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Abstract

We address the relationship between uniqueness of equilibria and stability with re-

spect to several popular dynamics. It is shown that while in general discrete- and

continuous-time stability conditions imply uniqueness, these fundamental properties of

an equilibrium set are equivalent mathematical properties of models with symmetric or

sum-aggregative payoff functions and non-decreasing equilibrium strategies. The base-

line results extends to the case of aggregate-taking behavior, and also to non-strategic

models such as Walrasian equilibria. We further use our machinery to reconsider the sta-

bility relations of the different dynamics in greater detail, and show that the comparably

restrictive nature of discrete dynamics originates in the simultaneity of adjustments in

case of symmetric games. Asynchronous choice behavior or heterogeneity in non-myopic

forward anticipation may stabilize the adjustment process.
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1 Introduction

Since Cournot’s illustration of a stable equilibrium (Cournot (1897)), i.e. a situation where

mutual rational behavior dynamically restores a previous departure of the equilibrium,

economists concerned themselves with the stability of an outcome. Stability conditions

usually can be stated as requirements on some adjustment matrix (or a function thereof),

and as such bear some specific mathematical properties. It is thus natural and important

to ask, how these properties are related to other aspects of the model, in particular of the

equilibrium set itself.1

In this context surprisingly few contributions have addressed the relation between stability

and uniqueness of equilibria, while both aspects have been intensely and repeatedly studied

separately in specific examples. This is understandable as uniqueness usually is a global

property of a model, but stability frequently is a local concept, at least with non-linear

dynamics. This article investigates whether and when stability and uniqueness conditions

share a common mathematical structure. Our setting encompasses several different popular

dynamics as well as different types of (strategic) behavior. A compact analysis becomes

possible as we exploit index theory to obtain a local spectral characterization of when a game

has a unique equilibrium. While our exposition is centered on a game-theoretic structure,

our results readily extend to (non-strategic) models featuring a comparable mathematical

structure, such as e.g. Walrasian price equilibria.

We further use our formal machinery in conjunction with the tractable algebraic structure of

games with a sum-aggregative representation of payoffs or symmetric equilibria in symmetric

games to study the stability relations of the various dynamics in greater detail.

Main results and related literature We restrict attention to the general class of models

compatible with index theory. We first establish that the local stability of several popular

dynamics, including the (continuous) gradient or the (continuous and discrete) best-reply

dynamics, imply uniqueness of the (Nash) equilibrium. While the converse is not true in

general (see Scarf (1960) for an early example), this has been shown to hold for certain specific

examples with respect to particular dynamics. For example, Dastidar (2000) shows that

uniqueness implies local gradient stability of equilibria under a sign restriction on best-replies

in the Cournot game, and Okuguchi and Yamazaki (2008) derive sufficient conditions for

1As the famous mathematician Henri Poincaré emphasizes: One should be less interested in studying the
objects itself, but instead study the relations between them (Poincare, 1905).
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when a, by presumption, unique equilibrium in the rent-seeking or the Cournot game are even

globally stable under the gradient dynamics. Further, uniqueness in globally supermodular

games implies stability with respect to a wide array of different dynamics (Vives (1999)).

We extend the literature by proving that local stability - with respect to all above dynamics -

local dominance-solvability and uniqueness are in fact equivalent properties for models with

a sum-aggregative representation of payoffs and locally non-decreasing equilibrium replies.

We show that this equivalence also applies to symmetric equilibria of symmetric models as

well as to aggregate-taking behavior. Further, we prove that stability of the gradient and

continuous-time best-reply dynamics and uniqueness are equivalent properties in models with

a sum-aggregative structure and locally decreasing but bounded best replies - a property,

which games with homogeneous revenue functions of degree < 1 (such as contests) naturally

satisfy.

The symmetric structure of symmetric equilibria allows us to study the stability relations

among the different dynamics in greater detail. We demonstrate that the restrictive nature

of the discrete dynamics in case of equilibrium substitutes hinges on the simultaneity of

adjustments entailed in the definition of this process. If decision-makers take turns or, more

importantly, have disharmonized forward conjectures about their opponents’ actions, this

tends towards stabilizing the dynamics.

Article structure After introducing the notation and baseline assumptions, section 3 dis-

cusses the general relation between uniqueness and stability of several (popular) adjustment

processes, and also considers the general relation between the various dynamics with respect

to their stability. In section 4 we proceed to payoff functions with a sum-aggregative rep-

resentation, where we also discuss local dominance-solvability, two-player games and games

with homogeneous revenue functions as special cases, and consider aggregate-taking behavior

as a behavioral variant. Section 5 extends the main insights to symmetric games, clarifies the

role of simultaneity versus sequentiality for the resulting stability with the discrete dynamics,

discusses the consequences of heterogeneity in forward-anticipations of others’ actions, and

compares the stability relation of aggregate-taking behavior versus Nash behavior in case of

a linear-symmetric game. Finally, in section 6 we briefly comment on the relation between

stability, uniqueness and the induced comparative-statics patterns, and illustrate by means

of a Walrasian model that our results extend to non-strategic environments. Longer proofs

are in section 7. The supplementary material contains the mathematical details from matrix
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analysis and differential calculus, as well as a novel, compact treatment of the contraction

principle for economics.

2 Primitives and notation

We first introduce the basic notations and concepts.

2.1 The game: Notation and assumptions

Consider a game of N ≥ 2 players. The joint strategy space is W ≡ W(k) =
N∏
j=1
Wj(k),

where individual strategy spaces Wg(k) ⊂ Rk are compact and convex. Int(W) 6= ∅ denotes

the interior ofW. A point xg ≡ (xg1, ..., xgk) ∈ Sg(k) denotes a strategy of player g. Further,

x−g ∈ W−g is a particular strategy profile of g’s opponents. Player g’s payoff is represented

by Πg ∈ C2 (W,R). Next, ∇Π(x) ≡
(
∇jΠj(x)

)N
j=1

denotes the Nk-vector obtained by

stacking all player gradients (the pseudogradient, Rosen (1965)), and its Jacobian is denoted

by H(x) ≡ ∂∇Π(x)
∂x . Interior (Nash) equilibria require that ∇Π(x) = 0. We assume2 that

each players Hessian Hg(x) ≡ ∂2Πg(x)
∂xg∂xg

is negative definite whenever ∇Π(x) = 0, and denote

the derivative of the joint best-reply φ(x) =
(
ϕ1(x−1), ..., ϕN (x−N )

)
at x by ∂φ(x). Hence(

N,W(k),
{

Πj
})

is a twice differentiable k-dimensional N -player game, and henceforth any

reference to “game” implicitly invokes the above assumptions. We denote by A(x) the block-

diagonal matrix withHg(x) as block-diagonal entries. Note that under the above assumptions

A(x) is negative definite whenever x ∈ Int(W) is an equilibrium. Finally, if M is some real

m ×m matrix, σ(M) is the spectrum of M , i.e. the m-list of all eigenvalues (EV) λ of M ,

and its spectral radius is ρ(M) ≡ max {|λ| : λ ∈ σ(M)}.

2.2 Dynamics

We now define the various dynamics we want to study. Consider S ∈ C1(RNk,RNk) satisfying

i) S(0) = 0 and ii) Det ∂S(0) > 0. We refer to S as adjustment cofactor, and it plays a central

role in the different time-continuous adjustment process we shall consider. The assumptions

on S are discussed in context of theorem 1.

Continuous-time dynamics These dynamics generally take on the form of a vector field

defined over W. The literature has repeatedly considered adjustment processes defined over

2A standard sufficient condition is that Πg is strongly quasiconcave in xg (see Avriel et al. (1981)).
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the pseudogradient (e.g. Dixit (1986); Dastidar (2000); Hefti (2013)). We refer to the

dynamical system induced by the Nk FOC’s, ẋ(t) = S (∇Π(x(t))), and associated Jacobian

Ĥ(x(t)), as (generalized) gradient dynamics.

Dynamics of the form ẋ(t) = S (φ (x(t))− x(t)), with associated Jacobian Ȟ(x(t)), have also

been considered (Al Nowaihi and Levine (1985),Vives (1999), Dindos and Mezzetti (2006)).

We refer to these as (generalized) continuous-time best-reply (CTBR) dynamics.

In applications S usually is given by a constant diagonal matrix with strictly positive diagonal

entries (adjustment rates). Our adjustment cofactor is more general as i) it allows the

adjustment rates to depend on the state of the system, and ii) the adjustment matrix is not

required to be diagonal in case of constant adjustment rates.3

Fact 1 An equilibrium x ∈ Int(W) is locally gradient (locally CTBR) stable if the corre-

sponding Jacobian is a stable matrix at x, i.e. if all EV’s have negative real parts.

Discrete-time dynamics The oldest and probably most intuitive dynamics are the dis-

crete (iterative) dynamics defined over the best-reply function itself (sometimes called “Cournot

dynamics”): xt+1 = φ(xt). These dynamics converge locally if φ induces a local contraction

at x∗ ∈ Int(W), in which case we call x∗ contraction-stable.4

Fact 2 An equilibrium x ∈ Int(W) is locally contraction-stable if and only if there is a

matrix norm ‖·‖ such that:

‖∂φ(x)‖ < 1 or equivalently ρ (∂φ(x)) < 1 (1)

In the supplementary material we present, inter alia, a novel, careful and instructive proof

of this fact.

Remarks on discrete stability Early work on discrete stability (e.g. Hadar (1966)) was

aware of (1) with respect to certain simple norms such as ‖·‖∞ or ‖·‖1, which require to check

only the magnitude of either the row or column sums of ∂φ. Let Rm(x) ≡
∑Nk

t=1 |
∂ϕm

∂xt
| < 1

3One could imagine individual adjustment to depend on the current state of the opponents, e.g. ẋj(t) =∑
si∇iΠ

i(x(t)), a point that is typically emphasized by work on evolutionary game theory. Note that if the
(non-diagonal) adjustment matrix S is diagonally dominant with strictly positive diagonal, then Det(S) > 0.

4It should be mentioned that if φ is non-linear around x∗, then xt → x∗, x0 6= x∗, may hold for some
initial values even if ρ (∂φ(x∗)) > 1. In particular, if φ is a diffeomorphism on Rn, x∗ is a regular FP and
ρ (∂φ(x∗)) > 1, then there is a lower-dimensional submanifold (but not a neighborhood) about x∗ on which
φ(xt)→ x∗, provided that at least one EV has |λ| < 1.
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denote the m-th row sum of ∂φ(x∗), and Cm(x) ≡
∑Nk

t=1 |
∂ϕt

∂xm
| < 1 denotes the m-th column

sum of ∂φ(x∗). Then it follows from (1) that if either Rm(x) < 1 or Cm(x) < 1 holds

∀m = 1, ..., Nk then x is contraction-stable. Another sufficient condition for contraction-

stability the early literature typically made use of is diagonal dominance of H(x). While

diagonal dominance and ‖∂φ(x)‖∞ < 1 (the Hadar-condition) are in fact equivalent for

k = 1, this does not generalize to k > 1, as diagonal dominance is stronger than the Hadar-

condition.5

Finally, if h(·) is continuous at x, and x is locally stable, it follows that also h(xt) → h(x).

Conversely, while h(xt) → h(x) generally does not assert xt → x (consider h(x) = x), this

may likely hold for certain specific functions, such as aggregates or averages.6

3 Stability and uniqueness: The general case

We now connect the local stability of the above dynamics to uniqueness, and compare the

dynamics with respect to their local stability. The main point is that stability under any of

the above dynamics is a sufficient condition for uniqueness.

