈ PN , is a game10 with parameters c1, ..., cN . If c1 = c2 =

... = cN the game is symmetric. For now, we concentrate on one-dimensional games where

the heterogeneity of the payoff-functions is restricted to the distribution of one parameter. The

following proposition shows that if for a game, where best-replies are increasing in the parameter

c ∈ [c, c̄], any underlying two-person symmetric game does not have an asymmetric equilibrium,

then the strategies in every equilibrium of the asymmetric game are ordered exactly in the same

way as the parameters ci.

Proposition 3 Suppose that ϕ(x−1, c) is increasing in c on [c, c̄] and c̄ ≥ c1 > c2, ..., > cN ≥ c.

If for any given X ∈ SN−2 and any c ∈ [c, c̄] the symmetric two-player game with payoffs

Πj(x1, x2;X, c), j = 1, 2, has no asymmetric equilibria, then every equilibrium of the asymmetric

game Γ(c1, ..., cN) satisfies x∗1 ≥ x∗2 ≥, ...,≥ x∗N . Moreover, x∗1 > x∗2 >, ..., > x∗N results if

ϕ(x−1, c) is strictly increasing in c on [c, c̄].

10In this and the next section I assume that Πj(x, c) is twice continuously differentiable in (x, c) and strongly
quasiconcave in xj for any c ∈ P.
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Proof: To prove this proposition we require inter alia a characterization result for asymmetric

equilibria (see appendix 7.5). If the game is decreasing in c on [c, c̄], the inequalities of the

equilibrium strategies are reverted.

Proposition 3 tells us e.g. that asymmetric games never possess symmetric equilibria if ϕj is

strictly monotonic in c on [c, c̄]. Notably, we can use the simple slope condition of theorem 2 to

exclude the possibility of equilibria in c-monotonic asymmetric games, which do not reflect the

order of the parameters. Proposition 3 extends to the case where cj is a parameter vector: If

c1, ..., cN are parameter vectors such that ϕ (x−1, cg) ≥ ϕ (x−1, cj) and the respective symmetric

two-player games have no asymmetric equilibria for any of these parameter vectors, then x1 ≥

x2 ≥ ... ≥ xN holds in any equilibrium of the asymmetric game.

4.2 Uniqueness in almost symmetric games

Proposition 3 shows that we can learn certain properties of the equilibrium set of asymmetric

games by studying certain symmetric games. A related question is whether uniqueness in a

symmetric game is a property that extends at least to almost symmetric games, i.e. games

where the ex-ante asymmetries are small. The answer to this question is definitely yes (for

k ≥ 1), provided that the symmetric equilibrium is regular11.

Proposition 4 Suppose that the joint best-reply satisfies φ(·, ·) ∈ C
(
SN × PN , SN

)
and con-

sider a symmetric game Γ(c) with a unique, symmetric and regular equilibrium x∗ ∈ Int(SN).

Then ∃ δ > 0 such that Γ(c′) has a unique equilibrium for any c′ ∈ B(c, δ).

Proof: Appendix (7.5)

If k = 1 and the variation in parameters c → c′ is small and of a c-monotonic nature, propo-

sitions 3 and 4 tell us that there is a unique interior equilibrium, and this equilibrium reflects

the order of the parameters.

11Det(J(x)) 6= 0, where J(x) is the Jacobian of ∇F (x).
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4.3 One-dimensional sum-aggregative games

Several interesting games have the property that the strategies enter the payoff functions as

a sum. Payoff functions of such sum-aggregative games can be represented12 as Π (xg, x−g) =

Π̂ (xg, Q), with Q =
N∑
j=1

xj.

Proposition 5 Consider a sum-aggregative symmetric one-dimensional game.

i) If for (x1, Q) ∈ Int(S)× (0, S̄N) condition

Π̂1 (x1, Q) + Π̂2 (x1, Q) = 0 ⇒ Π̂11 (x1, Q) + Π̂12 (x1, Q) < 0 (6)

is satisfied, then no asymmetric equilibrium exists.

ii) A sum-aggregative symmetric index game has only one symmetric equilibrium iff the fol-

lowing condition holds on Crs:

Π̂11(x1, Nx1) + (N + 1)Π̂12(x1, Nx1) +NΠ̂22(x1, Nx1) < 0 (7)

Proof: (i) Use (3) of corollary 2 to obtain (6). (ii) Apply i) of theorem 1 to obtain (7).

�

Example 1: Cournot

The symmetric Cournot model has Π̂(x1, Q) = P (Q)x1 − c(x1), where Q is the aggregate

quantity supplied, P is inverse market demand and c(x1) are quantity costs. Presuming that the

symmetric index conditions are satisfied, there is exactly one symmetric Cournot equilibrium

iff

P (Nx1) + P ′(Nx1)x1 − c′(x1) = 0 ⇒ N (P ′(Nx1) + P ′′(Nx1)x1) < c′′(x1)− P ′(Nx1) (8)

Moreover, from (6) we deduce that if P ′ < c′′ is satisfied (whenever P (Q)−c′(x1)+P ′(Q)x1 = 0),

then the Cournot game has no asymmetric equilibria. Kolstad and Mathiesen (1987) derive

12Note that e.g. a game with payoff Π(xg,
∑
f(xj)), where f ∈ C2(S,R) is strictly increasing, can be

equivalently represented as a sum-aggregative game using the change of variable ej = f(xj).
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general conditions of uniqueness for the (non-symmetric) Cournot game, imposing P ′ < c′′

as an exogenous assumption. While this is reasonable on intuitive grounds, we learn from

the separation approach that exactly this assumption rules out the possibility of asymmetric

equilibria - and therefore is a natural precondition for uniqueness. As a consequence we see

that non-uniqueness of equilibria in the symmetric (or almost symmetric) Cournot model arises

mainly from the possibility of multiple symmetric equilibria and not from asymmetric equilibria.

Moreover, if P ′ < c′′ and there is a unique equilibrium in a symmetric Cournot index game,

the equilibrium is stable (see section 5). It should be mentioned that P ′ < c′′ also rules out

the possibility of asymmetric equilibria even if ϕ(x−1) ∈ ∂S or ϕ(x−1) has isolated kinks13,

which is not unrealistic for the Cournot model as market demand may have kinks e.g. because

of heterogeneous consumers. Note that the symmetric index theorem can be applied to rule

out multiple symmetric equilibria even if ϕ̃ has kinks, provided that the index conditions are

satisfied (i.e. kinks are not symmetric equilibria). If the uniqueness-condition14 of Kolstad

and Mathiesen (1987) is evaluated for the symmetric case under the assumption that P ′ < c′′

we obtain exactly condition (8) ruling out multiple symmetric equilibria - which besides the

simplicity of obtaining the result also illustrates the generality of the separation approach.

