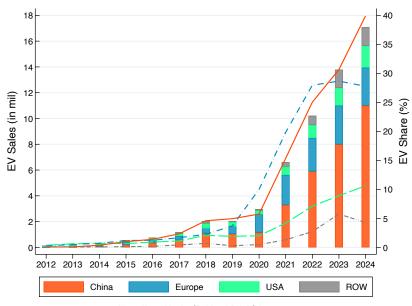
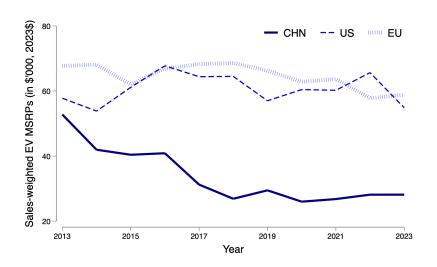
Subsidies and Other Government Policies in the Global Electric Vehicle Market

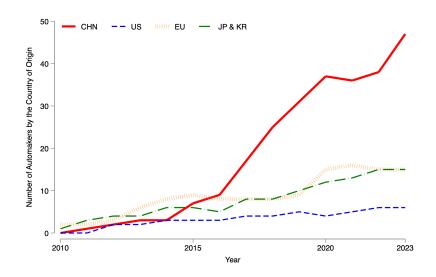

Shanjun Li Cornell University

March 10 2025
University of Zurich
Academic Perspectives on Industrial Policy

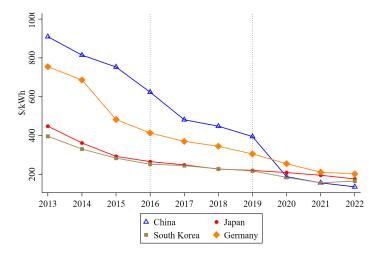
Roadmap


- Global EV Diffusion
- Policy Landscape
- Key Lessons

Global EV Sales by Region


Note: New EV sales (BEV and PHEV) by region.

Average EV Prices by Region



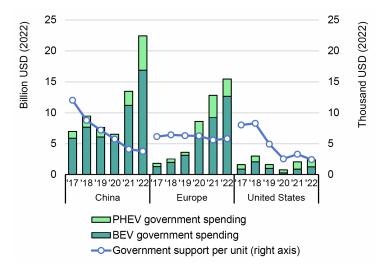
No. of EV Firms by Country of Origin

 Learning by doing (Wright's Law): unit cost of production decreases with experience

Roadmap

- Global EV Diffusion
- Policy Landscape

 - Consumer Incentives
- Key Lessons


Consumer Incentives in Major EV Countries

- Policies have focused on directly targeting consumer adoption
- Financial and non-financial incentives

Source: Li et al. 2021

Consumer Subsidies for EVs by Region (Source:IEA)

ullet Global EV subsidies pprox \$43 bil.in 2022 (10% of total spending on EVs)

Preferential treatment of domestic/local suppliers and production

• China's whitelist policy (2016-19): batteries need to be sourced from government approved suppliers for subsidy eligibility

Sales

Preferential treatment of domestic/local suppliers and production

- China's whitelist policy (2016-19): batteries need to be sourced from government approved suppliers for subsidy eligibility

 Sales
- U.S. Inflation Reduction Act (Aug. 2022): local content requirement on vehicle assembly and battery manufacturing Details

Preferential treatment of domestic/local suppliers and production

- China's whitelist policy (2016-19): batteries need to be sourced from government approved suppliers for subsidy eligibility
- U.S. Inflation Reduction Act (Aug. 2022): local content requirement on vehicle assembly and battery manufacturing Details
- EU Green Deal Industrial Plan (March 2024): promote domestic supply of critical minerals and clean tech

Preferential treatment of domestic/local suppliers and production

- China's whitelist policy (2016-19): batteries need to be sourced from government approved suppliers for subsidy eligibility

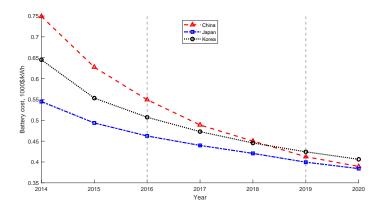
 Sales
- U.S. Inflation Reduction Act (Aug. 2022): local content requirement on vehicle assembly and battery manufacturing Details
- EU Green Deal Industrial Plan (March 2024): promote domestic supply of critical minerals and clean tech
- India's Scheme to Promote Manufacturing of Electric Passenger Cars (SPMEPCI, March 2024): requirement on domestic value addition