A spectral representation of the index theorem The index theorem, the most general

approach towards uniqueness in “regular” models (Furth (1986), Mas-Colell et al. (1995),

Vives (1999)), asserts that e.g. a “regular” game has a unique equilibrium if and only if the

zeros of the vector field ∇Π have index +1, i.e. Det (−H(x)) > 0 on the set of critical points

Cr ≡ {x ∈ Int(W) : ∇Π(x) = 0}. We refer to games where ∇Π(x) points into Int(W) along

the boundary7 ofW and Det(H(x)) 6= 0 on Cr as index games. The analytical power of index

theory stems from the fact that it provides us with a local condition to verify uniqueness,

which makes it attractive to applied and theoretical researchers likewise. In applications,

especially if solving ∇Π(x) = 0 explicitly is not possible, we can thus use the mathematical

structure implied by ∇Π(x) = 0 to evaluate the sign of Det (−H(x)).

We provide an answer to the main question of this article by examining how reconcilable the

index condition is with local stability conditions. It is therefore convenient to reformulate

5See section 8.2 in the supplementary material.
6In the supplementary material (section 8.3) it is shown that indeed convergence of the average implies

convergence of best-replies almost surely in case of a linear, symmetric game.
7The boundary condition implies that φ(W) ⊂ Int(W). Conversely, if payoffs are continuous and strongly

quasiconcave in own strategies it follows that, for k = 1, the boundary condition holds if φ(W) ⊂ Int(W).
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the index condition in terms of the local spectrum of ∂φ:

Proposition 1 Any index game satisfies Re(λm(x)) 6= 1 or Im(λm(x)) 6= 0 for any λm(x) ∈

σ (∂φ(x)), ∀x ∈ Cr, and has a unique equilibrium if and only if:

∏
m

(1− λm(x)) > 0 , x ∈ Cr (2)

We now present our first result.

Definition 1 x ∈ Cr is called potentially stable if x is contraction-stable or if there is some

adjustment cofactor S(·) (not necessarily constant nor diagonal) such that x is either gradient

or CTBR stable.

Theorem 1 Suppose that in a k-dimensional index game any x ∈ Cr is potentially stable.

Then a unique equilibrium exists.

Theorem 1 thus implies that the stability under any of the standard dynamics discussed

above asserts uniqueness. Moreover, we see that if an index game has multiple equilibria,

then there must be at least one completely unstable equilibrium x in the sense that we cannot

find a neighborhood around x and a dynamical system as introduced above such that this

system converges locally to x.

In a nutshell, uniqueness is more general than stability because the index at a zero pertains

only to a specific aspect of a mapping’s local geometry, namely whether the mapping is

locally orientation-preserving, which is less restrictive than the conditions on the eigenvalues

of the associated Jacobian required by stability.

We now present an intuition for theorem 1 for the gradient dynamics8 in view of the assump-

tions imposed on the cofactor S. While the first assumption should be clear – if S(0) 6= 0

critical points are not rest points of the dynamical system9 – the second needs to be com-

mented on. Let x be a zero of ∇Π. Assumption ii) geometrically means that the linear

transformation ∂S(0) locally preserves the orientation induced by the linear transformation

H(x). If this condition is violated, the imputed direction of the adjustments may be unintu-

itive.10 Theorem 1 says that a potentially stable equilibrium x must always correspond to a

8A similar intuition applies to the CTBR dynamics.
9If S is not a constant matrix, the dynamics may have more rest points than there are equilibria, a fact

that frequently occurs, e.g., with the replicator dynamics in evolutionary game theory.
10This can be seen most clearly in case of a constant diagonal matrix. Then Det(S) < 0 iff there is an

odd number of negative diagonal entries, but sj < 0 implies the corresponding strategy xj to increase if
∇jΠ

j(x) < 0, contradicting the direction suggested by optimality.
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zero of ∇Π(x) with an index of +1. This conclusion is valid, in general, only if the cofactor

does not change the index of ∇Π(x), which is precisely what assumption ii) asserts.

Comparing the stability relations In complete generality, there is no well-ordered rela-

tion between the different stability types, but by either restricting S or the underlying game

some order relations emerge. We concentrate only on those adjustment cofactors S, where

the projections depend only on the arguments with the same coordinate, i.e. S(y1, ..., ym)

= (s1(y1), ..., sm(ym)). We call such S a diagonal cofactor, and a homogeneous diagonal

cofactor if additionally sj(·) = s(·) for any player j. As before, the standard case of constant

adjustment rates is included. It turns out that CTBR and gradient stability are the same

formal properties of one-dimensional models with non-decreasing equilibrium replies.11

Proposition 2 Suppose that H(x∗) has only non-negative off-diagonal entries and S is an

arbitrary diagonal cofactor. For k = 1 the following statements are equivalent: i) H(x∗)

is stable, ii) I − ∂φ(x∗) is stable, iii) Ĥ(x∗) is stable, iv) Ȟ(x∗) is stable. Moreover, x∗

contraction-stable is sufficient for ii) if k = 1. Finally, i) and iii) are equivalent also for

k > 1.

Note that as −Ĥ = ∂Ŝ(0)(−A)(I − ∂φ) and −Ȟ = ∂Š(0)(I − ∂φ) the CTBR and gradi-

ent dynamics are not generally equivalent (see section 7.2). Moreover, if k = 1 and x∗ is

contraction-stable, x∗ is always CTBR and gradient stable as well (for diagonal cofactors).

A practical consequence of proposition 2 is that to verify stability with respect to some

continuous-time dynamics, it suffices to analyze H(x∗) or I−∂φ(x∗), which usually is simpler.

In case of a homogeneous diagonal cofactor the following relation between CTBR and contraction-

stability holds (for k ≥ 1):

Proposition 3 If x∗ ∈ Int(W) is a contraction-stable equilibrium and S is a homogeneous

diagonal cofactor, then x∗ is CTBR stable.

Proof: Ȟ(x∗) = s(0) (−I + ∂φ(x∗)), so λ ∈ σ (∂φ(x∗)) ⇔ s(0)(λ − 1) ∈ σ
(
Ȟ(x∗)

)
. Hence

ρ (∂φ(x∗)) < 1 implies that every EV of Ȟ(x∗) has negative real part. �

Notably, homogeneity is generally indispensable for proposition 3; with heterogeneity x∗ can

be contraction-stable but not CTBR stable (section 7.2, example 2). Moreover, proposition 3

11Such a result does not hold for local substitutes, counterexamples can be easily constructed.
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is limited to the CTBR dynamics and is not satisfied, in general, for the gradient dynamics,

as an equilibrium can be contraction-stable but not gradient stable (even if S = I, see section

7.2, example 1), contrary to what is sometimes alleged by the literature.

4 Sum-aggregative payoffs

Economists and applied game theorists frequently study models, where the actions taken

by other players affect an agent’s payoff only in some aggregate manner. In some cases

this aggregate quantity corresponds to the sum of all actions, and payoffs take on the form

Πj = Πj(xj , Q), Q ≡
∑
xi. The most intensively studied example is the Cournot model

of quantity competition: Πj = P (Q)xj − cj(xj), but also rent-seeking games, or (Tullock)

contests, with payoffs Πj = π
(

xj
Q+rj

)
−cj(xj) have received much attention (Konrad (2009)).

We consider one-dimensional games, where on Cr the slope matrix ∂φ(x) is of the form

M =


a1 b1 · · · · · · b1

b2 a2 b2 · · · b2

· · · · · · · · · · · · · · ·

bN bN · · · · · · aN

 (3)

where aj = 0 and bj = − Πj
12+Πj

22

Πj
11+2Πj

12+Πj
22

. Note that purely sum-aggregative payoffs as in the

Cournot or contest example are only a subclass of the games that imply a slope matrix of the

form (3). In particular the following theorems are valid for games that have an isomorphic

representation as a sum-aggregative game, in the sense that there exists a homeomorphism

on the strategies such that the transformed payoff-function is sum-aggregative and preserves

the strategic behavior. For example, if payoffs are of the form Πj
(
xj ,
∑
f i(xi)

)
, where f i

e.g. is a strictly increasing C1-function ∀ i, then setting ei = f i(xi) gives a sum-aggregative

representation of the game with similar strategic behavior.12 In particular our results also

apply to the cases, where some weighted average of the joint actions matters, i.e. where

payoffs have the form Πj(xj ,
∑
αixi).

4.1 Stability and uniqueness

Payoffs with a sum-aggregative structure have an algebraically special structure, which sig-

nificantly tightens the uniqueness-stability relation. Moreover, there is a close connection to

12If e(t)→ e∗, then, by continuity, also x(t)→ x∗.
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local dominance solvability.

Local dominance solvability A game is locally dominance solvable at x∗ if there exists

a neighborhood V (x∗) such that the individual successive elimination of dominated strate-

gies shrinks the joint strategy to the singleton {x∗} on V (x∗). Let ∂φ(x∗)+ denote the

matrix derived from ∂φ(x∗) by replacing each entry with its absolute value. For a one-

dimensional game with ρ (∂φ(x∗)+) 6= 1 we have that x∗ is dominance solvable if and only

if13 ρ (∂φ(x∗)+) < 1 (Moulin (1984)). As ρ (∂φ(x)) ≤ ρ (∂φ(x)+) contraction-stability is less

restrictive than dominance solvability but in case of equilibrium complements or substitutes

(i.e. all non-zero entries of ∂φ(x∗) have the same sign) the two properties are the same.

We now state the main result of this section:

Theorem 2 (Stability and uniqueness) Let S be an arbitrary diagonal cofactor, and

consider an index game, where ∂φ(x) is given by (3) whenever x ∈ Cr. If bj(x) ≥ 0 ∀j

on Cr then the following statements are equivalent: i) there is a unique equilibrium, ii) ev-

ery x ∈ Cr is contraction-stable, iii) every x ∈ Cr is gradient stable, iv) every x ∈ Cr is

CTBR stable, v) every x ∈ Cr is dominance solvable. If bj(x) ∈ (−1, 0] ∀j on Cr, then i),

iii) and iv) are equivalent.

Hence if i) bj(x) > −1 on Cr and ii) all bj(x) have the same sign whenever x ∈ Cr,

then uniqueness, gradient and CTBR stability are the same formal properties, and if espe-

cially strategies are local complements the equivalence extends to contraction-stability and

dominance solvability. Thus genuinely different concepts such as the index, referring to a

topological-algebraic property of a vector field, and contraction, a metric-analytical property

of a function, are the same formal properties of a game with local complements.14

Theorem 2 generalizes a result of Dastidar (2000) (proposition 2), who shows that uniqueness

of equilibrium in the Cournot model implies gradient stability if all bj have the same sign.15

13Knife-edge cases can be constructed, where x∗ is dominance solvable but ρ
(
∂φ(x∗)+

)
= 1. But then i)

∂φ(x∗) could be singular, meaning that it cannot be an index game, and ii) this knife-edge case is not robust
to small perturbations. Therefore, we rule out this case by assumption.

14The equivalence between uniqueness and stability hinges on the special structure of ∂φ in sum-aggregative
games. Generally, the uniqueness-condition (Det(−H(x)) > 0) needs not imply stability with local comple-
ments (see example 6, section 7.2).