Example 2: Contests

Consider a general sum-aggregative contest Π = p

(
g(y1),

N∑
j=1

g(yj)

)
V −h(y1), where V, g′ > 0

and p ∈ [0, 1] is a contest success function (see Konrad (2009)). Note that, by a change

of variables, such a contest may be represented as Π̂ = p(x1, Q)V − c(x1), where c(x1) =

h (g−1(x1)) ∈ C2. Using (6), (7) and assuming that the symmetric index conditions are satisfied,

we may conclude that such a contest has a unique symmetric equilibrium if at corresponding

critical points:

(p11 (x1, Q) + p12(x1, Q))V − c′′(x1) < 0 (6’)

(p11(x1, Nx1) + (N + 1)p12(x1, Nx1) +Np22(x1, Nx1))V − c′′(x1) < 0 (7’)

13In such cases the index theorem obviously is not applicable.
14Corollary 3.1, p. 687
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Suppose that c(0) = c′(0) = 0 and

p(x1, Q) =


1

N+r
x1 = ... = xN = 0

1
1+r

x1 > 0, x2 = ... = xN = 0

f
(

x1
Q+r

)
else

where r ≥ 0, f ∈ C2 is strictly increasing, concave and f ′(0) > 0. The best-reply ϕ(x−1) ∈ (0, S̄]

is continuous, and differentiable if ϕ(x−1) ∈ Int(S) whenever x2 > 0. It can be verified that

(6’) is satisfied, meaning that there cannot be any asymmetric contest equilibria. Turning to

symmetric equilibria we note that x1 = 0 can never be a best-reply to any x−1 ∈ SN−1. While

we cannot use the (symmetric) index theorem because Π is not differentiable at the origin, it

is straightforward to verify that this example satisfies (7’) for respective interior points. As

(7’) implies that ϕ̃(x̄) can cross the 45◦-line at most once on (0, S̄], we conclude that there is

a unique symmetric equilibrium x∗1 ∈ (0, S̄]. If f(z) = z then the previous example collapses

to the often invoked Tullock success function. Hence the separation approach also provides us

with a simple proof of uniqueness for the Tullock contest.

Example 3: Homogeneous revenue

The Tullock contest with r = 0 is an important example, where revenues are homogeneous

functions. Applying the separation approach to sum-aggregative games with homogeneous

revenues and strictly convex costs reveals that such games naturally have only one symmetric

equilibrium, which also very likely is the unique equilibrium of the game. To see this consider

Π(x) = π(x1,
∑
xj)− c(x1), where π(x1,

∑
xj) is homogeneous of degree z < 1 in (x1, ..., xN),

or equivalently π(x1, Q) is z-homogeneous in (x1, Q).

Proposition 6 Suppose that π(x1, Q) is homogeneous of degree z < 1 in (x1, Q) and c′, c′′ > 0.

Then there is only one symmetric equilibrium. If additionally, π1 ≥ 0 and π11 ≤ 0 for x1 > 0

the symmetric equilibrium is unique.

Proof: We start with the second claim. As π1(x1, Q) ≥ 0 is z − 1-homogeneous the Euler-

theorem and the sum-aggregative structure imply that π11 + Q
x1
π12 ≤ 0 for x1 > 0, which if

π11 ≤ 0 necessarily implies that π11 + π12 ≤ 0. As c′′(x1) > 0 for x1 > 0 there cannot be any
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asymmetric equilibria by (6). Turning to symmetric equilibria, as
∂Π(x1,

∑
xj)

∂x1

∣∣
xj=x1 is (z − 1)-

homogeneous in x1 we must have that ∇Π̃(x1) = ωxz−1
1 − c′(x1), where ω > 0 is a constant.

Hence J̃(x1) = ω(z−1)xz−2
1 −c′′(x1) < 0 whenever x1 > 0, which implies that ϕ̃(x̄) can intersect

the 45◦-line at most once. Thus there cannot be multiple symmetric equilibria.

�

Proposition 6 is another way of proving uniqueness in the symmetric Tullock contest (for r = 0)

or the Cournot model with inverse demand P (Q) = Q−α, α ∈ (0, 1].

4.4 Information-pricing game

In this section I apply the separation approach to a two-dimensional information-pricing game

as introduced by Grossman and Shapiro (1984). Each of two firm chooses its price p and the

market fraction a of consumers to be made aware of its product, taking (p̄, ā) of its opponent as

given. There is a measure of δ consumers, ex-ante unaware of both firms. Ex-post a consumer

might be aware of none, of both or of just one firm. Information (advertisement) is distributed

randomly and independently over the population, firms cannot discriminate between consumers,

and products are imperfect substitutes. A firm’s market demand from consumers not aware of

the other firm is x(p), and x(p, p̄) for consumers that receive ads from both firms. Assuming

constant unit costs of production the firm’s expected profit is

Π (p, a) = a

(1− ā) (p− c)x(p)︸ ︷︷ ︸
≡V (p)

+ā (p− c)x(p, p̄)︸ ︷︷ ︸
≡V (p,p̄)

 δ − C(a) ≡ aV (p, p̄, ā) δ − C(a) (9)

where C(a) are information costs. It is reasonable to assume that a firm’s demand for given

prices p, p̄ is never lower if a consumer is not aware of its competitor (x(p) ≥ x(p, p̄)). Similarly,

demand very likely reacts more sensitively towards an unilateral price change in case of perfectly

informed consumers (xp(p, p̄) ≤ x′(p)), and (marginal) demand never decreases in the opponents

price (xp̄, xp,p̄ ≥ 0). Intuitively, most of these facts can be justified under free-trade, as perfectly

informed consumers have two outside options (not consume or consume at the competitor’s

location) whereas unilaterally informed consumers just have one (not consume). To be precise,
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the following formal assumptions are imposed:

The function V (p, p̄, ā) ∈ C2 (S2,R), where S = [c, p̂] × [0, 1], is strongly quasiconcave in p,

Vā, Vpā ≤ 0, Vp̄, Vpp̄ ≥ 0 and p̂ > c is the monopoly price. The cost function satisfies C(0) =

C ′(0) = 0 and C ′(a), C ′′(a) > 0 for a > 0. Moreover, it is assumed that ϕ = (p, a)(p̄, ā) ∈ Int(S)

for any (p̄, ā) ∈ [c, p̂]×(0, 1] (interior best-replies), and that there exists p ∈ [c, p̂]: V (p, c, 1) > 0.

The last assumption means that even under perfect information and marginal-cost pricing of

the opponent the firm can retain a strictly positive market demand for a price slightly above

marginal costs, which is a typical feature competition with imperfect substitutes. A simple

example for V is demand derived from quadratic utility (LaFrance (1985)), i.e. x(p) = 1 − p

and x(p, p̄) = 1−p+γ(p̄−1)
1−γ2 , where the parameter γ ∈ (0, 1) controls the degree of substitutability.

It is easy to see that e.g. for c = 0, Sp = [0, 1/2] and γ ∈ [0, 1/2] this example satisfies the

above assumptions. Despite that (9) looks innocent, investigating the set of equilibria is not

trivial. For example, the index theorem cannot be used as the boundary conditions are naturally

violated in this model15. Moreover, even if it were applicable, we would have to calculate the

determinant of a largely abstract 4× 4-matrix.