Roadmap

- Global EV Diffusion
- Policy Landscape
- Key Lessons
 - Consumer Subsidies
 - Local Content Requirements

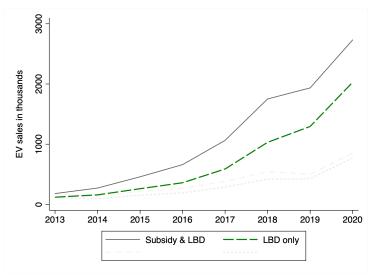
Based on:

Drive Down the Cost: Learning by Doing and Government Policy in the Global EV Battery Industry


by Panle Barwick, Hyuk-soo Kwon, Shanjun Li, Nahim Bin Zahur

Data and Analytical Framework

- Global EV sales and battery supply network
 - ► Annual EV sales by model for 13 countries from 2013 to 2020, accounting for 95% of global EV sales
 - Battery supplier for each EV model: battery supplier network
 - Consumer EV incentives offered in different countries
- Model of the Global EV Market
 - Demand: consumers decide whether and which EV model to buy
 - Supply: automakers and battery suppliers jointly decide battery prices, and automakers choose vehicle prices
- Policy Analysis
 - Estimate the model parameters to fit the data
 - Simulate market outcomes under different scenarios


Learning-by-Doing (LBD) in Battery Production

- Learning rate: 7.5%, accounting for 36% of overall cost reduction
- Chinese firms move faster down the learning curve due to subsidies and the whitelist policy

Effectiveness of Consumer Subsidies

 \bullet Subsidies \uparrow sales by 3.4 mil. (80%) during 2023-20, effect amplified by LBD

US subsidies benefited US EV buyers and EV firms, and increase EV sales

- US subsidies benefited US EV buyers and EV firms, and increase EV sales
- JP and KR battery suppliers benefited from US subsidies through accelerated learning

- US subsidies benefited US EV buyers and EV firms, and increase EV sales
- JP and KR battery suppliers benefited from US subsidies through accelerated learning
- Lower battery costs in JP and KR benefited Europe EV consumers and firms, increasing EV adoption

- US subsidies benefited US EV buyers and EV firms, and increase EV sales
- JP and KR battery suppliers benefited from US subsidies through accelerated learning
- Lower battery costs in JP and KR benefited Europe EV consumers and firms, increasing EV adoption
- Limited spillover benefit to Chinese consumers and EV firms: EVs sold in US mainly source batteries from JP & KR.

Impacts of European Subsidies during 2014 - 2020

Mirror the impacts of US subsidies:

 European subsidies benefited European consumers and EV firms, and increased EV sales

Impacts of European Subsidies during 2014 - 2020

Mirror the impacts of US subsidies:

- European subsidies benefited European consumers and EV firms, and increased EV sales
- JP and KR battery suppliers benefited from European subsidies through accelerated the learning

Impacts of European Subsidies during 2014 - 2020

Mirror the impacts of US subsidies:

- European subsidies benefited European consumers and EV firms, and increased EV sales
- JP and KR battery suppliers benefited from European subsidies through accelerated the learning
- Significant spillover benefits to the US, which shares the same battery suppliers with European EV firms

Mirror the impacts of US subsidies:

- European subsidies benefited European consumers and EV firms, and increased EV sales
- JP and KR battery suppliers benefited from European subsidies through accelerated the learning
- Significant spillover benefits to the US, which shares the same battery suppliers with European EV firms
- Almost no spillover benefits to Chinese consumers and EV firms due to limited overlap in battery suppliers

Impacts of Chinese Subsidies & Whitelist

- Chinese EV subsidies:
 - Benefited Chinese EV consumers and firms by reducing battery costs via learning
 - Exhibited small spillover benefits to other markets due to limited supplier overlap

Impacts of Chinese Subsidies & Whitelist

Chinese EV subsidies:

- Benefited Chinese EV consumers and firms by reducing battery costs via learning
- Exhibited small spillover benefits to other markets due to limited supplier overlap

China's Whitelist policy:

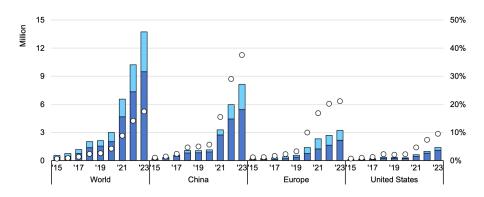
- Whitelist benefited domestic battery suppliers by accelerating its learning
- Significant market diversion from JP&SK suppliers. Slowed down their learning, and EV adoption in other markets
- Results likely hold for local content requirements used by other regions