15At this point we would like to mention a mistake in Dastidar (2000) (p. 210), where the author wrongly
claims that (gradient) stability of H(x) of a sum-aggregative game also implies D-stability of H(x). While
this is the case if N = 2 or the off-diagonal entries all have the same sign and bj(x) > −1, it does not hold,
in general, if the bj have different signs (see example 4, section 7.2).
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Note that the premise of theorem 2 restricts the best-reply slopes only on Cr. Individual

replies may have different signs outside of Cr and could be non-monotonic. In particular,

the game needs not be super- nor submodular.

With locally decreasing best-replies (local strategic substitutes) contraction-stability is gen-

erally more restrictive compared to the other dynamics, but not if N = 2 (see proposition

4 below). This difference to complements occurs because contraction-stability imposes a

restriction on the collective response (in absolute values), whereas uniqueness requires this

condition to hold only with complements, but not with substitutes.

Homogeneous revenue functions The equivalence between uniqueness and CTBR or

gradient stability holds for several important examples of sum-aggregative games. The main

reason is that the requirement bj > −1 naturally holds in many relevant games, not just

the Cournot model (where it is equivalent to P ′ < c′′). For a general payoff function of the

form Πj(xj , Q) we have bj > −1 iff Πj
11 + Πj

12 < 0. This tends to be the case in games with

homogeneous revenue functions, such as (Tullock) fixed-prize contests:16

Corollary 1 Let W =
∏
j [αj , αj ], αj ≥ 0, and consider a sum-aggregative index game with

Πj = πj(xj , Q) − cj(xj), where c′j > 0, c′′j ≥ 0 for xj > αj, π
j
1 > 0, πj11 ≤ 0 and πj(xj , Q)

is homogeneous of degree r < 1 in (xj , Q) for xj > αj. Suppose that all bj(x) have the same

sign whenever x ∈ Cr. Such a game has a unique equilibrium if and only if every x ∈ Cr is

gradient or equivalently CTBR stable.

Proof: By homogeneity πj(xj , Q) = Qrπj(
xj
Q , 1) = Qrπ̃j(

xj
Q ), and bj > −1 follows as

Πj
11 + Πj

12 < 0 iff ∂2π̃j(
xj
Q )(1 − xj

Q ) + (r − 1)∂π̃j(
xj
Q ) − c′′j

Qr−2 < 0. The claim follows from

theorem 2. �

It is well-known that best-replies are non-monotonic in the Tullock contest with sum-aggregative

representation Πj =
xj∑
xi
Vj− cj(xj). It can be verified that if n > 2 (otherwise proposition 4

below applies) and (V j , cj(·)) are not too different among players, the slopes bj(x) have the

same sign on Cr, and thus uniqueness and stability are equivalent properties in this example.

Two-player games As two-player games have the same formal structure as sum-aggregative

games we get the following result (almost) for free:

16Note that while e.g. the classic Tullock contest is never an index game as αj = 0, this can be changed by
setting αj = ε, ∀j, where ε > 0, but arbitrarily small.
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Proposition 4 Consider a two-player index game. If b1(x), b2(x) have the same sign when-

ever x ∈ Cr then statements i) - v) of theorem 2 are equivalent. If b1(x), b2(x) have different

signs, then statements i), iii) and iv) are equivalent.

The difference between two-player games and games with sum-aggregative payoffs is that

in the two-player case the grand equivalence result requires only that the slopes have the

same sign (possibly negative) at critical points. Further, proposition 4 generalizes a result

in Dastidar (2000) (proposition 1) as we show equivalence between uniqueness and several

stability types, and proposition 4 applies even if a player has bj(x) ≤ −1.

4.2 Aggregate-taking behavior

In this section we show that our baseline results on the uniqueness-stability relations extend

to the case of aggregate-taking behavior (ATB), which has become prominent in economics

and game theory recently (e.g. Alos-Ferrer and Ania (2005)). ATB means that the players

best-respond to some aggregate (or average) strategy rather than to individual strategies. A

conceptual justification for ATB are perceptional or informational limitations of the players.

A further important advantage of ATB is that the algebra frequently becomes much more

tractable compared to Nash-behavior (NB), especially in presence of heterogeneity (see e.g.

Grossmann et al. (2012)).

ATB: Dynamics The difference to NB, relevant also for the underlying dynamics, is that

with ATB the players ignore own effects on the aggregate when deciding.17 Let Q =
∑
i
xi

and Q̄j =
∑
i 6=j

xi. With NB the players optimize Πj
(
xj , xj + Q̄j

)
for given Q̄j , whereas with

ATB they optimize Πj (xj , Q) for given Q. Suppose that Πj (xj , Q) is strongly quasiconcave

in xj , and assume that ϕjA(Q) ∈ Int(Sj) ∀Q, such that the ATB joint best-reply is given

by φA(x) =
(
ϕjA(Q)

)N
j=1

, with slopes ∂ϕjA(Q) ≡ bjA(Q) = −Πj
12(xj ,Q)

Πj
11(xj ,Q)

. An ATB equilibrium

x∗ solves φA(x∗) = φA(
∑
x∗i ) = x∗. The ATB gradient and CTBR dynamics are similar

to the dynamics of section 3, where we now use the ATB instead of the NB counterparts.

The ATB best-reply dynamics are described by the recurrence relation xt = φA(xt−1) =(
ϕjA(

∑
xt−1
i )

)N
j=1

. We can use the same machinery as before to establish the following

stability properties of an ATB-equilibrium x∗A:

17This points towards a Walrasian type of motivation of ATB as the appropriate behavioral assumption if
own effects on the aggregate are negligible, as may be the case in large games.
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Proposition 5 Suppose that x∗A is an interior ATB equilibrium with aggregate Q∗. i) x∗A is

ATB contraction-stable if and only if ρ (∂φA(x∗A)) = |
∑

j b
j
A (Q∗)| < 1. ii) If S is an arbitrary

homogeneous diagonal cofactor, then x∗A is ATB CTBR stable if and only if
∑

j b
j
A (Q∗) < 1.

iii) If x∗A is ATB gradient stable (for some diagonal S) then x∗A also is ATB CTBR stable

for any homogeneous diagonal cofactor.

If |
N∑
j=1

bjA (Q)| < 1 holds for any Q(x) =
∑
xi with x ∈ Int(W), the game has a unique and

globally contraction-stable ATB equilibrium. As before, we cannot infer gradient stability

from CTBR stability (for arbitrary diagonal S), and vice-versa.18

Stability and uniqueness Turning to uniqueness we now show that the relationship

between uniqueness and stability encountered in theorems 1 and 2 logically extends to ATB.

Let∇ΠA(x) ≡
(

Πj
1 (xj ,

∑
xi)
)N
j=1

be theN -vector obtained by stacking all ATB FOC’s, with

corresponding Jacobian HA(x) = ∂∇ΠA(x)
∂x . Any candidate for an interior ATB equilibrium

belongs to CrA ≡ {x ∈ Int(W) : ∇ΠA(x) = 0}. We call a game with ATB, φA(W) ⊂

Int(W) and Det(HA(x)) 6= 0 on CrA an ATB index game. Further, the statement that x is

potentially ATB stable has the same meaning as in definition 1.

Theorem 3 (ATB stability and uniqueness) The following relations between unique-

ness and stability are satisfied in an ATB index game. a) If any x ∈ CrA is potentially

ATB stable, then there is a unique ATB equilibrium. b) The ATB equilibrium is unique

if and only if any x ∈ CrA is CTBR stable for any homogeneous diagonal cofactor. c) If∑
j b
j
A (Q(x)) ≥ 0 on CrA then the equilibrium is unique if and only if each x ∈ CrA is

contraction-stable. d) If bjA(Q(x)) ≥ 0 on CrA then the ATB analoge of statements i) - v)

in theorem 2 are equivalent. e) If bjA(Q(x)) ≤ 0 on CrA then there exists a unique ATB

equilibrium, which is both gradient and ATB stable (for arbitrary diagonal S).

Hence the fundamental relations between stability and uniqueness with NB also are satisfied

under ATB. Moreover, the equivalence between uniqueness and stability in case of ATB is

stronger in such that c) does not necessarily require that all bjA ≥ 0 or e) does not require

that bjA > −1.

18This is the case essentially because the stability of (I − ∂φA) does not, in general, imply D-stability.
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5 Symmetric games

Besides payoffs featuring a sum-aggregative structure, many applications study models with

symmetric payoff functions. As with sum-aggregative payoffs symmetric equilibria of sym-

metric games have a special and highly tractable mathematical structure. If k = 1 the slope

matrix at a symmetric equilibrium is a special case of (3), without requiring that payoffs

are sum-aggregative. As a consequence the previously encountered stability-uniqueness re-

lation, particularly theorem 2, extends to symmetric equilibria. The nice algebraic structure

implied by symmetry allows us to consider the uniqueness-stability relation also in higher

dimensions, and to study the stability properties of symmetric equilibria in greater detail.

5.1 Uniqueness and stability of symmetric equilibria

In a symmetric game all players have the same strategy space and identical payoff functions.

As the “generic” equilibrium type of differentiable symmetric games is symmetric rather

than asymmetric,19 we concentrate more on the former of general symmetric games here.

Presuming that x∗ ∈ Int(W) is a symmetric equilibrium of a k-dimensional N -player game,

the slope matrix M ≡ ∂φ(x∗) takes on the form of a partitioned matrix with N×N partitions:

M =


0 A · · · A

A 0 A A

· · · · · · · · · · · ·

A A · · · 0

 (4)

where 0 and A both are k × k matrices and A = ∂ϕ1(x∗)
∂x2

.

Lemma 1 The spectral radius of M is ρ(M) = (N − 1)ρ(A).

To characterize symmetric equilibria we can resort to a reduced form of Π by assuming

identically behaving opponents, Π(x1, x̄, ..., x̄). Let ϕ̃(x̄) ≡ ϕ1(x̄, ..., x̄), x̄ ∈ S(k), and note

that x∗ = (x∗1, ..., x
∗
1) is an interior symmetric equilibrium if and only if ϕ̃(x∗1) = x∗1, x∗1 ∈

Int(S1).

Stability of symmetric equilibria We now present the various stability conditions in

case of symmetric equilibria:

19See Hefti (2013) for a recent treatment.
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Proposition 6 Suppose that x∗ ∈ Int(W) is a symmetric equilibrium. If k ≥ 1 then x∗ is

contraction-stable if and only if (N − 1)ρ
(
∂ϕ1(x∗)
∂x2

)
< 1 or, equivalently, ρ

(
∂ϕ̃(x∗1)
∂x̄

)
< 1. If

k = 1 then x∗ is gradient stable or, equivalently, CTBR stable (both for arbitrary diagonal

S) if and only if ∂ϕ1(x∗)
∂x2

∈ (−1, 1
N−1) or, equivalently, ϕ̃′(x∗1) ∈ (−(N − 1), 1).

For k = 1 dominance solvability and contraction-stability of a symmetric equilibrium x∗ are

equivalent, but symmetry implies an even stronger result:

Corollary 2 Suppose that k = 1 and x∗ ∈ Int(W) is a symmetric equilibrium. Then the

following statements are equivalent: 1) x∗ is contraction-stable, 2) x∗ is dominance solvable,

3) Rm(x∗), Cm(x∗) < 1 ∀m, 4) H(x∗) has a dominant diagonal.

Proof: By lemma 1 ρ(∂φ(x∗)) = |ϕ̃′(x∗1)|, and 1)⇔ 3) because Rm(x∗) = Cm(x∗) = |ϕ̃′(x∗1)|.