I now use the separation approach to investigate the equilibrium set of this two-dimensional

game. We note that because V (p, p̄, ā) > 0 is always feasible, a = 0 can never be a part of a

firm’s best reply. Because Π is continuous, V is strongly quasiconcave in p and C ′′ > 0 the

best-reply ϕ = (p, a) is a continuous function of (p̄, ā). Consequently, at least one symmetric

equilibrium exists in this game. Further, the above assumptions imply16 that p′(p̄) ≥ 0 and

p′(ā) ≤ 0. Hence, by corollary 3, we may already conclude that if asymmetric equilibria exist,

these equilibria must be (weakly) ordered. As also a′(p̄) ≥ 0 there cannot be any asymmetric

equilibria if a′(ā) > −1 according to corollary 3. This condition is satisfied if for a, ā ∈ (0, 1)

we have that (use the FOC and the IFT):

V (p)− V (p, p̄)

(1− ā)V (p) + āV (p, p̄)
<
C ′′(a)

C ′(a)
(10)

The LHS of (10) is maximal (for a given p) if (p̄, ā) = (c, 1). Hence if e.g. V (p)
V (p,c)

< C′′(a)
C′(a)

+ 1,

15For example, Πa(c, 0) = V (c, p̄, ā)δ − C ′(0) = 0, i.e. ∇F does not point inwards at (c, 0, p̄, ā) ∈ ∂S2.
16Follows from applying the IFT to FOC’s.
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then (10) is satisfied. However, we may exploit the FOC to obtain a better estimate (see be-

low). From the analysis so far we learn two things about the scope of asymmetric equilibria

in the information-pricing game. First, the fact that only ordered asymmetric equilibria may

exist (if any at all) is independent of scale effects. This can be seen as none of the results

obtained so far depends on the market size parameter δ, nor on unit production costs c nor

on multiplicative information cost parameters (if C(a) = θc(a) then θ > 0 plays no role). Sec-

ond, according to (10) only if either marginal costs react sufficiently inelastically to a change

in advertising, or monopoly rents exceed the duopoly rents by a relatively large amount (e.g.

because products are strong substitutes) there could be asymmetric specialization equilibria.

Intuitively, in such an equilibrium one firm can be thought of specializing on advertising (high

(p, a)) earning quasi-monopoly rents from unilaterally informed consumers but incurring high

advertising costs, whereas the other firm specializes in competition (low (p, a)) and thereby

wins the good informed consumers, but faces only little demand because of a small advertising

campaign. What is the scope for such asymmetric equilibria in our parametric example? Ex-

ploiting the linearity of the problem it can be shown that p(p̄, ā) = 1−γ2−γ(1−p̄−γ)ā
2−2γ2(1−ā)

∈ (1−γ
2
, 1

2
)

for γ, p̄ ∈ [0, 1/2] and ā ∈ (0, 1]. Using p̄ = 1−γ
2

and ā = 1 in the LHS of (10) reveals that

the left-hand side of (10) is smaller than γ
1−γ−γ2 ≤ 2. Hence, if C′′(a)

C′(a)
≥ 2 we can be sure that

no asymmetric equilibrium exists. More concretely, if C(a) = θaη, η ≥ 2, then no asymmetric

equilibrium exists if η ≥ 3 or competition is not too intense (if γ ≤
√

2− 1). A similar conclu-

sion holds for the CRIR advertising technology introduced by Grossman and Shapiro (1984):

C(a) = Ln(1−a)
Ln(1−r) , r ∈ (0, 1), implies that C′′(a)

C′(a)
= 1

1−a ≥ 1. Hence if γ ≤
√

2− 1 and advertising

technology follows the CRIR technology, there cannot be any asymmetric equilibria. All in all

we conclude that while the scope for asymmetric equilibria in this game is small.

Turning to the issue of multiple symmetric equilibria, we note that

∇Π̃(p, a) =

 aV1(p, p, a)δ

V (p, p, a)δ − C ′(a)

 (11)

(11) shows that the index theorem is not applicable even if we restrict attention to symmetric

equilibria as∇Π̃ vanishes e.g. at the corner point (p, a) = (c, 0). Whereas (c, 0) is a zero of (11),
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i.e. an equilibrium candidate, it obviously cannot constitute a symmetric equilibrium. While

we cannot rely on the index theorem to discuss the scope of multiple symmetric equilibria, (11)

provides us with a useful guideline to prove uniqueness in a more constructive way. Assuming

that ∇Π̃(p, a) = 0 for some interior point (p, a) we obtain Det(J̃(p, a)) > 0 iff V1p(Vaδ −C ′′)−

V1aVpδ > 0. If the index theorem were applicable, we could conclude that if i) V1(p, p, a) = 0

⇒ V1p(p, p, a) < 0 and ii) V (p, p, a)δ − C ′(a) = 0 ⇒ Vp(p, p, a) ≥ 0 then there is exactly one

symmetric equilibrium (p, a). The claim now is that these conditions in fact imply this result

without invoking the index theorem. To see this, consider the pure symmetric pricing game,

where each firm solves max
pi∈[c,p̂]

V (pi, pj, a)δ for given a > 0. Then i) assures the existence of a

single symmetric equilibrium p = p(a) ∈ (c, p̂], because p̃(p̄; a) can reach the 45◦-line just once.

Moreover, p(0) = p̂, p is continuous in a and if p(a) ∈ (c, p̂), then p′(a) = −V13
V1p
≤ 0. Next,

consider the pure symmetric information game, where each firm solves max
ai∈[0,1]

aiV (p, p, aj)δ −

C(ai). Then ii) implies the existence of a single symmetric equilibrium a = a(p) ∈ [0, 1], where

a(c) = 0 and a is continuous in p. If a(p) ∈ (0, 1), then a′(p) = Vpδ

V3δ−C′′ ≥ 0. A symmetric

equilibrium of the original information-pricing game is a FP of the mapping (p(a), a(p)), and the

above analysis shows that there is exactly one such FP (see figure 2). Note that the important

p

φ

(0, )c p̂

1

( )p φ
( )pφ

Figure 2: Inexistence of multiple symmetric equilibria

part of the above derivation is that p′(a) ≤ 0 but a′(p) ≥ 0 hold at interior points, which

essentially reflects the nature of the strategies in this game. Therefore, we conclude that the

scope for multiple symmetric equilibria is small and, overall, uniqueness of equilibria is a rather

likely outcome in the information-pricing game. In particular, our parametric example satisfies
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all above conditions and therefore has a only one symmetric equilibrium. To summarize:

Proposition 7 In the information-pricing game with linear demand there is a single symmetric

equilibrium. For C(a) = θaη, η ≥ 2, the symmetric equilibrium is unique if information costs

are sufficiently elastic (η ≥ 3) or products are not too strong substitutes (γ ≤
√

2− 1).