 EV penetration varies dramatically across markets with China having emerged as the dominant player in sales, production and supply chain

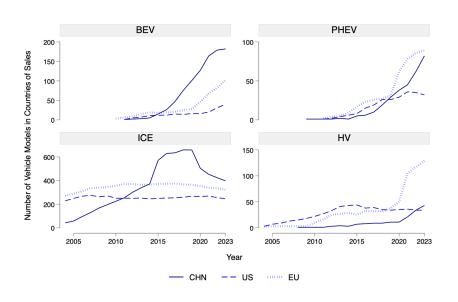
- EV penetration varies dramatically across markets with China having emerged as the dominant player in sales, production and supply chain
- Governments have increased the use of industrial policies in the auto sector especially to target EVs. Consumer EV subsidies are prevalent

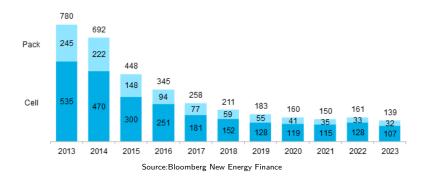
- EV penetration varies dramatically across markets with China having emerged as the dominant player in sales, production and supply chain
- Governments have increased the use of industrial policies in the auto sector especially to target EVs. Consumer EV subsidies are prevalent
- Consumer subsidies explained 45% of global EV sales during 2013-2020. LBD in battery production magnified the effectiveness

- EV penetration varies dramatically across markets with China having emerged as the dominant player in sales, production and supply chain
- Governments have increased the use of industrial policies in the auto sector especially to target EVs. Consumer EV subsidies are prevalent
- Consumer subsidies explained 45% of global EV sales during 2013-2020. LBD in battery production magnified the effectiveness
- Consumer subsidies in one country could generate global spillovers via shared supply chain, but local content requirements inhibit spillovers

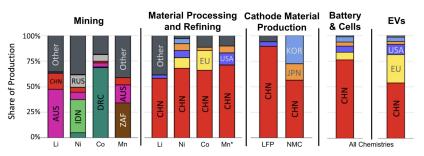

THANKS!

SL2448@cornell.edu


EV sales and market shares

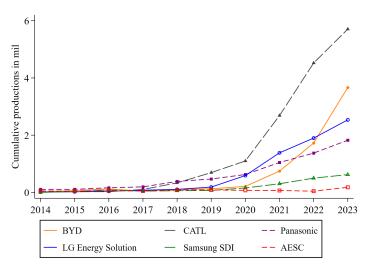

Model Availability by Fuel Type

Sales-weighted Average Battery Prices



 Wright's Law: unit cost of battery production decreases by 20-30% with doubling of production

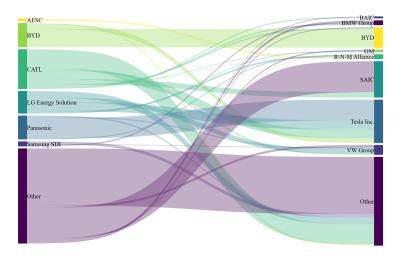
EV Battery and Material Supply Chains



Lilithium, Ni nickel, Co cobalt, Mn manganese (relectrolytic manganese dioxide represents refined manganese). The following codes are used to represent countries or regions: CHN China, AUS Australia, IDN Indonesia, RUS Russia, DRC Democratic Republic of the Congo, ZAF South Africa, KOR Republic of Korea, JPN Japan, USA United States of America, Other any other country not explicitly listed here.

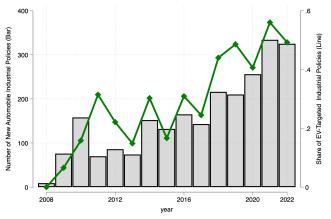
Source: Cheng et al. (2024)