3) ⇔ 4) holds because H(x∗) is diagonally dominant iff |ϕ̃′(x∗1)| < 1. �

Hence symmetry implies the standard sufficient contraction conditions to be both neces-

sary and sufficient for contraction-stability. This equivalence, however, is in general a one-

dimensional phenomenon.20

Index theorem for symmetric equilibria We call a symmetric equilibrium unique if

the game has exactly one symmetric equilibrium Let ∇Π̆(x1) ≡ ∇1Π1(x1, ..., x1). Hence

∇Π̆ : S(k) → Rk defines a vector field over S(k) with corresponding Jacobian H̆(x1) ≡
∂∇Π̆(x1)

x1
. Note that any interior symmetric equilibrium x∗ = (x∗1, ..., x

∗
1) satisfies x∗1 ∈ Crs ≡

{x1 ∈ Int(S(k)) : ∇Π̆(x1) = 0}. We call a symmetric game, where ∇Π̆ points into S(k) at

boundary points21 and Det(H̆(x1)) 6= 0 on Crs a symmetric index game. Every index game

also is a symmetric index game (the converse is generally false), and a symmetric index game

has exactly one symmetric equilibrium if and only if Det(−H̆(x1)) > 0 on Crs. Note that

x = (x1, ..., x1) ∈ Cr whenever x1 ∈ Crs.

Theorem 4 (Uniqueness and stability) Let k ≥ 1 and consider a symmetric index game

and an arbitrary diagonal S. a) If any x1 ∈ Crs is contraction-stable, then there is a unique

symmetric equilibrium (for k ≥ 1). If k = 1 then the following holds: b) If ∂ϕ1(x)
∂x2

≥ 0

on Crs then uniqueness of the symmetric equilibrium, stability and dominance solvability

20For k > 1 this equivalence generally breaks down, but the sufficiency part still holds (see corollary 5 in
the supplementary material).

21For k = 1 this is equivalent to saying that the game has no symmetric boundary equilibria.
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(statements i) - v) in theorem 2) are equivalent. c) If ∂ϕ1(x)
∂x2

∈ (−1, 0) on Crs then there

exists a unique symmetric equilibrium, and it is both gradient and CTBR stable.

Proof: Let ∇Π̃(x1, x̄) ≡ ∇1Π1(x1, x̄, ..., x̄), and B̃(x1, x̄) ≡ ∂∇Π̃(x1,x̄)
∂x̄ . Then −H̆(x1) =

−(A1(x1, x1) + B̃(x1, x1))) = −A1(x1, x1)
(
I − ∂ϕ̃(x̄)

∂x̄

)
, where A1 is player one’s Hessian ma-

trix, and Det(−H̆(x1)) > 0 whenever ρ
(
∂ϕ̃(x1)
x̄

)
< 1, which proves a). For k = 1 there

is a unique symmetric equilibrium x∗ iff ϕ̃′(x1) < 1 on Crs, and b), c) then follow from

proposition 6. �

While the equivalence between stability and uniqueness of symmetric equilibria is invariant

to the dimension of the relevant matrix, i.e. to the number of players, in case of equi-

librium complements, it is in general a one-dimensional phenomenon, see section 7.2 for a

counterexample (example 6).

Overall uniqueness In section 4 we have seen that ∂ϕ1(x∗)
∂x2

> −1 naturally is satisfied

in important examples of sum-aggregative games with equilibrium substitutes. Hefti (2013)

shows that if ∂ϕ1(x)
∂x2

> −1 holds whenever x ∈ Int(W), then the symmetric game cannot

have any asymmetric equilibria. For such games it then is a consequence of theorem 4 that

overall uniqueness and gradient or CTBR stability are equivalent. Specifically, ∂ϕ1(x)
∂x2

> −1

is satisfied in the Cournot or the Tullock example, showing that for symmetric versions of

these games uniqueness, gradient and CTBR stability always are equivalent.

5.2 Stability under sequentiality and forward-anticipation

As for k = 1 stability conditions can be stated as interval conditions on individual slopes

(proposition 6), we refer to the interval on which a ≡ ∂ϕ1(x∗)
∂x2

implies stability according

to some dynamics as the corresponding stability radius. Many interesting cases (such as

Cournot competition or the Tullock contest) are likely to feature equilibrium substitutes,

and then the number of players tends to be detrimental to contraction-stability, but matters

far less for the gradient, CTBR dynamics or the sequential contraction dynamics.

It turns out that the comparably restrictive nature of the discrete dynamics of symmet-

ric equilibria22 with equilibrium substitutes originates from the simultaneity of adjustments

entailed in its definition: If players take turns and observe rather than choosing simultane-

22In complete generality, examples can be constructed, where an equilibrium is stable under sequential
adjustments but not under simultaneous adjustments and vice-versa (Moulin (1984) and Moulin (1986)).
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ously, the corresponding best-reply dynamics have the same stability radius, (−1, 1
N−1), as

the gradient or CTBR dynamics.

Sequential dynamics Suppose that players adjust sequentially rather than simultane-

ously, i.e. they take turns. Let x∗ ∈ Int(W) be a symmetric equilibrium. For a given

(arbitrary) ordering {1, ..., N} of the players the sequential dynamics is defined by the se-

quence (xt) with components evolving according to:

xt+1
i =

 ϕi(xt−i)
1+t−i
N ∈ N

xti else
(5)

The symmetric equilibrium x∗ is sequentially stable if xt → x∗ locally. In order to establish

xt → x∗ we must show that the subsequence xN , x2N , x3N , ... converges to x∗. Let yt = xtN

and consider the sequence yt = z
(
yt−1

)
, where z

(
yt−1

)
= zN ◦ zN−1 ◦ ... ◦ z1(yt−1) with

zj(y) =
(
y1, ..., ϕ

j(y−j), ..., yN
)
. If z induces a local contraction, then yt → x∗ locally.

The composite mapping z is a local contraction23 at x∗ if and only if ρ (Z(x∗)) < 1, where

Z(x∗) = ∂z(x∗) = ∂zN (x∗) · ... · ∂z1(x∗). By symmetry, ∂zj(x
∗) can be represented by the

N ×N -matrix ∂zj = (zlm) with

zlm =


1 l = m 6= j

a l = j 6= m

0 else

Then, Z(x∗) =
∏N
j=1 ∂zj(x

∗) is a N × N -matrix, where the first column is zero. The non-

trivial eigenvalues λ of Z(x∗) can be found by solving Ẑ(x∗)v = λv, where Ẑ is obtained

from Z by deleting the first row and column. For example, for N = 4 we obtain

Ẑ(x∗) =


a2 a(1 + a) a(1 + a)

a2(1 + a) a2(2 + a) a(1 + a)2

a2(1 + a)2 a2(1 + a)(2 + a) a2(3 + a(3 + a))

 (6)

Note that the submatrix obtained by deleting the last row and column of Ẑ formally corre-

sponds algebraically24 to a situation if there were N = 3 players, and deleting the last two

rows and columns leads to the case of N = 2 players. If a ≥ 0 and we use the maximum

23See theorem 6 in the supplementary material.
24Changing the number of players may change the equilibrium x∗ and associated slope a.
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row-sum norm to bound the spectral radius, we obtain that ρ(Ẑ) < 1 if a < 1/(N − 1) for

N = 2, 3, 4. For a < 0 using the same norm reveals that ρ(Ẑ) < 1 if a > −1, for N = 2, 3, 4.

Explicit calculation of the spectral radius clarifies that this bound is sharp, i.e. ρ (Z(x∗)) < 1

if and only if a ∈ (−1, 1
N−1). As the left picture of figure 1 reveals, the EV’s of Ẑ in depen-

dence of (a,N) are contained in (−1, 1
N−1) also for N > 4. Accordingly gradient, CTBR and

the sequential dynamics have exactly the same stability radius.

N=5
N=10

N=15 sim
semi

seq

Figure 1: Spectral radius as a function of a

The same result holds for ATB in symmetric games. Suppose that x∗A ∈ Int(W) is a

symmetric ATB equilibrium, and ∂ϕjA(x∗A) > −1. It follows from section 4.2 that the stability

radius of the (simultaneous) ATB contraction-dynamics of x∗A is (− 1
N ,

1
N ), and (−∞, 1

N ) for

CTBR or gradient dynamics.

While the numerics are standard, it is surprisingly hard to formally prove that with NB the

stability radius of the sequential dynamics is equivalent to the stability radii of the other

time-continuous dynamics, mainly because conventional norms do not efficiently bound the

spectral radius. Nevertheless, the claim can be proven for ATB, and we summarize these

facts in the next proposition:

Proposition 7 Suppose that x∗, x∗A ∈ Int(W) are symmetric equilibria under NB, resp.

under ATB, and ∂ϕjA(x∗A) > −1. Then the stability radii of the sequential, the gradient and

the CTBR dynamics coincide for NB and ATB.

Finally, the numerics also support the conjecture that the more frequently the players update,

i.e. the less sequentially they behave, the smaller the stability radius becomes, gradually

approaching the simultaneous stability radius. This is illustrated in the right picture of

figure 1 for N = 3, where “sim” is the simultaneous and “seq” the sequential dynamics.
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”Semi” corresponds to a case, where players 2 and 3 behave sequentially (as in seq) but

player 1 updates every period. This finding suggests that heterogeneity in the timing of

adjustments, or believe formation, may effectively work in a stabilizing way, which is our

next topic.

Heterogeneous forward anticipation Facing a dynamic choice, decision-makers are

likely to forward-anticipate the behavior of their opponents. Now, if this forecasting is

of a homogeneous nature, the stability properties of the implied best-reply dynamics corre-

spond to those of the standard contraction dynamics (proposition 8 below). This may change

substantially, if there is heterogeneity in the degree of forward thinking. We now illustrate

that if players decide simultaneously, but forward-anticipate their opponents’ behavior in a

non-synchronic way (e.g. they hold heterogeneous beliefs about the updating pattern), this

can have a stabilizing effect.

If e.g. player one forward-anticipates the choice of his opponents by r = 1 period, his best-

reply is to set xt+1
1 = ϕ1

(
ϕ2
(
xt−2

)
, ..., ϕN

(
xt−N

))
. Hence, if all players forward-anticipate

the best-replies of their opponents by one period, the induced best-reply process is xt+1 =

φ ◦ φ(xt) = φ2(xt), or generally xt+1 = φr+1(xt), where r = 0 corresponds to the myopic

best-reply adjustment process. For heterogeneous anticipation rates r1, ..., rN we can write

the resulting dynamics compactly as

xt+1 =


φ1+r1

1 (xt)
...

φ1+rN
N (xt)

 φ
1+rj
j (xt) = Pr

j
(φ ◦ ... ◦ φ︸ ︷︷ ︸

(1+rj)

(xt))

To consider the stability consequences of heterogeneous forward-anticipation in a simple

case25 suppose that player one forward-anticipates responses by one step, r1 = 1, while all

other players behave myopically (rj = 0, j > 1). The induced best-response dynamics are

xt = h(xt−1) =


ϕ1
(
ϕ2(xt−1

−2 ), ..., ϕN (xt−1
−N )

)
ϕ2(xt−1

−2 )
...

ϕN (xt−1
−N )


25We have examined several different anticipation patterns, both for ATB and NB. Frequently, the hetero-

geneous anticipation dynamics were strictly more stable in the a < 0 region, and, generally, they were never
found to be less stable than the myopic dynamics (r = 0).
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At a symmetric equilibrium, the mapping h implies that

σ (∂h(x∗)) = {0,−a, ...,−a, a(N − 2) + a2(N − 1)}

which implies that the stability radius induced by h is (−1, 1
N−1) if N < 7. Hence a small

shift in the behavior of one player leading towards asymmetric, non-myopic anticipation

immediately gives the same stability radius as the sequential, gradient or CTBR dynamics.