5 Stability of symmetric equilibria

In this section I investigate the connection between symmetric stability and symmetric equi-

libria. I show that stability under symmetric adjustments implies the existence of only one

symmetric equilibria for k ≥ 1, and is equivalent to the existence of only one symmetric equi-

librium for one-dimensional games. Besides the self-interest of such a formal equivalence, there

is a strong link between stability and the comparative statics of a symmetric equilibrium. Con-

sider the system of gradient dynamics

ẋji = si
∂Πj(x)

∂xji
1 ≤ j ≤ N, 1 ≤ i ≤ k (12)

where si > 0 is an arbitrary rate of adjustment (Dixit (1986)). A solution to (12) has the form

x(t) = (xj(t))1≤j≤N , where xj(t) = (xj1(t), ..., xjk(t)) is the vector trajectory of player j. An

equilibrium x∗ is (asymptotically) stable if all eigenvalues of J̆(x∗), the Jacobian corresponding

to system (12), have negative real parts. When considering the comparative statics of symmetric

equilibria it makes sense to consider a restricted version of that trajectory map, where the initial

values x(0) are required to be symmetric, i.e. x1(0) = ... = xN(0). Then, by symmetry, the

time path xj(t) must be the same for all players and solves

ẋ1i = siΠ̃i(x1) 1 ≤ i ≤ k (13)

where Π̃i(x1) is the i-th projection of ∇Π̃(x1). Let Ĵ(x1) denote the Jacobian corresponding

to (13) and suppose that x∗ is an interior symmetric equilibrium. I call x∗ symmetrically

stable if all eigenvalues of Ĵ(x∗1) have negative real parts. If x∗ is symmetrically stable then

lim
t→∞

x(t) = x∗ if x(0) is symmetric and close to x∗. As figure 3 illustrates, stability of (12)
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always implies symmetric stability, but not vice-versa. The reason for this essentially is that
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Figure 3: Stable eq. (left), only symmetrically stable eq. (right)

symmetric stability is a special case of the saddle-path theorem.17 The following proposition

reveals the relationship between symmetric stability and (non)-multiplicity of symmetric equi-

libria.

Proposition 8 Consider a symmetric game.

i) If k = 1 then there are symmetrically unstable equilibria iff there are multiple symmetric

equilibria in a symmetric index game. Provided that x is the only symmetric equilibrium,

x is stable under (12) iff Π11(x) < Π12(x).

ii) For k = 2 a symmetric equilibrium x is symmetrically stable, if −J̃(x1) has only positive

principal minors.

iii) If k ≥ 1 and multiple symmetric equilibria exist, then there are symmetrically unstable

equilibria in a symmetric index game.

Proof: Appendix (7.7)

If k = 1 and a symmetric index game has only one symmetric equilibrium, this equilibrium is

even globally stable for symmetric initial conditions. Several sufficient conditions for symmetric

17The spectrum of Ĵ(x∗) belongs to the spectrum of J̆(x∗). But if the spectrum of Ĵ(x∗) consists only of
eigenvalues with negative real part, then J̆(x∗) must have (at least) k eigenvalues with negative real part. There-
fore, by the saddle-path theorem, there exists a k-dimensional manifold M about x∗ on which x(t) converges
to x∗.
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stability can be derived for k ≥ 1, see section 7.8 of the appendix. Note that if in a symmetric

index game any of these conditions are satisfied on Crs then, by iii), there is a single symmetric

equilibrium, and it is symmetrically stable. Using ii) of proposition 8 it can be verified that our

assumptions asserting the existence of only one symmetric equilibrium (p, a) in the information-

pricing game (section 4.4) also imply (p, a) to be symmetrically stable (provided it is interior

). From i) of proposition 8 it is only a small step to recognize that:

Corollary 4 If a one-dimensional sum-aggregative index game satisfies conditions (6) and (7),

then the unique symmetric equilibrium is stable under (12).

Thus if the Cournot model satisfies P ′−c′′ < 0 as well as the symmetric index conditions and has

a unique equilibrium, this equilibrium naturally is stable under (12), which replicates a result of

Dastidar (2000) as a special case of corollary 4. If a game has symmetrically unstable equilibria

(e.g. because of multiple symmetric equilibria) the comparative statics become problematic.

To see why suppose e.g. that a one-dimensional symmetric index game has three asymmetric

equilibria xA(c), xB(c), xC(c), where c is an exogenous parameter vector. Such a situation is

depicted in figure 4, where A and B are symmetrically stable equilibria (index +1), but C is

symmetrically unstable (index −1). Consider a symmetric parameter shift c → c′ and assume

that ϕ̃(x̄, c′) > ϕ̃(x̄, c). The arrows in figure 4 correspond to the dynamics under parameter

constellation c′. As is suggested by the figure (formally we would apply the IFT) we see that

x

( )xϕ%

A
'A

B
'B

C
'C

( , )x cϕ%

( , ')x cϕ%

Figure 4: Symmetric stability and comparative statics
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the points A and B both increase to A′ and B′. As both A′ and B′ are symmetrically stable, the

symmetric dynamics (13) converge from A to A′ or from B to B′. For symmetrically unstable

points things are different. First, we see that C ′ < C (a consequence of the negative index at

C), contradicting the direction suggested by the monotonicity of the exogenous change. Second,

C lies in the basin of attraction of B′, which means that the dynamics do not move down to

C ′ but monotonically up to B′ (which is not a ”small” distance). Hence the gradient dynamics

and the comparative-static shift of the equilibrium disagree at C, which helps to explain why

one could regard the prediction C → C ′ as counterintuitive and not plausible. Notably, such

an outcome could never be supported as a stable equilibrium and necessarily requires strong

local strategic complements (Π12(x)(N − 1) > −Π11(x) or equivalently ϕ̃′(x1) > 1).

Summarizing, we see that there is a strong link between symmetric stability and the multiplicity

of symmetric equilibria. Further, while multiple symmetric equilibria might impose a problem

for comparative static analysis, the existence of asymmetric equilibria is less problematic as

long as symmetric shocks are considered.

6 Conclusion

This article exploits the symmetric structure of symmetric games to derive comparably simple

tools to investigate the equilibrium set of such games by separating between the possibility of

multiple symmetric equilibria and asymmetric equilibria. The practical and theoretical useful-

ness of this approach was demonstrated with several examples. Compared to other standard

methods, in particular the index theorem, the strength of the separation approach are i) its rel-

ative simplicity, as the complexity of the fixpoint problem is essentially reduced to a two-player

game, ii) the fact that boundary conditions are far less troublesome and iii) best-replies may

have kinks. As the application to the two-dimensional price-information game illustrated, the

separation method allows to systematically investigate the equilibrium set of higher-dimensional

games, which is important for understanding many real-world problems that have eluded a

formal assessment so far. For example, one can examine how the nature of strategies in a

symmetric game or certain parameter constellations influence the possibility of multiple sym-
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metric or asymmetric equilibria. Finally, analyzing the equilibrium set of a symmetric game

may not only be of self-interest, but also sheds light on the equilibria of asymmetric variations

of the game, which was illustrated by means of monotonic parameter shifts in one-dimensional

games. All in all we believe that our results will provide valuable guidelines for a thorough

equilibrium analysis of complex symmetric games in future applied research in game theory,

industrial economics and other related fields.