Major Battery Supplies



• Top 6 battery suppliers have a market share of nearly 72% in 2023

Battery Supply Network 2013-2023



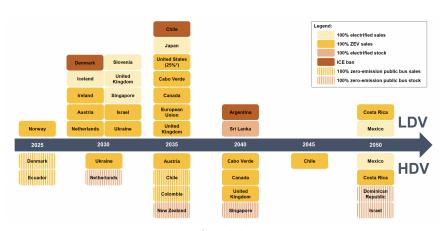
Battery Supplier EV Manufacturer

No. of New Automotive Industrial Policies Measuring IP

Source: Global Trade Alert Database

Industrial Policies in the Automobile

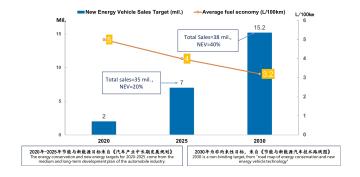
- Defining (national-level) Industrial Policy (IP): (1) State action (2)
 Shift the composition of economic activity (targeting specific industry)
- Measuring IP 1: using Global Trade Alert database and natural language processing (NLP) techniques (Juhász et al. 2022)
 - 1. Manually label a training dataset to either IP or non-IP
 - 2. Train a supervised ML model and apply it to the entire dataset.


Industrial Policies in the Automobile

- Defining (national-level) Industrial Policy (IP): (1) State action (2)
 Shift the composition of economic activity (targeting specific industry)
- Measuring IP 1: using Global Trade Alert database and natural language processing (NLP) techniques (Juhász et al. 2022)
 - 1. Manually label a training dataset to either IP or non-IP
 - 2. Train a supervised ML model and apply it to the entire dataset.
- Measuring IP 2: using country-by-model-level EV Subsidy
 - Compile a database of model-level EV subsidies and supply chain data for 13 counties from 2013 to 2020 (account for 95% of global EV sales).

Global ZEV Mandates and ICE Bans

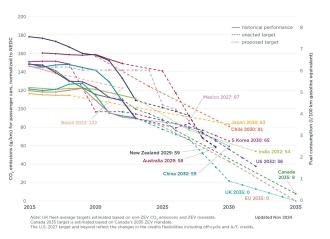
Source: IEA



Region 💠	Target Year	Regulated Metric	Unadjusted Fleet Target/Measure	Attribute-based	Corporate Average	Test Cycle
EU	2025 2030 2035	co ₂	93 g/km 49 g/km 0 g/km	Curb Weight	Yes	WLTP
China	2021 - 2025	Fuel consumption	5.7 - 4.6 l/100km	Curb Weight	Yes	WLTP
U.S.	2024 - 2026(proposal)	Fuel economy	49.2 - 58.1 mpg 60.0 - 66.4 mpg	Footprint	Yes	U.S. combined
U.S.	2023 - 2026 2027 - 2032 (proposal)	GHG	166 - 132 g/mi 134 - 73 g/m mpg	Footprint	Yes	U.S. combined
Canada	2023 - 2026	GHG	161 - 148 g/mi	Footprint	Yes	U.S. combined
India	FY 2022 - 2023	Fuel consumption	4.77 l/100km	Curb Weight	Yes	NEDC
Brazil	2022	Energy consumption	1.62 MJ/km	Curb Weight	Yes	U.S. combined
South Korea	2021 - 2030	GHG	97 - 70 g/km	Curb Weight	Yes	U.S. combined
UK	2024 - 2035 (proposal)	co ₂	120 - 0 g/km	Flat targets for ICE vehicles	Yes	WLTP
New Zealand	2023 - 2027	co ₂	145 - 63.3 g/km	Tare Weight	Yes	3P-WLTP
Mexico	2025 - 2027 (proposal)	GHG	104.4 - 88.9 g/km	Footprint	Yes	U.S. combined
Japan	2030	Fuel efficiency	25.4 km/l	Curb Weight	Yes	3P-WLTP

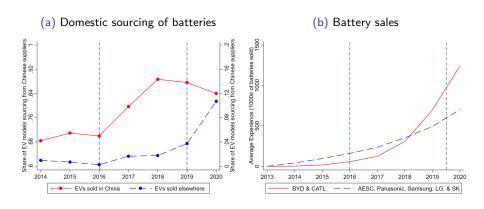
Source: ICCT

- US CAFE Standards (since 1975) and GHG Emissions Standards (since 2012)
- China CAFC Standards (2012) and New Energy Vehicle Credit (2017)