Heterogeneity in anticipation is imperative, as with homogeneous forward-anticipation the

same stability radius as with the simultaneous contraction dynamics results. This is intuitive

as under homogeneity we just jump forward r+1 steps in the myopic sequence per iteration:

Proposition 8 The composition φ(r+1) is a local contraction at x∗ for any r ∈ N if and only

if φ is a local contraction at x∗. Then the sequence xt = φr+1(xt−1) converges locally to x∗.

5.3 Stability: NB versus ATB

Is a behavior contingent on an exogenous aggregate more likely to induce a stable outcome

than a behavior that accounts for the fact that own actions influence the aggregate? While

this question is difficult to answer in complete generality, especially because usually x∗A 6= x∗,

the ATB and NB dynamics can be compared with respect to their stability in case of a linear

symmetric game.

Comparing NB and ATB dynamics Note that the FOC of the NB-problem is linear

in
(
xj , Q̄j

)
if and only if the FOC of the ATB-problem is linear in (xj , Q). Hence, without

loss of generality, we can work with Πj = Axj + BQ̃xj − 1
2cx

2
j , where Q̃ = Q under ATB

and Q̃ = xj + Q̄j under NB. As we are interested only in stability we choose A = 0, and set

c > 0, 2B < c and Sj = [−1, 1]. Then x∗A = x∗ = 0, bj = B
c−2B and bjA = B

c .

Proposition 9 If strategies are complements (B ≥ 0) then the equilibrium is ATB contraction-

stable whenever it is NB contraction-stable. Under substitutes the opposite direction applies.

Proof: Let ρ ≡ ρ (∂φ) and ρA ≡ ρ (∂φA). From proposition 5 we obtain ρA =
∣∣∣∑ bjA

∣∣∣ = N |B|
c .

Further ρ = (N−1)|B|
c−2B follows from lemma 1. If B ≥ 0, then plugging (N−1)B

c−2B = ε into ρA

gives Nε
(N−1)+2ε . Hence ρA < 1 if and only if Nε < (N − 1) + 2ε, which holds whenever ε < 1,

proving the first claim. The second claim follows as ρA = −BN
c > − BN

c−2B > ρ. �
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As the equivalence of gradient and CTBR dynamics for ATB in symmetric games can be

established in the same way as in proposition 6, and the stability range is bjA ∈ (−∞, 1
n), if

follows that in case of complements the result from proposition 9 also extends to the gradient

and CTBR dynamics.

Intuition Proposition 9 reflects the fundamental difference between ATB and NB. With

ATB the players ignore their own effects on the aggregate, which causes two related, but

potentially conflictive deviations compared to NB that are relevant for stability analysis.

First, the ATB dynamics tend to be less stable than the NB dynamics because under ATB a

player’s own action triggers an own response in the subsequent period (even if the opponents

do not change their strategies). Formally, this manifests itself in the fact that the reply

matrix ∂φA may have a non-zero diagonal. If all slopes under ATB and under NB were

identical (which is never possible in a linear game unless B = 0) this own-response effect

would necessarily imply that ρA ≥ ρ.

The second deviation originates from the fact that because an NB player takes into account

his own effect on the aggregate, this may either soften or intensify his response to a given

strategy profile of his opponents compared to an ATB player. This second effect manifests

itself in the slopes of the reply functions. To illustrate, consider the decision of player 1 and

suppose that dx2 > 0. Then dQ̄1 > 0, which e.g. under complementarity implies dx1 > 0

for both ATB and NB. But dx1 > 0 also means dQ > 0, which is taken into account only by

the NB-player and, by complementarity, induces him to increase x1 even further in the first

place. Thus for complements player 1’s response towards a change of an opponent’s strategy

is stronger under NB than under ATB, which explains why the slope of his reply function

is comparably steeper with NB. But steeper slopes tend towards destabilizing the dynamics.

With strategic substitutes this argument is reversed by the same logic, i.e. the fact that

the players take into account their own effects on the aggregate flattens their responses and

tends towards stabilizing the dynamics. The presence of the above two effects explains why,

in general, we cannot expect to find a clear-cut stability ranking between NB and ATB.

Nevertheless, proposition 9 shows that at least with linear reply functions the second effect

unambiguously is the dominant one.
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6 Discussion and conclusion

This article has addressed the mathematical connection between uniqueness and stability

with respect to several popular continuous and discrete adjustment processes. We have

studied this relation in abstract and more specific algebraic settings, in the context of impor-

tant particular examples as well as with respect to different types of behavior. Restricting

attention to index games in the context of our question is quite natural. If one is interested

whether a model or a (possibly parameterized) game with some specific economic context is

likely to generate a unique equilibrium (or rather multiple equilibria), specifying the mathe-

matics (e.g. domain choice) such that an index game results frequently is possible and makes

sense by the sheer analytical power of index theory. Index games generally are compatible

with highly non-monotonic best-replies (other than, e.g., supermodular games).

In general, contraction-stability, gradient or CTBR stability are sufficient for uniqueness.

However, many economically meaningful models impose more algebraic structure on pay-

offs, and we show that the uniqueness-stability relation is much tighter in many relevant

cases. Important examples (e.g. pricing games with imperfect substitutes or investment

games) allow for a sum-aggregative payoff representation and feature increasing equilibrium

(but perhaps not globally increasing) replies, and our results prove that for such models

fundamental properties as stability, uniqueness or dominance-solvability are the same for-

mal properties. We show that this equivalence extends to symmetric games (in the sense

that there cannot be multiple symmetric equilibria), to two-player games with locally same-

signed best-replies, as well as to ATB. With equilibrium substitutes contraction-stability is

generally more restrictive than uniqueness, but gradient and CTBR stability and uniqueness

are equivalent – a result that applies to many prominent examples such as Cournot com-

petition, imperfectly discriminatory contests or payoffs with homogeneous revenue functions.

Concerning stability, no stability order exists without imposing restrictions on the alge-

braic structure of the model or the adjustment rates. However, presuming homogeneous

adjustment rates, contraction-stability implies CTBR stability, but not necessarily gradient

stability, contrary to what has been sometimes alleged by the literature.

A comparison of the ATB and the conventional Nash contraction dynamics in case of a lin-

ear symmetric game shows that stability of the Nash dynamics always implies stability of

the ATB dynamics in case of complements, and vice-versa in case of substitutes, which is
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intuitive given the difference in the nature of the two behaviors.

The simple structure of symmetric models allows us to compare the different dynamics in

greater detail. We show that the comparably restrictive nature of contraction-stability in

case of locally decreasing replies is driven by the simultaneity entailed in the definition of

contraction-stability: If the players update their strategies sequentially, the resulting stability

condition corresponds to that of the CTBR or gradient dynamics.

A related important observation is that if the players try to forecast their opponents’ best-

replies, this tends towards stabilizing the dynamics, provided that there is heterogeneity in

forward-anticipation. Generally, this suggests that the level of awareness or attention the

players devote to a strategic decision situation can influence whether or not a self-restoring

equilibrium dynamic can be expected to prevail: The less synchronized the players’ effective

behaviors or anticipations are, the more likely the equilibrium is to become stable.

In many different strategic environments, such as (experimental) asset markets or oligopolis-

tic (Cournot) competition, there is clear evidence of considerable heterogeneity in forecasting

and expectation-formations (e.g. Hommes (2013)). At the same time experimentalists ob-

serve stable behavior more frequently than is suggested by theory (e.g. Huck et al. (2002)),

and disharmonized anticipation is a novel explanatory candidate, besides strategic or obser-

vational learning, because heterogeneous anticipation seems an intuitive presumption in lab

experiments. Moreover, a forecasting-based explanation for stability of the discrete dynamics

is different from stochastic stability of the hind-sighted myopic best-reply dynamics due to

stochastic choice in aggregative games (Dindos and Mezzetti (2006)).

Forward-anticipation and iterated rationality (Ho et al. (1998)) are somewhat related, as

we could view players who try to non-myopically anticipate the moves of their opponents

as more sophisticated. In this spirit our results suggest that heterogeneity in the levels of

sophistication may have a stabilizing effect on the underlying dynamics.

We conclude this article by a brief comment on stability, uniqueness and comparative static

sign patterns indicating the more practical relevance of or results, and by showing that

our baseline results on the stability-uniqueness relation is not confined to purely strategic

behavior and game theory.
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Stability, uniqueness and comparative statics In applications one is frequently in-

terested in the comparative-static predictions of a model. The adequate formal tool to

investigate how (small) changes in some parameters affect an equilibrium x is the IFT. If

x is a stable equilibrium with respect to some dynamics then, for sufficiently small param-

eter changes, it is assured that the dynamics will converge to a new, nearby equilibrium,

which is one reason for why stability is frequently required. One should realize that stabil-

ity conditions assert that comparative-static sign patterns are driven by direct rather than

strategic effects. Let x ∈ Int(W) be an equilibrium and ∇Π(x; c) = 0, where c is a param-

eter vector. By the IFT, the comparative statics of x then are ∂x
∂c = −H(x)−1 ∂∇Π

∂c , where

−H(x)−1 = adj H(x)
Det(−H(x)) , and adj H is the adjoint matrix of H. Note that H(x) quantifies the

strategic effects (players’ responses to other players strategies), and the sign of Det(−H(x))

(i.e. the index of ∇Π) has first-order impact on the sign pattern.26 As the proof of theorem

1 shows, stability conditions assert that Det(−H(x)) > 0, meaning that the sign patterns

depends on the direct effects of the exogenous change. These facts essentially say that an

“unintuitive” comparative-static prediction, such as an equilibrium quantity increase of a

player experiencing a sole upward shock in his cost parameter in a Cournot-duopoly, can

never be realized as a stable equilibrium. In fact, an index game with such “strategy-driven”

comparative statics cannot possess a unique equilibrium. Vice-versa, if we impose (or verify

in applications) that critical points in fact are (potentially) stable, then we simultaneously

get economically and mathematically “well-behaved” comparative statics and uniqueness of

equilibrium.

The uniqueness-stability relation in Walrasian economies Our basic insights on the

uniqueness-stability relation are not confined to game theory, but extend to other economic

models featuring a related mathematical structure. For example, Walrasian economies with

L + 1 commodities (markets) are usually described in terms of an L-valued excess demand

function Z(p) = (Z1(p), ..., ZL(p)), where any normalized (Walrasian) price equilibrium p ∈

RL+ is characterized by Z(p) = 0 under certain standard assumptions on preferences and

technology.27 Logically, the function Z(·) plays a similar role as ∇Π(·) did in our previous

analysis, with Cr = {p > 0 : Z(p) = 0}. Adjustment processes can be (and in fact were)

introduced in the same way as in section 2.2, although they are perhaps less intuitive in the

Walrasian context. For example, the gradient-type of dynamics takes on the form ṗ(t) =

26Mathematically, this follows as the index corresponds to the local orientation of the linear map H(x).
27See Mas-Colell et al. (1995).
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S (Z(p(t))). If the index theorem is applicable to Z (if the economy is regular, see Mas-Colell

et al. (1995)), we also obtain proposition 1 in this context, provided that ∂Z(p) has a negative

diagonal on Cr (without any sign restriction on off-diagonal elements). This condition plays

the same role as negative definiteness of A does in the proof of proposition 1. Note that the

condition is intuitive (an increase of the own price should decrease the corresponding excess

demand), and significantly weaker than gross substitutability but, by the income effects, it

is of course not an universal property. It should be clear that theorem 1 also applies to

the Walrasian economy, i.e. stability implies uniqueness. As before, more structure on Z(·)

(such as symmetry) will give stronger results.