7 Appendix

7.1 A counting rule

If asymmetric equilibria exist, the set of asymmetric equilibria which are permutations of each

other with respect to {1, ..., N} form an equivalence class within the set of all asymmetric equi-

libria. I refer to a class of equivalent asymmetric equilibria simply as an equivalent asymmetric

equilibrium. Consider a symmetric game, where the C1-vector field ∇F satisfies i) ∇F has

only regular zeroes and ii) ∇F points inwards on the boundary of SN . Let Is denote the sum

of the indices of all symmetric equilibria with respect to ∇F .

Proposition 9 Consider a symmetric game, where ∇F satisfies the above index conditions.

(a) If Is = 1 and there are asymmetric equilibria, then there is more than one equivalent

asymmetric equilibrium. If especially N = 2 then there is an even number of equivalent

asymmetric equilibria.

(b) If Is 6= 1 then asymmetric equilibria exist. For N = 2:

(i) if Is = 3 + 4z for z ∈ Z then there is an odd number of equivalent asymmetric

equilibria

(ii) if Is = 5+4z for z ∈ Z\ {−1} then there is an even number of equivalent asymmetric

equilibria

Proof: Let ω ≥ 1 be the (necessarily odd) number of symmetric equilibria. Hence Is must be

a number from {±1,±3,±5, ...,±ω}. Further, if Ia denotes the index sum of all asymmetric
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equilibria, we must have Is+Ia = 1. Note that all asymmetric equilibria in a given equivalence

class have the same index. If Is = 1 but there are asymmetric equilibria, then Ia = 0, which

requires the existence of at least two equivalent asymmetric equilibria. If Is 6= 1 we must have

Ia 6= 0, which implies the existence of asymmetric equilibria. To see the rest set N = 2 and

note that, if asymmetric equilibria exist, there are exactly two asymmetric equilibria within

an equivalence class. Let n− denote the number of equivalence classes with index −1, and n+

those with index +1. Then n+−n− = 1−Is
2

. If Is is a number 3 + 4z, the RHS of this equation

is an odd number. Hence either n− or n+ must be odd and the other number must be even or

zero. Consequently, n− + n+ must be odd. For Is = 5 + 4z with z ∈ Z\ {−1} the RHS must

be even and hence n1 + n2 must also be even. Finally, if Is = 1 then n− = n+ = n. For n > 0

this implies n− + n+ = 2n, which is even.

�

7.2 Proof of theorem 2

The proofs of theorems 2 and 3 build on the following lemmata.

Lemma 1 Let ψ ∈ C ([t0, t1], [a, b]) with ψ(t0) 6= ψ(t1). Suppose that the points in (t0, t1) where

ψ(t) is not differentiable are locally isolated. Then

i) if ψ(t0) > ψ(t1) ∃t′ ∈ (t0, t1) such that ψ′(t′) ≤ ψ(t1)−ψ(t0)
t1−t0

ii) if ψ(t0) < ψ(t1) ∃t′′ ∈ (t0, t1) such that ψ′(t′′) ≥ ψ(t1)−ψ(t0)
t1−t0

(14)

Proof: Ã ⊂ (t0, t1) is the set of non-differentiable points of ψ and A = Ã ∪ {t0, t1}. Let

ψ(t0) > ψ(t1), define g(t) ≡ ψ(t0)−ψ(t1)
t0−t1 (t− t0) + ψ(t0) and k(t) ≡ ψ(t) − g(t) for t ∈ [t0, t1].

Hence k(t0) = k(t1) = 0, k is continuous on [t0, t1] and differentiable at t if t /∈ A. The proof

is by contradiction. Suppose that ψ′(t) > ψ(t1)−ψ(t0)
t1−t0 holds, whenever ψ(t) is differentiable.

If Ã = ∅ then k is strictly increasing on [t0, t1] by the Mean Value Theorem (MVT), which

contradicts k(t0) = k(t1). Hence suppose that Ã 6= ∅. Then, by local isolation, ∀t ∈ Ã there is

an interval It = (t−ε1, t+ε2) such that k is differentiable on It\{t}. In fact we can choose ε2 > 0

such that t+ ε2 ∈ A. Then the MVT and continuity of k at t imply k to be strictly increasing
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over It. As for any t ∈ Ã ∃ q(t) ∈ Q ∩ It, the mapping q : Ã→ Q is well-defined and injective,

which shows that Ã is countable. Hence we can find a sequence (qn) with qn ∈ Q∩ (t0, t1) such

that qn → t1 and k(qn+1) > k(qn), which implies that k(t1) > k(q0) by the continuity of k. As

k(t1) = 0 we conclude that k(q0) < 0. For exactly the same reason we can also find a strictly

decreasing sequence q̃n, where q̃0 = q0, q̃n → t0 and k(q̃n+1) < k(q̃n). Then continuity and the

fact that k(q̃0) < 0 imply k(t0) < 0, a contradiction. This proves i), and ii) follows from i) by

setting ρ(t) ≡ ψ (t0 + t1 − t).

�

Lemma 2 Let ψ ∈ C ([t0, t1], [a, b]) with ψ(t0) 6= ψ(t1) and ψ differentiable on ψ−1 ((a, b))

except possibly at a set of isolated points. Then (14) is satisfied.

Proof: By the proof of lemma 1 it suffices to consider the case ψ(t0) > ψ(t1). Hence ψ(t0) > a

and ψ(t1) < b. Let T ≡ ψ−1 ({a, b}) ⊂ [t0, t1]. If T = ∅ then the claim follows from lemma 1,

so suppose that T 6= ∅. Note that T is a compact subset of R, and let the min and max of T

be denoted by t, t̄. The proof now is case-by-case. (I) ψ(t) = a. Then ψ is continuous on [t0, t]

and differentiable on (t0, t) except possibly for a set of isolated points. Then because of lemma

1 ∃t ∈ (t0, t) such that ψ′(t) ≤ a−ψ(t0)

t−t0
≤ ψ(t1)−ψ(t0)

t1−t0 . (II) ψ(t̄) = b. Then ψ is continuous on

[t̄, t1] and differentiable on (t̄, t1) except possibly for a set of isolated points. Thus, by lemma

1, ∃t ∈ (t̄, t1) such that ψ′(t) ≤ ψ(t1)−b
t1−t̄ ≤

ψ(t1)−ψ(t0)
t1−t0 . (III) ψ(t) = b and ψ(t̄) = a. Define

A ≡ ψ−1 ({b}), which is a non-empty and compact set. Hence t̂ = maxA exists. Similarly,

B ≡ [t̂, t1] ∩ ψ−1 ({a}) also is non-empty and compact. Let ť = minB. Hence ψ is continuous

on [t̂, ť] and differentiable on (t̂, ť) except possibly for a set of isolated points. Thus, by lemma

1, ∃t ∈ (t̂, ť) such that ψ′(t) ≤ a−b
t̂−ť ≤

ψ(t1)−ψ(t0)
t1−t0 .