Region \$	Target Year 🔅	Regulated Metric	Unadjusted Fleet Target/Measure	Attribute-based	Corporate Average	Test Cycle
EU	2025 2030 2035	co ₂	93 g/km 49 g/km 0 g/km	Curb Weight	Yes	WLTP
China	2021 - 2025	Fuel consumption	5.7 - 4.6 l/100km	Curb Weight	Yes	WLTP
U.S.	2024 - 2026(proposal)	Fuel economy	49.2 - 58.1 mpg 60.0 - 66.4 mpg	Footprint	Yes	U.S. combined
U.S.	2023 - 2026 2027 - 2032 (proposal)	GHG	166 - 132 g/mi 134 - 73 g/m mpg	Footprint	Yes	U.S. combined
Canada	2023 - 2026	GHG	161 - 148 g/mi	Footprint	Yes	U.S. combined
India	FY 2022 - 2023	Fuel consumption	4.77 l/100km	Curb Weight	Yes	NEDC
Brazil	2022	Energy consumption	1.62 MJ/km	Curb Weight	Yes	U.S. combined
South Korea	2021 - 2030	GHG	97 - 70 g/km	Curb Weight	Yes	U.S. combined
UK	2024 - 2035 (proposal)	co ₂	120 - 0 g/km	Flat targets for ICE vehicles	Yes	WLTP
New Zealand	2023 - 2027	co ₂	145 - 63.3 g/km	Tare Weight	Yes	3P-WLTP
Mexico	2025 - 2027 (proposal)	GHG	104.4 - 88.9 g/km	Footprint	Yes	U.S. combined
Japan	2030	Fuel efficiency	25.4 km/l	Curb Weight	Yes	3P-WLTP

Source: ICCT

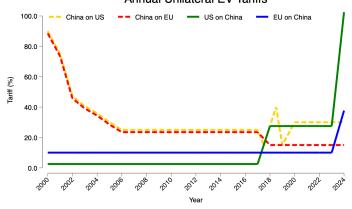


Source: ICCT

China's Whitelist policy

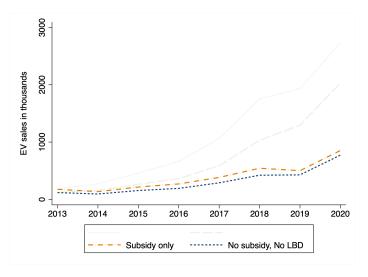
- Led to large increase in domestic procurement of batteries among Chinese EV firms
- BYD and CATL sales increased rapidly during this period

EV Subsidy Rules under U.S. IRA (2023-2032)


	Consumer
Maximum	\$7500, of which: \$3750 is for critical minerals \$3750 is for battery content
Assembly Requirement	North America
Critical Minerals	Increasing each year
No critical minerals from China or other "foreign entities of concern"	From 2025
Battery Components	Increasing each year
No battery components from China, other "foreign entities of concern"	From 2024
MSRP Cap Truck/SUV/Van Car	\$80K \$55K

- Min. % of critical minerals by value from N.A. or other FTA partners, from 40% in 2023 to 80% in 2027 and on
- Min. % of battery components by value from N.A. from 50% in 2023 to 100% in 2029 and on

Global EV Tariffs


Annual Unilateral EV Tariffs

US on EU: 2.5%, EU on US: 10%

Effectiveness of Consumer Subsidies without LBD

 \bullet Without LBD, subsidies \uparrow sales by 1.29 mil. (30.1%) during 2013-20

Welfare with US subsidy — without US subsidy						
	China	Europe	JP&KR	N. A.		
Δ Welfare (\$ bn.)	0.06	1.91	5.70	8.80		
Consumer surplus $(+)$	0.14	0.96	0.04	13.35		
Battery profit $(+)$	-0.21	-	4.59	-		
EV profit $(+)$	0.08	1.34	1.08	8.56		
Gov't expenditure (-)	-0.05	0.39	0.01	13.10		
Δ EV sales	6,646	50,224	2,266	754,788		

Welfare with US subsidy — without US subsidy						
	China	Europe	JP&KR	N. A.		
Δ Welfare (\$ bn.)	0.06	1.91	5.70	8.80		
Consumer surplus $(+)$	0.14	0.96	0.04	13.35		
Battery profit $(+)$	-0.21	-	4.59	_		
EV profit $(+)$	0.08	1.34	1.08	8.56		
Gov't expenditure (-)	-0.05	0.39	0.01	13.10		
Δ EV sales	6,646	50,224	2,266	754,788		

Welfare with US subsidy $-$ without US subsidy						
China Europe JP&KR N. A.						
Δ Welfare (\$ bn.)	0.06	1.91	5.70	8.80		
Consumer surplus $(+)$	0.14	0.96	0.04	13.35		
$Battery \; profit \; (+)$	-0.21	-	4.59	-		
EV profit $(+)$	0.08	1.34	1.08	8.56		
Gov't expenditure (-)	-0.05	0.39	0.01	13.10		
Δ EV sales	6,646	50,224	2,266	754,788		