7 Appendix

7.1 Proofs

Proof of proposition 1 Suppose that x ∈ Cr. From the IFT we obtain H(x) =

A(x)(I − ∂φ(x)), and negative definiteness implies that Det(−H(x)) > 0 if and only if

Det (I − ∂φ(x)) > 0. Now, λm ∈ σ (∂φ(x)) ⇔ (1 − λm) ∈ σ (I − ∂φ(x)), and the sec-

ond claim follows from Det (I − ∂φ(x)) =
∏
m

(1− λm). From (2) it follows that any real

EV must be unequal 1. If λ is a complex EV with conjugate λ̄, then (1 − λ)(1 − λ̄) =

(1−Re(λ))2 + Im(λ)2, which is unequal zero iff Re(λ) 6= 1 or Im(λ)2 6= 0. �

Proof of theorem 1 Suppose that x ∈ Cr. If x is contraction-stable, i.e. ρ (∂φ(x)) < 1,

then (2) must be satisfied. If ∃ S such that x is gradient-stable, then all EV of (−Ĥ(x)) have

positive real part, and henceDet
(
−Ĥ(x)

)
> 0. ButDet(−Ĥ(x)) = Det (∂S(0))Det(−H(x))

implies Det(−H(x)) > 0. If ∃ S such that x is CTBR stable, then −Ȟ(x) = (∂S(0)) (I −

∂φ(x)) has only EV with positive real parts. Hence Det(I − ∂φ(x)) > 0, which by the proof

of proposition 1 implies that Det(−H(x)) > 0. �

Proof of proposition 2 By presupposition −H(x∗) has only non-positive off-diagonal

entries (Z-matrix). For Z-matrices it is known that −H(x∗) is positive stable, i.e. has only

EV’s with positive real parts, iff −H(x∗) is D-stable, i.e. if D(−H(x∗)) is positive stable

for any arbitrary positive diagonal matrix (see Hershkowitz (1992)). Hence i) ⇒ iii) follows
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from −Ĥ(x∗) = ∂S(0)(−H(x∗)), and the converse follows by noting that −Ĥ(x∗) also is a

Z-matrix. If k = 1 the same argument and −H(x∗) = (−A(x∗))(I−∂φ(x∗)) assert that i)⇔

ii), and also ii) ⇔ iv) since −Ȟ(x∗) = ∂S(0)(I − ∂φ(x∗)). Finally, if x∗ contraction-stable,

then ii) follows because (I − ∂φ(x∗)) must be positive stable. �

Proof of theorem 2 The proof of theorem 2 requires the following fundamental lemmata

regarding (3):

Lemma 2 Consider the matrix in (3) with aj , bj ∈ R. i) For aj 6= bj we have Det(M) =∏
j (aj − bj) (

∑
j

bj
aj−bj + 1), and if aj = bj for at least one j, then Det(M) = aj

∏
i 6=j (ai − bi).

ii) If aj < bj and bj ≤ 0 ∀j, then M is D-stable.

Note that lemma 2 implies that an EV λ 6= 0 of ∂φ either solves
∑ bj

λ+bj
= 1 or28 λ = −bj .

Proof: If aj 6= bj subtract the first column from all other columns, multiply out (aj − bj)

row-wise, add to the first row all other rows and calculate the determinant of the remaining

lower-triangular matrix. If aj = bj for more than one j, Det(M) = 0. If aj = bj for exactly

one j we can assume without loss of generality that j = 1, and subtracting the first column

from all other columns gives a lower-triangular matrix. This proves i) and ii) is a straight-

forward consequence of Hosomatsu’s lemma (Hosomatsu (1969)). �

The sum-aggregative structure implies the following useful fact for contraction-stability:

Lemma 3 Let x∗ be an interior equilibrium of the sum-aggregative game as described above.

If
∑ |bj(x∗)|

1+|bj(x∗)| < 1, then x∗ is both contraction-stable and dominance solvable. Conversely,

if all bj(x
∗) have the same sign and x∗ is contraction-stable (or equivalently dominance

solvable), then
∑ |bj(x∗)|

1+|bj(x∗)| < 1.

Proof: Because ρ(∂φ) ≤ ρ(∂φ+) we need only consider the case of complements. But if

bj(x
∗) ≥ 0 for all j, ρ ≡ ρ(∂φ(x∗)) ≥ 0 is in fact an eigenvalue of ∂φ(x∗) according to the

Perron-Frobenius theorem, and obviously ρ 6= −bj(x∗). By lemma 2 we see that if
∑ bj

1+bj
< 1

then
∑ bj

ρ+bj
= 1 implies that ρ(∂φ(x∗)) < 1, which proves the first claim, and the second

claim is true because if all bj have the same sign the spectral radius ρ solves
∑

j
|bj |
ρ+|bj | = 1,

28The second case can occur only if bj = bg for at least two players.
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which together with ρ < 1 implies that
∑

j
bj

1+bj
< 1. �

Condition of lemma 3 can be shown to be more general than the standard norm-based

contraction conditions, and the second claim of lemma 3 is false if the bj do not have the

same sign.29 If the inequality in lemma 3 is satisfied for any x ∈ Int(W), then the game has

a unique and globally contraction-stable equilibrium30 x∗, which of course is very restrictive

and rarely met by examples. We turn to the proof of theorem 2:

ii) ⇔ v) is clear. By theorem 1 we only need to prove that uniqueness implies the various

stability types. −H = −A(I − ∂φ) implies that Det(−H(x)) > 0 iff Det(I − ∂φ(x)) > 0.

By lemma 2, bj(x) ≥ 0 implies Det(I − ∂φ(x)) > 0 on Cr iff
∑ bj(x)

1+bj(x) < 1, and i) ⇒ ii)

follows from lemma 3. Proposition 2 asserts that ii) ⇒ iii), iv). If bj(x) ∈ (−1, 0] ∀j then,

Det(I − ∂φ(x)) > 0 on Cr iff
∑ bj(x)

1+bj(x) < 1. Consequently, there is a unique equilibrium x∗,

and it follows from lemma 2 ii) that H(x∗) is D-stable, which by the proof of proposition 2

implies that x∗ is both gradient and CTBR stable. �

Proof of proposition 4 The ”if”-part follows from theorem 1. Let x ∈ Cr and consider

the matrix M(x) = I − ∂φ(x). Then the matrix DM(x), where D is a diagonal matrix

with entries dj > 0, has only EV’s with positive real part iff Det(M) = 1 − b1b2 > 0 by

the trace-determinant criterion. Therefore M(x) is stable iff M(x) is D-stable, but from

H(x) = A(x)(I − ∂φ(x)) it follows that M(x) is stable iff the equilibrium is unique, which -

by D-stability - shows the equivalence of i), iii) and iv) for arbitrary sign patterns of b1, b2.

The equivalence of i), ii) and v) in case of local complements follows from theorem 2, so we

only need to show that uniqueness implies contraction-stability if b1(x), b2(x) ≤ 0, which -

by lemma 3 - indeed is the case as
∑ |bj(x)|

1+|bj(x)| < 1 iff |b1(x)| |b2(x)| < 1. �

Proof of proposition 5 i) can be proved by using theorem 6 (supplementary material)

and lemma 2, noting that the j-th row of the matrix ∂φA(x) has the form (bjA, ..., b
j
A), i.e.

an EV λ of ∂φA(x) either is zero or solves λ =
∑
bjA. Alternatively, we can sum up the

equations ϕjA(Q) = xj to obtain the single equilibrium equation
∑
ϕiA(Q) = Q. Hence x∗A

is contraction-stable if and only if 1 > ρ (∂φA(x∗)) =
∣∣∣∂∑ϕi

A(Q∗)
∂Q

∣∣∣ = |
N∑
j=1

bjA (Q∗)|. Turning

29E.g. N = 3 with b1 = b2 = −3/4 and b3 = 1/2
30Follows from corollary 3 (supplementary material) and the Banach FP theorem.
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to ii), consider −ȞA = s(0)(I − ∂φA). Suppose that
∑
bjA < 1 but (I − ∂φA) has an EV

λ with negative real part. Lemma 2 then implies that λ = 1 −
∑
bjA > 0, a contradiction.

Conversely, suppose that (I − ∂φA) only has EV with positive real parts. If all EV’s are 1,

then 1 = Det(I−∂φA) = 1−
∑
bjA by lemma 2, which gives

∑
bjA = 0. If for at least one EV

λ 6= 1, then according to lemma 2: λ = 1−
∑
bjA > 0. Finally, if −ĤA = ∂S(0)(−A)(I−∂φA)

is stable, then 0 < Det(I − ∂φA) = 1−
∑
bjA, which by ii) proves iii). �

Proof of theorem 3 Let x ∈ CrA and Q =
∑
xi. As −HA(x) = (−A(x))(I − ∂φA(x)),

where A is the negative diagonal matrix with entries Πj
jj(xj ,

∑
xi), the proof of a) parallels

the proof of proposition 1. To see b) and c) note that Det(−HA(x)) > 0 iff
∑

j b
j
A(Q) < 1

by lemma 2, and both claims follow from proposition 5. If bjA(Q(x)) ≥ 0 on CrA then,

by proposition 5, contraction-stability implies CTBR stability for homogeneous diagonal

S, and as −HA(x) is a Z-matrix on CrA, Ĥ(x) = ∂S(0)A(x)(I − ∂φA(x)) and ȞA(x) =

∂S(0)(∂φA(x)− I) we may use propositions 3 and 2, as in the proof of theorem 2, to estab-

lish that ii) ⇒ iii) ⇔ iv), and iv) ⇒ i) follows from a). As ii) ⇔ v) is clear, d) has been

proven. Finally, if bjA(Q(x)) ≤ 0 on CrA then there is a unique ATB equilibrium x∗A, and

it follows from lemma 2 ii) that HA(x∗A) is D-stable. Therefore e) follows from the proof of

proposition 2. �

Proof of lemma 1 The case where ρ(A) = 0 is trivial so suppose ρ(A) > 0. Note that

α ∈ σ(M) if and only if

MV =


A (v2 + ...+ vN )

A (v1 + v3 + ...+ vN )
...