�

Proof of theorem 2

Step 1: N = 2. Suppose that (xa1, x
a
2) is an asymmetric equilibrium. Then (xa2, x

a
1) is a different

asymmetric equilibrium and ϕ(xa2) = xa1 and ϕ(xa1) = xa2. Let ψ(t) ≡ ϕ (xa1 + t(xa2 − xa1)) for

t ∈ [0, 1]. Then ψ(0) = xa2 and ψ(1) = xa1. Hence ψ ∈ C ([0, 1] , S), ψ(0) 6= ψ(1) and ψ(t) is
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differentiable whenever ψ(t) ∈ Int(S) except possibly for a set of isolated points. If ψ(0) > ψ(1),

then lemma 2 and the chain rule imply that ∃x2 ∈ Int(S) such that ϕ(x2) ∈ Int(S), ϕ

differentiable at x2 and ∂ϕ(x2) ≤ −1. For ψ(1)−ψ(0) > 0 an identical conclusion follows. Step

2: N > 2. Suppose (xa1, ..., x
a
N) is an asymmetric equilibrium, where we can assume xa1 6= xa2

without loss of generality. Take X = (xa3, ..., x
a
N) ∈ SN−2 as an exogenously fixed parameter

vector and suppose players g = 1, 2 play a two-player game, treating X as fixed. Then (xa1, x
a
2)

as well as (xa2, x
a
1) must be asymmetric equilibria of this symmetric, parametrized two-player

game. Thus, by step 1, if the N -player game has an asymmetric equilibrium ∃ X ∈ SN−2 and

x2 ∈ Int(S) such that ∂ϕ(x2;X) ≤ −1, which completes the proof.

�

7.3 Proof of theorem 3

Let N = 2 and suppose (xa1, x
a
2) is an asymmetric equilibrium. Then (xa2, x

a
1) also is an asym-

metric equilibrium and ϕ(xa2) = xa1, ϕ(xa1) = xa2. Define ψi(ti) ≡ ϕi (x
a
1 + ti(x

a
2 − xa1)), where

i = 1, 2 and ti ∈ [0, 1]. Then ψi(0) = ϕi(x
a
1) and ψi(1) = ϕi(x

a
2). Note that ψi(0) 6= ψi(1) for

at least one i. Moreover, ψi ∈ C ([0, 1], Si) and, according to the chain rule, if ψi(ti) ∈ Int(Si)

the function ψi is differentiable expect possibly for a set of isolated points by presupposition.

Hence if ϕi(x
a
1 + ti(x

a
2 − xa1)) ∈ Int(Si) and ϕi is differentiable at the point xa1 + ti(x

a
2 − xa1),

then the chain rule implies:

ψi
′(ti) = ∂ϕi (x

a
1 + ti (x

a
2 − xa1)) ·

 ψ1(0)− ψ1(1)

ψ2(0)− ψ2(1)

 (15)

The proof now is case-by-case. (I) ψi(0) = ψi(1) for one i. Suppose that ψ1(0) = ψ1(1) and

hence ψ2(0) 6= ψ2(1). Then, similar to step 1 of the proof of theorem 2, lemma 2 and (15)

imply that ∃ x′2 ∈ S1 × Int(S2) such that δ(x′2) ≤ −1 is satisfied. Similarly, if ψ2(0) = ψ2(1)

then α(x2) ≤ −1 for some x2 ∈ Int(S1)× S2. Consequently, α(x2), δ(x2) > −1 for any x2 ∈ S

where the respective derivative exist, rule out the possibility of asymmetric equilibria with a

similar i-th projection, and henceforth assume this condition to be satisfied. Further, suppose
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that ψi(0) 6= ψi(1) for i = 1, 2 and define m ≡ ψ2(0)−ψ2(1)
ψ1(0)−ψ1(1)

. (II) ψi(0) > ψi(1) or ψi(0) < ψi(1),

i = 1, 2, hence m > 0. Suppose that ψi(0) > ψi(1). Then lemma 2 and (15) assert the existence

of x2, x
′
2 ∈ S such that α(x2) + mβ(x2) ≤ −1 and γ(x′2) 1

m
+ δ(x′2) ≤ −1. Eliminating m

gives β(x2)γ(x2
′) ≥ (1 + α(x2)) (1 + δ(x2

′)). The same conclusion holds if ψi(0) < ψi(1). (III)

ψ1(0) < ψ1(1) and ψ2(0) > ψ2(1) (or opposite inequalities), hence m < 0. Then proceed as in

(II) to obtain the same conclusion as in case (II). The above derivation implies that whenever

(4) is satisfied, there cannot be any asymmetric equilibria. This proves the claim for N = 2,

and the proof is completed by the same logic as in step 2 of the proof of theorem 2.

�

Remark I: Theorem 3 can be extended to the case, where ϕ(x−1) ∈ ∂S is possible under our

usual assumptions on Π from section 2. To see why and how let k = N = 2, and suppose that

ϕ2(x0
2) = S̄2 for some x0

2 ∈ S, but ϕ1(x0
2) ∈ Int(S1). Now consider the following two systems of

equation:

I) Π1(x̂11, S̄2, x
0
2) = 0 II)

Π1(x̃11, x̃12, x
0
2) = 0

Π2(x̃11, x̃12, x
0
2) = 0

As ϕ1(x0
2) ∈ Int(S1) our assumptions on Π imply that, for fixed x12 = S̄2, equation I) implicitly

defines a local C1-function ϕ̂1(x2), with ϕ̂1(x0
2) = ϕ1(x0

2).

The technical difficulty that ϕ2(x0
2) ∈ ∂S2 potentially18 imposes, is that II) can have a local C1-

solution (x̃11, x̃12), with x̃11 = ϕ̃1(x2) around x0
2, but both ϕ̂1(x2) 6= ϕ̃1(x2) as well as ∂ϕ̂1(x2) 6=

∂ϕ̃1(x2) are possible. If II) has a solution both ϕ̂1(x2), ϕ̃1(x2) are local C1-functions around

x0
2, and ϕ1(x2) = ϕ̂1(x2) or ϕ1(x2) = ϕ̃1(x2) around x0

2. Together with the previous result, this

shows that ϕ1(x2) may not be differentiable at or around19 x0
2 despite that ϕ1(x0

2) ∈ Int(S1).

With this insight we can adapt the proof of theorem 3 to obtain a similar condition as (4).

To see how, let x2 6= x′2 and let ψ(t) ≡ ϕ(x2 + t(x′2 − x2)), ψ̂1(t) ≡ ϕ̂1(x2 + t(x′2 − x2)) and

ψ̃1(t) ≡ ϕ̃1(x2 + t(x′2 − x2)) for t ∈ [0, 1] and assume20 that ψ2(t) = S̄2 for some t.

18If the point (ϕ1(x0
2), S̄2) is not a solution of II), then ϕ1(x2) is implicitly defined by I) as a C1-function

around x0
2. In sloppy terms this means that the boundary solution ϕ2(x2) = S̄2 is ”strict”, and the following

problem does not emerge.
19If k > 1 and there are boundary solutions non-differentiable points need not be locally isolated.
20The following argument can easily be adjusted to capture the case where ψ2(t) = 0 may also occur.

