Industrial Policy in the Global Semiconductor Sector

Pinelopi Goldberg¹ Réka Juhász² Nathaniel Lane³ Giulia Lo Forte⁴ Jeff Thurk⁵

¹Yale University, BREAD, CEPR, NBER and PIIE

²University of British Columbia, CEPR and NBER

³University of Oxford

⁴University of British Columbia

⁵University of Georgia, Terry College of Business

March 10, 2025

Motivation

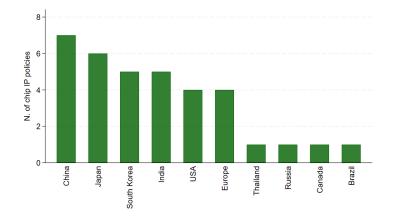
• Semiconductors widely perceived as a strategic industry

- Driver of economic growth: backbone of the modern economy, R&D intensive
- Dual-use: national security motivations
- Widely held belief that the industry receives vast amounts of government support
- Common economic justification for support is learning

1/7

Motivation

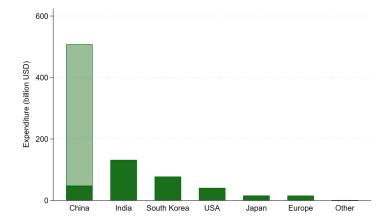
• Semiconductors widely perceived as a strategic industry


- Driver of economic growth: backbone of the modern economy, R&D intensive
- Dual-use: national security motivations
- Widely held belief that the industry receives vast amounts of government support
- Common economic justification for support is learning

 \implies Based on existing work, difficult to quantify industrial policy and evaluate its economic effects

1. Quantifying government support

- Data and model-based approach suggest most (all?) current major producers subsidize their industry.
- Historical evidence suggests support particularly important early on
- Financial support + foreign tech transfer from the frontier


Most major producers subsidize

Authors' calculations using data from JLOP (2022) and Global Trade Alert

3/7

Quantifying value of support is challenging

Tentative: Chinese IP substantial, but not an outlier based on market size

- Modern manufacturing of semiconductors requires unprecedented precision
- Scope for learning through:
 - Hands-on experience and innovation on production floor
 - Close collaboration with buyers and input suppliers

- Modern manufacturing of semiconductors requires unprecedented precision
- Scope for learning through:
 - Hands-on experience and innovation on production floor
 - Close collaboration with buyers and input suppliers
- But learning where?
 - Within a firm-technology pair?

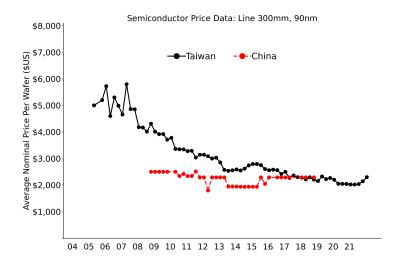
Based on our estimates, this is small

- Modern manufacturing of semiconductors requires unprecedented precision
- Scope for learning through:
 - Hands-on experience and innovation on production floor
 - Close collaboration with buyers and input suppliers
- But learning where?
 - Within a firm-technology pair?

Based on our estimates, this is small

 Within firm, across technologies (economies of scope)? Some evidence of learning across technologies

- Modern manufacturing of semiconductors requires unprecedented precision
- Scope for learning through:
 - Hands-on experience and innovation on production floor
 - Close collaboration with buyers and input suppliers
- But learning where?
 - Within a firm-technology pair?


Based on our estimates, this is small

- Within firm, across technologies (economies of scope)? Some evidence of learning across technologies
- Across firms?

We estimate large cross-border learning

Collaborations along supply chain could spill over to other firms

With cross-country learning, second-movers can enter at a low price

Conclusion

- With cross-country learning, a country's industrial policy can benefit the global economy
- But ... these spillovers cannot be taken for granted

 \implies They emerge because of individual decisions made in a globalized and concentrated industry.

 \implies There is no guarantee that cross-country learning would emerge in a deglobalized, fragmented industry.