A (v1 + ...+ vN−1)

 = αV V 6= 0 (7)

where V = (vj)
N
j=1 and each vj is itself a k-vector. If Av = λv then setting vj = v

N−1 shows

that λ(N−1) ∈ σ(M), as every row of (7) reads Av = α
N−1v. This is true for every λ ∈ σ(A)

(with the corresponding eigenvector), hence we have found k EV of M . To find the other

EV of M , first set v1 = v, v2 = −v and v3 = ... = vN = 0. Then, the first row of (7) reads

A(−v) = αv, the second row is Av = α(−v) and all other rows are 0 = 0. Hence we found
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k further EV of M , and they take on the values −σ(A). Continuing by setting v1 = v and

v3 = −v leaving all other coordinates zero gives the next k EV (note that the so constructed

eigenvectors of M are linearly independent). Proceeding in this manner shows that all EV

of M must be either (N − 1)λ or −λ, λ ∈ σ(A). �

Proof of proposition 6 The first claim follows from theorem 6 (supplementary mate-

rial), lemma 1 and
∂ϕ̃(x∗1)
∂x̄ = (N − 1)∂ϕ

1(x∗)
∂x2

. If k = 1 and ∂ϕ1(x∗)
x2

≤ −1, then I − ∂φ(x∗)

must have a non-positive EV by the proof of lemma 1. Hence x∗ cannot be gradient nor

CTBR stable for arbitrary homogeneous diagonal S, so suppose that ∂ϕ1(x∗)
x2

> −1 from

now on. The equivalence between gradient and CTBR stability then follows either from

lemma 2 ii) for −1 < ∂ϕ1(x∗)
x2

< 0 (as −(I − ∂φ(x∗)) is D-stable) or from proposition 2 for

∂ϕ1(x∗)
x2

≥ 0 (as (I − ∂φ(x∗)) is a Z-matrix). Therefore we only have to verify that any EV

λ of (I − ∂φ(x∗)) is positive iff ∂ϕ1(x∗)
x2

∈ (−1, 1
N−1). Because of lemma 2 i) λ = 1 + ∂ϕ1(x∗)

x2

or λ = 1 + ∂ϕ1(x∗)
x2

(1−N), which completes the proof. �

Proof of proposition 7 For NB the claim follows from the arguments in the main text

and figure 1. Turning to the ATB dynamics, we set yt ≡ xtNA , and sequentiality gives

yt+N =
(
ϕjA(yt+j−1)

)N
j=1

, where ϕjA(yt+j−1) = ϕjA

(∑N
i=1 y

t+j−1
i

)
. We change this N -th

order process to a first-order system using wtm ≡ yt+m for m = 1, ..., N − 1. This leaves us

with the N2-dimensional first-order system

wt+1
N−1 =


ϕ1
A(yt)

ϕ2
A(wt1)

...

ϕNA (wtN−1)




wt+1
n−2

...

yt+1

 =


wtn−1

...

wt1



According to theorem 6 (supplementary material) the mapping
(
ϕ1
A(y), ..., w1

)
is a local

contraction at the symmetric equilibrium x∗A iff the spectral radius of its Jacobian J(x∗A) is
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less than 1. J(x∗A) takes on the form of a partitioned matrix

J(x∗A) =



LN LN−1 · · · · · · L1

I 0 · · · 0 0

0 I 0 · · · 0

· · · · · · · · · · · · · · ·

0 · · · · · · I 0


where every partition is N × N , and Lj has zero entries except for the jth row, where all

entries correspond to a ≡ ∂ϕ1
A(x∗A)
∂x2

. The EV equation for J(x∗A) implies that an EV λ solves

a


1 · · · · · · 1

λ · · · · · · λ

· · · · · · · · · · · ·

λN−1 · · · · · · λN−1

 v = λNv v = (v1, ..., vN )

Summing up over the rows implies that a
∑N−1

z=0 λz = λN , or a = λN (1−λ)
1−λN , from which it can

be verified that |λ| < 1 whenever a ∈ (−1, 1
N ). �

Proof of proposition 8 Evaluating the adjustment matrix of φr+1 at x∗ gives ∂φ(x∗)r+1,

fact 4 of the supplementary material establishes

ρ
(
∂φ(x∗)r+1

)
= ρ (∂φ(x∗))r+1, which by theorem 6 (supplementary material) and theorem

6 implies the result. �

7.2 Counterexamples

We provide a sequence of examples illustrating that, in general, no stability ordering exists.

The fact that contraction-stability may not imply gradient or CTBR stability can be seen

from the symmetric equilibrium with substitutes (section 5.1).
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Example 1: Contraction-stability or CTBR stability ; gradient stability Let

k = 1, N = 3, S = I and suppose that

H(x∗) =


−100 100 −200

250 −100 −250

4 −2 −1

 ∂φ(x∗) =


0 1 −2

2.5 0 −2.5

4 −2 0


Then x∗ is contraction-stable (ρ(∂φ(x∗)) = 1√

2
) and also CTBR stable for homogeneous

diagonal cofactor S (proposition 3), but not gradient stable (for arbitrary diagonal S), as

e.g. if S = I H(x∗) has two positive EV’s (λ1 = 55.48, λ2 = 1.05). �

Example 2: Contraction-stability ; CTBR stability (heterogeneous adj. rates)

Let k = 1, N = 4 and suppose that

Ȟ(x∗) =


1 0 0 0

0 10 0 0

0 0 1 0

0 0 0 10


︸ ︷︷ ︸

=S




0 5 −1 −3/2

−1/2 0 1 −2

−2/5 −7/4 0 0

−3/4 −3/2 −1 0


︸ ︷︷ ︸

=∂φ(x∗)

−I


Then x∗ is contraction-stable (as ρ (∂φ(x∗)) = 0.845) but not CTBR stable (as Ȟ(x∗) has

an EV equal to 6.133 > 0). �

Example 3: Gradient stability ; CTBR stability Let k = 1, N = 3, S = I and

suppose that

H(x∗) =


−5 0 −5

−3 −1 −3

20 −30 −10

 Ȟ(x∗) =


−1 0 −1

−3 −1 −3

2 −3 −1


Then x∗ is gradient stable (as Ĥ(x∗) = H(x∗) has eigenvalues with real parts = {−3,−3,−10})

but not CTBR stable (as Ȟ(x∗) has two complex EV’s with real part = 0.57). �
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Example 4: H stable ; H D-stable in sum-aggregative games Let N = 4 and

consider (note that bj(x) > −1 as is naturally the case in the Cournot model)

H =


−5 3 3 3

4 −5 4 4

4 4 −5 4

−4 −4 −4 −12

 S =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.01


Then σ(H) = {−9,−8,−7.83,−2.17} but σ(SH) = {−9,−8.29, 2.09, 0.08}. �

Example 5 This example shows that in a one-dimensional non sum-aggregative game with

complements the uniqueness-condition need not imply the contraction-condition. Let

∂φ(x) =


0 3 1 0

1 0 0 0

1 1 0 3

0 0 1 0

 ≥ 0

Then σ (∂φ(x)) = {2.425,−2.135,−1.472, , 1.181}, which shows that as Det(−H(x)) = 2 > 0

the uniqueness-condition is satisfied at x, but not the contraction-condition.

Example 6 Finally, we present an example illustrating that theorem 4 does not generally

extend beyond k = 1. If k = N = 2 and

∂ϕ̃(x∗1)

∂x̄
=

 3 1

0 3


then ρ(σ(

∂ϕ̃(x∗1)
∂x̄ )) = 3 but sign(Det(−H̆(x∗1))) = sign ((1− 3)(1− 3)) > 0. Hence while the

uniqueness condition is satisfied, the contraction-condition fails to hold despite a positive

slope matrix. Similar counterexamples for the other dynamics can be constructed.
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8 Supplementary material (for online publication)

The purpose of this mathematical appendix is to provide a compact and short exposition of

the contraction principle.31 We further discuss important sufficient conditions for contrac-

tions (in one- and higher-dimensional cases).

Essential facts from matrix analysis Let Mn denote the set of all real n× n matrices.

Matrix norms are denoted by ‖·‖. A matrix norm has all properties of a vector norm

and additionally satisfies submultiplicativity (i.e. ‖AB‖ ≤ ‖A‖ ‖B‖). Submultiplicativity

matters as then the spectral radius is a lower bound for any matrix norm.32 An important

class of matrix norms are those induced by a vector norm |·|: ‖A‖|·| ≡ max
|v|=1

|Av|. As ‖A‖|·|
turns the space of all bounded linear operators from X to Y into a Banach space (as Y is a

Banach space), such norms are frequently referred to as operator norms. The following facts

about matrix norms and their spectra are known (see Horn and Johnson (1985)):

Fact 3 For any matrix norm ‖·‖L there exists an operator norm ‖·‖|·| such that ‖A‖|·| ≤

‖A‖L for any A ∈Mn. Moreover, |Av| ≤ ‖A‖|·| |v| holds for any A ∈Mn and v ∈ X.

Fact 4 If A ∈ Mn then ρ(A) ≤ ‖A‖ for any matrix norm. Moreover, for any A ∈ Mn and

any ε > 0 there exists a matrix norm such that ‖A‖ < ρ(A) + ε. Finally, if t ∈ N then

ρ(At) = ρ(A)t.

Lipschitz functions X = (Rn, |·|X) and Y = (Rm, |·|Y ) are two complete metric spaces.

We will be concerned with compact and convex subsets33 Ū of Rn with non-empty interior

U . Note that (Ū , |·|X|Ū ) is another complete metric space. We identify a metric space by

its underlying set, i.e. we set Ū ≡
(
Ū , |·|

)
. Among continuous functions, the subclass of

Lipschitz-continuous functions plays a major role for economic theory. A function φ : Ū →

Rm is Lipschitz on Ū if there is q > 0 such that |φ(x)− φ(x′)|Y ≤ q|x− x′|X for any x, x′ ∈ Ū .

Lipschitz-continuity arises naturally in many economic and game-theoretic applications, as

continuously differentiable functions on convex sets are locally Lipschitz, and Lipschitz if

these sets are also compact.

31See e.g. Moulin (1984) for a classical proof in the one-dimensional case.
32Mathematically, this holds as submultiplicativity imposes a restriction on which linear combinations of

matrix norms generate new matrix norms. E.g. if ‖·‖ is a matrix norm, then r ‖·‖ is a matrix norm if and
only if r ∈ [1,∞).

33Any reference to open or closed subsets of Ū means open or closed relative to Ū in the usual topological
sense.
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Fact 5 If in a game φ (W) ⊂ Int(W) and W is compact, then φ is Lipschitz.

Proof: Because φ (W) ⊂ Int(W), the IFT asserts that φ is locally represented by a continu-

ously differentiable function, which in turn implies φ to be locally Lipschitz. Consequently,

φ is Lipschitz if W is compact. �

Contractions φ is called a contraction (mapping) if it is Lipschitz with q < 1. The set

of all contractions from X to Y are denoted by C(X,Y ). It is important to bear in mind

that contractions are defined contingent on certain norms (as X,Y are spaces rather than

just sets), and the contraction property generally is not invariant under equivalent norms34.

Contractions are the main ingredient of the Banach FP theorem. Its beauty stems from

the fact that it asserts three desirable properties of a game - existence and uniqueness of

equilibrium as well as global stability of the best-reply map - to occur simultaneously: If

φ ∈ C(W,W) and W is a complete metric space (e.g. W is a closed subset of X), then φ has

exactly one FP x∗ and the recurrence relation xt = φ(xt−1) converges35 to x∗ for any initial

value x0 ∈ W.

8.1 Characterization of (local) contractions

The following theorem provides a characterization for a differentiable mapping φ to be a

contraction.

Theorem 5 Suppose φ ∈ C0
(
Ū ,Rm

)
is (Frechet)-differentiable on U . Then there exists a

norm |·| on Ū such that φ ∈ C(Ū , Y ) if and only if

sup
x∈U
‖∂φ(x)‖|·| < 1 (8)

Proof: ”⇒”. Let q = sup
x∈U
‖∂φ(x)‖|·| < 1. Because U is an open, convex set, the mean value

theorem implies the following bound for any x, x′ ∈ U :

|φ(x)− φ(x′)| ≤ sup
0≤t≤1,|v|=1

(|∂φ(x+ t(x′ − x)) · v|) |x− x′|

≤ q|x− x′|
(9)

34This is a difference to the more general Lipschitz property, which is preserved under equivalent norms.
35In memoriam of its initial discoverer, such convergence of the joint best-reply has frequently been quoted

as Cournot stability.
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Hence φ is a contraction on U . Let x ∈ ∂Ū , x′ ∈ Ū and take any two sequences (xn), (x′n) in

U with xn → x and x′n → x′. Because of |φ(xn)− φ(xn
′)| ≤ q|xn − xn′| continuity implies

|φ(x)− φ(x′)| ≤ q|x− x′| which shows that φ is a contraction on Ū .