30



Suppose that A0 ≡ ψ1(0) > ψ1(1) ≡ A1. We want to show that there is t ∈ (0, 1) such that

either ψ̂′1(t) ≤ ψ1(1)− ψ1(0) or ψ̃′1(t) ≤ ψ1(1)− ψ1(0). By contradiction, assume that ψ̂′1(t) >

ψ1(1)−ψ1(0) and ψ̃′1(t) > ψ1(1)−ψ1(0) whenever these objects exist. Geometrically, this means

that the functions ψ̂1, ψ̃1 are less step (perhaps even increasing) than the line connecting A0

and A1. That is, for any t0 ∈ (0, 1) there is a perfect interval B = (t0 − ε, t0 + ε) such that ψ̂1

or ψ̃1 are moving away from the line connecting A0 and A1 as t increases on B whenever these

functions are well-defined at t0.

The fact that ψ1(t0) corresponds either to ψ̂1(t0) or to ψ̃1(t0) whenever ψ1(t0) ∈ Int(S1) then

implies that if ψ1(t0) ∈ Int(S1), the function ψ1(t) must always be moving away from the line

connecting A0 with A1, which, by continuity, makes ψ1(1) = A1 impossible, contradiction.

The consequence of this argument is that if ϕ(x2) ∈ ∂S can occur, we must apply the reasoning

in the proof of theorem 3 to the function ϕ̂1(x2) as well. In practice this means that we have

to determine the slopes in condition (4) not only by applying the IFT to the system II) (this

is sufficient if we know that best-replies are always interior) by also by applying the IFT to

the FOC with boundary points. For example, applying the IFT to Π1(x11, x12, x2) = 0, where

x12 = 0 or x12 = S̄2 are held fixed, gives the slopes

α̂1 =
∂x11(S̄2, x21, x22)

∂x21

, β̂1 =
∂x11(S̄2, x21, x22)

∂x22

, α̂2 =
∂x11(0, x21, x22)

∂x21

, β̂2 =
∂x11(0, x21, x22)

∂x22

The same argument applied to Π2 gives four additional slopes γ̂1, γ̂2, δ̂1, δ̂2. Now, working

through the same steps as in the proof of theorem 3 shows that if the statement in (4) addition-

ally holds for any combination of these new slopes (where we e.g. replace α by α̂1, β = β̂2...)

evaluated at all x2, x
′
2 ∈ S, this is sufficient to rule out the possibility of asymmetric equilibria

in the game.

Remark II: Theorem 3 extends to the case k > 2. To illustrate this, suppose k > 2, N = 2

and consider the two asymmetric equilibria (xa1, x
a
2) and (xa2, x

a
1). For simplicity, assume that

ϕ(S) ⊂ Int(S), i.e. ϕ is everywhere differentiable. Then ψi(t) ≡ ϕi(x
a
1 + t(xa2 − xa1)) is

differentiable on (0, 1). Let ∆i ≡ ϕi(x
a
1)−ϕi(xa2) and ∆ ≡ (∆1, ...,∆k). Then the MVT applied
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separately to each ψi, asserts the existence of k points xi2 ∈ Int(S), 1 ≤ i ≤ k, such that

Ã ·∆ = −∆, where Ã is a k × k matrix with entries aij =
∂ϕi(x

i
2)

∂x2j
, 1 ≤ i, j ≤ k. Equivalently,

we get that (I + Ã) ·∆ = A ·∆ = 0 where

A =



1 + ∂ϕ1

∂x21

∂ϕ1

∂x22
· · · ∂ϕ1

∂x2k

∂ϕ2

∂x21
1 + ∂ϕ2

∂x22
· · · ∂ϕ2

∂x2k

...
...

. . .
...

∂ϕk

∂x21
· · · · · · 1 + ∂ϕk

∂x2k


As ∆ 6= 0 the equation A ·∆ = 0 implies that Det(A) = 0. Now suppose that ∆k = 0. Then

Ak−1


∆1

...

∆k−1

 = 0

where Ak−1 is formed from A by cancelling the k-th row and column. As (∆1, ...,∆k−1) 6= 0

this equation implies Det(Ak−1) = 0, where Det(Ak−1) is a principal minor of order k − 1 of

A. Obviously, if ∆j = 0 for any j = 1, ..., k then the corresponding principal minor of order

k − 1 of A must be zero. This argument may be continued up to the case that k − 1 of the k

∆i’s are zero, which implies that at least one principal minor of A must be equal to zero if an

asymmetric equilibrium exists. Consequently, if all principal minors of A are non-zero at any

points x1
2, ...x

k
2 ∈ Int(S), we may conclude that there cannot be any asymmetric equilibria.

7.4 Proof of corollary 3

Suppose that there is an asymmetric equilibrium xa = (xa1, x
a
2, ..., x

a
N) with xa1 > xa2 but e.g.

β ≥ 0 and α > −1. Then by case (II) of the the proof of theorem 3 ∃ x̃2 ∈ S such that

α(x̃2) + mβ(x̃2) ≤ −1 for some X. As m > 0 this implies that β(x̃2) < 0, a contradiction.

Hence there cannot be any strictly ordered equilibria, which proves i), and ii) is proved in the

same way. Finally, if α, δ > −1 case (I) of the the proof of theorem 3 shows that there cannot

be asymmetric equilibria where two players choose the same component strategies.
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7.5 Proof of proposition 3

The proof of proposition 3 requires the following lemma.

Lemma 3 (Characterization of asymmetric equilibria) In a symmetric one-dimensional

two-player game with ϕ ∈ C(S, S) no asymmetric equilibria exist if and only if

ϕ (ϕ(x)) < x ∀x ∈ Swithϕ(x) < x (16)

or equivalently

ϕ (ϕ(x)) > x ∀x ∈ Swithϕ(x) > x (16’)

Proof: I only prove the claim for (16), the claim for (16’) is proved in the same way. ”⇒” Sup-

pose that (x1, x2) is an asymmetric equilibrium. By symmetry, we can assume that x1 < x2, i.e.

ϕ(x2) < x2 but ϕ (ϕ(x2)) = x2, contradicting (16). ”⇐” The proof of this direction naturally is

more involved. Let G1 ≡ {(x1, x2) ∈ S2 : ϕ1(x2) = x1} and G2 ≡ {(x1, x2) ∈ S2 : ϕ2(x1) = x2}

denote the graphs of the best-response functions of the two players. Further, G1(x2) ≡

(ϕ1(x2), x2) and G2(x1) ≡ (x1, ϕ
2(x1)) denote specific points on the graphs. The proof is by

contraposition. Suppose ∃ x̂2 such that ϕ1(x̂2) < x̂2 but ϕ2 (ϕ1(x̂2)) ≥ x̂2. If ϕ2 (ϕ1(x̂2)) = x̂2

then there is nothing to prove as (ϕ1(x̂2), x̂2) obviously is an asymmetric equilibrium, so suppose

that ϕ2 (ϕ1(x̂2)) > x̂2. Such a situation is illustrated in figure 7.5 with points A = G1(x̂2) ∈ G1

and B = G2 (ϕ1(x̂2)) ∈ G2. First, note that G2(0) ∈ {0} × S, as indicated by the point C.

Next, note that, by symmetry, G2 must pass through a point A′ = G2(x̂2). By continuity of

the best-response function there must be at least one symmetric equilibrium in the interval

(ϕ1(x̂2), ϕ2 (ϕ1(x̂2))). Let xs = min {x2 : ϕ1(x̂2) ≤ x2 ≤ x̂2, ϕ
1(x2) = x2}. Consider the rectan-

gle [0, xs]×
[
xs, S̄

]
. By construction, (xs, xs) is the only symmetric equilibrium in this rectangle.

Moreover, G2 partitions this rectangle (because G2 is continuous) and G1(x̂2) must lie in the

lower partition (”beneath” G2). But as G1(S̄) ∈ S×
{
S̄
}

(indicated with D) and G1 is contin-

uous there must be an x2 ∈
(
x̂2, S̄

]
such that G1(x2) ∈ G2. Hence an asymmetric equilibrium
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In words, lemma 3 says that if player 1’s reaction function lies below the graph of player 2’s

reaction function and ϕ1(x2) < x2, then an asymmetric equilibrium must necessarily exist.

Proof of proposition 3:

By contradiction, suppose that the asymmetric game has an equilibrium with xj > xg, where

g < j (and thus cg > cj). Consequently, there exists X such that ϕj(xg;X, cj) > xg and

ϕg (ϕj(xg;X, cj);X, cg) = xg. As best-replies are increasing on [c, c̄] this implies that

ϕg
(
ϕj (xg;X, cj) ;X, cg

)
≥ ϕg

(
ϕj (xg;X, cj) ;X, cj

)
Hence there exists xg such that ϕj(xg;X, cj) > xg but xg ≥ ϕg (ϕj (xg;X, cj) ;X, cj), which in

turn by (16’) of lemma 3 implies that the symmetric two-player game with best reply function

ϕ(x;X, cj) must have an asymmetric equilibrium, a contradiction. Hence xg ≥ xj, and the

result follows by induction. To prove the version for strictly increasing replies, suppose that

the asymmetric game has an equilibrium with xg = xj = x. Thus there exists X such that

ϕg (x;X, cg) = ϕj (x;X, cj) = ϕg (x;X, cj), contradicting ϕg (x;X, cg) > ϕg (x;X, cj) as implied

by strict monotonicity.
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7.6 Proof of proposition 4

Lemma 4 Suppose that φ(·, ·) ∈ C
(
SN × PN , SN

)
and consider a symmetric game Γ(c0),

c0 ∈ PN . Suppose that (xn) is a sequence of FPs, i.e. φ (xn, cn) = xn. If (xn, cn) → (x0, c0),

then x0 is an equilibrium of Γ(c0).

Proof: Define z(x, c) ≡ φ(x, c) − x and note that x is a FP of φ iff z(x, c) = 0. As (xn, cn) →

(x0, c0) continuity of z implies lim
n→∞

z (xn, cn) = z (x0, c0). But z (xn, cn) = zn → 0 implies that

z(x0, c0) = 0.

�

Proof of proposition 4:

As x∗ ∈ Int(SN) is regular, ∇F (x∗, c) = 0, and ∇F (·, ·) is continuously differentiable around

(x∗, c), the IFT asserts that for any c′ in some neighborhood U ⊂ PN of c the equation system

∇F (x, c′) = 0 has a locally unique solution x = h(c′), where h ∈ C1 (U, V ) and V ⊂ SN

is a neighborhood of x∗, which shows existence and local uniqueness of an equilibrium for

parameters c ∈ U . Let E(c) denote the set of equilibria of the game with parameter vector c.

To see global uniqueness, suppose by contradiction that for every δ > 0 ∃ cn ∈ B(c, δ) such

that E(cn) is multi-valued. Hence there is a sequence (cn) with lim
n→∞

cn = c such that E(cn) is

multi-valued for any n ∈ N. Consequently, we can find two sequences (xn), (yn) with xn 6= yn

and φ(xn, cn) = xn, φ(yn, cn) = yn and xn → x∗. Define z(x, c) ≡ φ(x, c) − x. Because z(·, ·)

is continuous the set z−1 ({0}) ⊂ SN × PN is compact. As (yn, cn) is a sequence in z−1 ({0})

there is a convergent subsequence (ynt , cnt), hence also ynt → y∗. But then lemma 4 and the

fact that x∗ is unique imply y∗ = x∗, which by the regularity of x∗ means that there is a T such

that ynt = xnt for all t ≥ T , a contradiction.

�
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7.7 Proof of proposition 8

i) The first claim follows from theorem 1. To see the second claim note that J̆(x) has only

negative eigenvalues iff J̆(x) is negative definite, which holds iff (a) Π11(x) < Π12(x)

and (b) Π11(x) + (N − 1)Π12(x) = J̃(x1) < 0, but (b) holds as x is the only symmetric

equilibrium.

ii) Let λ1, λ2 be the eigenvalues of Ĵ(x1). As s1, s2 > 0 we must have λ1+λ2 = Trace(Ĵ(x1)) =

s1Π̃11 + s2Π̃22 < 0 as well as λ1λ2 = Det(Ĵ(x1)) = s1s2Det(J̃(x1)) > 0. Hence λ1, λ2

must have negative real parts.

iii) In case of multiple symmetric equilibria theorem 1 implies the existence of x1 ∈ Crs such

that Det(−J̃(x1)) < 0. As Det(−Ĵ(x1)) = s1 · ... ·sk ·Det(−J̃(x1)) also Det(−Ĵ(x1)) < 0.

Consequently, the product of all k eigenvalues of −Ĵ(x1) is negative, which further implies

the existence of at least one negative eigenvalue. Then, Ĵ(x1) has at least one positive

eigenvalue, which means that x is symmetrically unstable.

�

7.8 Sufficient conditions for symmetric stability

Proposition 10 If x is a symmetric equilibrium and M̂(x1) ≡ −1
2

(
Ĵ(x1) + Ĵ(x1)T

)
is positive

definite, then the equilibrium is symmetrically stable.

Proof: M̂(x1) is positive definite iff z(−Ĵ(x1))zT > 0 for z 6= 0. But then all eigenvalues of

−Ĵ(x1) are positive and hence x is symmetrically stable.

�

If e.g. the game is locally supermodular at a symmetric equilibrium (Π1
ij(x) ≥ 0, 1 ≤ i ≤ k,

1 ≤ j ≤ 2k, j 6= i) the following condition might be helpful for establishing symmetric stability:

Proposition 11 If x is a symmetric equilibrium, −J̃(x1) has only non-positive off-diagonal

entries and all leading principal minors of −J̃(x1) are positive, then x is symmetrically stable.
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Proof: A matrix satisfying all above properties (sometimes called M-Matrix) has only eigen-

values with positive real parts (see e.g. Horn and Johnson (1991)).

�
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