”⇐”. Suppose ∃ q < 1 such that |φ(x)− φ(x′)| ≤ q|x− x′| ∀ x, x′ ∈ Ū . Take an arbitrary

x ∈ U and an arbitrary v ∈ Rn with |v| = 1. Then there exists ε > 0 such that x + tv ∈ U

for t ∈ (−ε, ε), and q ≥ |φ(x+tv)−φ(x)|
|t| for t 6= 0. As φ is Frechet-differentiable on U , the

directional derivatives exist. Hence

q ≥ lim
t→0

|φ(x+ tv)− φ(x)|
|t|

=

∣∣∣∣limt→0

(
φ(x+ tv)− φ(x)

t

)∣∣∣∣ = |∂φ(x) · v|

As both x ∈ U and v where arbitrary (up to |v| = 1), we get sup
x∈U,|v|=1

|∂φ(x) · v| =

sup
x∈U
‖∂φ(x)‖|·| ≤ q < 1. �

Theorem 5 says that φ is a contraction from the space Ū to Y if and only if its directional

derivatives, i.e. its local rates of change in some direction v, are bounded by one as measured

by the |·|Y -norm for any point x ∈ U . Note that φ is not required to be continuously

differentiable, nor differentiable at boundary points. In terms of minimal assumptions the

proof of theorem 5 shows that compactness of Ū is not critical, but convexity is a vital

assumption. By choosing adequate norms, Lipschitz functions can be made contractive.

In particular, if φ : Ū → Rm is Lipschitz with Lipschitz-constant q and if Ỹ = (Rm, |·|Ỹ )

with |·|Ỹ = 1
1+q |·|Y , then φ ∈ C(Ū , Ỹ ). It is the tightening of this freedom in choosing an

appropriate Y -norm (or X-norm) from which the Banach FP theorem gets much of its bite:

By presumption, we are only at liberty to choose one norm for both the domain and the

codomain of φ. If φ : Ū → Ū and the premise of theorem 5 is satisfied, then fact 3 and

theorm 5 assert that there is a norm |·| such that φ ∈ C(Ū , Ū) if and only if there is a matrix

norm ‖·‖ with ‖∂φ(x)‖ < 1 for any x ∈ U . Under the additionally assumption that φ is even

continuously differentiable on Ū , we obtain a condition on the spectral radius of ∂φ(x):

Corollary 3 Suppose that φ ∈ C1
(
Ū , Ū

)
. Then there exists a norm |·| on Ū such that

φ ∈ C(Ū , Ū) if and only if sup
x∈U

ρ (∂φ(x)) < 1.

Proof: ”⇒” Let sup
x∈U

ρ (∂φ(x)) = δ < 1 and note that continuity of ρ (∂φ(x)) implies that ∃

ε > 0 such that ρ (∂φ(x)) < δ + ε < 1 holds on Ū . Then, by fact 4, ∀ x0 ∈ Ū there exists a

matrix norm ‖·‖(x0) such that ‖∂φ(x0)‖(x0) < δ+ε. Continuity of ∂φ(x) asserts the existence
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of an open neighborhood B(x0) ⊂ Ū such that ‖∂φ(x)‖(x0) < δ + ε for any x ∈ B(x0).

Because Ū is compact and
⋃
x∈Ū

B(x) covers Ū there exists a finite subcover
n⋃
j=1

B(xj), and

‖∂φ(x)‖(xj) < δ + ε for any x ∈ B(xj). Further, ‖·‖ ≡ max{‖·‖(x1), ..., ‖·‖(xn)} is a matrix

norm such that ‖∂φ(x)‖ < δ + ε holds for any x ∈ Ū and the claim follows from fact 3 and

theorem 5.

”⇐” Follows from theorem 5 and fact 4. �

We now turn to the local version of theorem 5. Suppose that φ : Ū → Ū and let x∗ be a FP

of φ. The FP x∗ is contraction-stable if φ induces a local contraction about x∗, i.e. if there

is a convex, complete metric space (V, |·|), x∗ ∈ V ⊂ Ū , such that φ|V ∈ C(V, V ).

Theorem 6 (Local contractions) Suppose φ : W → W, φ(x∗) = x∗, ∂φ(x∗) exists and

∂φ is continuous at x∗. Then there is a neighborhood V about x∗ such that φ(V ) ⊂ V and φ

is a contraction on V if and only if there is a matrix norm ‖·‖ such that

‖∂φ(x∗)‖ < 1 or equivalently ρ (∂φ(x∗)) < 1 (10)

Then, the best-reply process xt = φ(xt−1) converges locally to x∗, and lim
t→∞

h(xt) = h(x∗) for

any function h(x) that is continuous at x∗.

Proof: ”⇒” Let σ(x) = ‖∂φ(x)‖. Hence q ≡ σ(x∗) < 1. As σ is continuous at x∗ there exists

δ > 0 and a closed ball B̄ (x∗, δ) ≡ V such that σ(x) < 1 ∀x ∈ V . Let Q ≡ sup
x∈V

σ(x) < 1.

Then fact 3 and theorem 5 assert that φ is a contraction on V , i.e. |φ(x)− φ(x′)| ≤ Q |x− x′|

for x, x′ ∈ V , and |φ(x)− φ(x∗)| ≤ Qδ < δ for x ∈ V shows that φ(V ) ⊂ V . ”⇐” Follows

from theorem 5, and the last two claim follow from the Banach FP theorem and continuity.

Finally, the norm condition can be replaced by the spectral radius condition as a consequence

of fact 4. �

Note that if xt → x∗ with x0 6= x∗ and ρ (∂φ(x∗)) ≥ 1, φ cannot be linear around x∗:

Corollary 4 x∗ is contraction-stable if and only if the linearization of φ at x∗, L(x) =

∂φ(x∗)x+ (I − ∂φ(x∗))x∗, is a contraction on Rn.

Proof: ”⇒” By presupposition there is |·| and q < 1 such that |L(x)− L(x′)| ≤ q |x− x′| for

any x, x′ ∈ Rn or equivalently |∂φ(x∗)v| ≤ q |v|, v ∈ Rn. Hence also ‖∂φ(x∗)‖|·| ≤ q < 1, and
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the claim follows from theorem 6. ”⇐” If x∗ is contraction-stable, then ‖∂φ(x∗)‖|·| < 1 for

some |·| because of theorem 6. The claim then follows from |L(x)− L(x′)| = |∂φ(x∗)(x− x′)| ≤

‖∂φ(x∗)‖ |x− x′|. �

The spectral radius not only qualitatively determines if a FP is contraction-stable, but also

influences how quickly a FP is approached; a smaller value means that fewer iterations are

required. The linearization produces an estimate on the number of adjustments it takes to

approach a certain vicinity of the equilibrium. Suppose that ρ (∂φ(x∗)) 6= 0, x0 6= x∗ and

set xt = L(xt−1) ≈ φ(xt−1). This gives xt − x∗ = ∂φ(x∗)t(x0 − x∗) by backwards induction.

Then fact 4 implies that for any arbitrarily small ε > 0 there is a matrix norm |·| such that

d ≡ |x
t−x∗|
|x0−x∗| < ρ(φ(x∗))t + ε, where d is the fraction of distance left to the equilibrium after t

iterations. Hence t =
⌊

Ln(d)
Ln(ρ(∂φ(x∗))) + 1

⌋
is the approximate number of adjustments required

to cover at least 1− d of the initial distance to the equilibrium.

8.2 Sufficient conditions for contraction-stability

A straightforward application of the IFT shows that, for k = 1, the Hadar-condition ‖∂φ(x)‖|·|∞ <

1 is equivalent to the requirement that H(x) has a dominant negative diagonal. Corollary 2

in section 5.1 shows that diagonal dominance is in fact necessary and sufficient for symmetric

equilibria of symmetric games to be contraction-stable (and locally dominance-solvable).

The equivalence between diagonal dominance and the Hadar-condition breaks down if k > 1.

It is straightforward to construct examples already if k = N = 2, where Rm(x∗) < 1 ist

true for all m but H(x∗) violates diagonal dominance. Nevertheless, diagonal dominance of

H(x∗) implies the Hadar-condition (and thus also local contraction-stability):

Corollary 5 Suppose k = 2, x∗ is a FP and H(x∗) has a dominant negative diagonal. Then

Rm(x∗) < 1, m = 1, ..., 2N .

Proof: For a vector v let v+ ≡ (|vi|) denote the vector of the absolute values of the com-

ponents of v. Similarly, if M is a matrix then M+ denotes the matrix of absolute values of

the components of M . The triangle inequality implies (Mv)+ ≤ M+v+. Let Ag = ∂2Πg(x)
∂xg∂xg

denote the Hessian of Πg(x). The IFT gives for j 6= g and 1 ≤ i ≤ 2:

(
∂ϕg

∂xji

)+

=

(
− (Ag)

−1

(
∂∇gΠg

∂xji

))+

≤
(

(Ag)
−1
)+
(
∂∇gΠg

∂xji

)+
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which further implies ∑
j 6=g

k∑
i=1

(
∂ϕg

∂xji

)+

≤
(

(Ag)
−1
)+

zg (11)

where zg =
∑
j 6=g

2∑
i=1

(
∂∇gΠg

∂xji

)+
. Let Âg be the matrix derived from Ag by taking the absolute

values of each off-diagonal element. Because H(x∗) has a dominant negative diagonal it

follows that −Âg · 1 > zg, and

(
(Ag)

−1
)+

=
(
−Âg

)−1
≥ 0 (12)

Hence we get (
−Âg

)−1 (
−Âg

)
· 1 >

(
−Âg

)−1
zg ≥

(
(Ag)

−1
)+

zg

which by (11) gives I · 1 >
∑
j 6=g

2∑
i=1

(
∂ϕg

∂xji

)+
for any g = 1, ..., N showing that Rm < 1 holds

∀m. �

Remark: It is easy to generalize the above proof to the case k > 2 up to expression (12).

Using laborious Laplace expansions (and the triangle inequality) it can be shown that

(
(Ag)

−1
)+
≤
((
−Âg

)−1
)+

=
(
−Âg

)−1

The equality between the second and third term follows from the fact that −Âg is a diago-

nally dominant matrix with non-positive off-diagonal elements (a M -matrix) and it is known

that then
(
−Âg

)−1
is positive.

8.3 Convergence of the average

We provide a simple example, where convergence of the average implies convergence of best-

replies almost surely. Consider a symmetric one-dimensional linear game with ϕj(x−j) =

a
∑
i 6=j

xi + b and symmetric equilibrium x∗ = (x∗1, ..., x
∗
1) satisfying x∗1 = a(N − 1)x∗1 + b. Let
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ht =
∑
xtj
N and zt = ht − h∗, where obviously h∗ = x∗1. Then

zt = 1
N

∑
ϕj(xt−1

−j )− x∗1 = a(N − 1)ht−1 + b− x∗1
= a(N − 1)(zt−1 + x∗1) + b− x∗1 = a(N − 1)zt−1

= [a(N − 1)]t
(

1
N

∑
x0
j − x∗1

)
Now observe that ht → h∗ but simultaneously xt 9 x∗ is possible only if 1

N

∑
x0
j = x∗1,

which does not occur almost surely as
{
x ∈ Rn : 1

N

∑
xj = x∗1

}
is a zero-measure Lebesgue

set.
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