Welfare with US subsidy — without US subsidy						
China Europe JP&KR N. A						
Δ Welfare (\$ bn.)	0.06	1.91	5.70	8.80		
Consumer surplus $(+)$	0.14	0.96	0.04	13.35		
Battery profit $(+)$	-0.21	-	4.59	-		
EV profit $(+)$	0.08	1.34	1.08	8.56		
Gov't expenditure (-)	-0.05	0.39	0.01	13.10		
Δ EV sales	6,646	50,224	2,266	754,788		

Impacts of European Subsidies, 2014 - 2020

Welfare with EU subsidy $-$ without EU subsidy						
China	Europe	JP & KR	N.A.			
0.26	3.73	5.32	2.29			
0.15	14.63	0.04	0.89			
-0.11	-	3.97	-			
0.18	5.52	1.32	1.76			
-0.04	16.44	0.01	0.36			
8,650	751,021	2,766	50,749			
	China 0.26 0.15 -0.11 0.18 -0.04	China Europe 0.26 3.73 0.15 14.63 -0.11 - 0.18 5.52 -0.04 16.44	China Europe JP & KR 0.26 3.73 5.32 0.15 14.63 0.04 -0.11 - 3.97 0.18 5.52 1.32 -0.04 16.44 0.01			

Impacts of European Subsidies, 2014 - 2020

Welfare with EU subsidy — without EU subsidy						
	China	Europe	JP & KR	N.A.		
Δ Welfare (\$ bn.)	0.26	3.73	5.32	2.29		
Consumer surplus $(+)$	0.15	14.63	0.04	0.89		
Battery profit $(+)$	-0.11	-	3.97	-		
EV profit $(+)$	0.18	5.52	1.32	1.76		
Gov't expenditure (-)	-0.04	16.44	0.01	0.36		
Δ EV sales	8,650	751,021	2,766	50,749		
·						

Impacts of Chinese Subsidies, 2014 - 2020

Welfare with CN subsidy — without CN subsidy						
	China	Europe	JP & KR	N. A.		
Δ Welfare (\$ bn.)	30.69	0.69	-0.06	0.95		
Consumer surplus $(+)$	27.04	0.67	0.01	0.33		
Battery profit $(+)$	7.52	-	-0.11	_		
EV profit $(+)$	18.39	0.26	0.04	0.76		
Gov't expenditure (-)	22.27	0.24	0.00	0.13		
Δ EV sales	2,696,916	30,267	732	18,780		

Impacts of Chinese Subsidies, 2014 - 2020

Welfare with CN subsidy — without CN subsidy						
	China	Europe	JP & KR	N. A.		
Δ Welfare (\$ bn.)	30.69	0.69	-0.06	0.95		
Consumer surplus $(+)$	27.04	0.67	0.01	0.33		
Battery profit $(+)$	7.52	-	-0.11	-		
EV profit $(+)$	18.39	0.26	0.04	0.76		
Gov't expenditure (-)	22.27	0.24	0.00	0.13		
Δ EV sales	2,696,916	30,267	732	18,780		

Impacts of China's Whitelist Policy

	Welfare with whitelist $-$ without whitelist				
	China	Europe	JP & KR	N. America	Global
Δ Welfare (\$ bn.)	3.35	-0.52	-3.82	-1.24	-2.23
Consumer surplus $(+)$	-0.80	-0.48	-0.01	-0.58	-1.87
Battery profit $(+)$	3.17	-	-3.73	-	-0.56
EV profit (+)	-0.11	-0.25	-0.07	-0.89	-1.33
Gov't expenditure (-)	-1.08	-0.21	0.00	-0.24	-1.53
Δ EV sales	-61,375	-26,162	-742	-33,196	-121,475

Impacts of China's Whitelist Policy

	Welfare with whitelist — without whitelist				
	China	Europe	JP & KR	N. America	Global
Δ Welfare (\$ bn.)	3.35	-0.52	-3.82	-1.24	-2.23
Consumer surplus $(+)$	-0.80	-0.48	-0.01	-0.58	-1.87
Battery profit $(+)$	3.17	-	-3.73	-	-0.56
EV profit (+)	-0.11	-0.25	-0.07	-0.89	-1.33
Gov't expenditure (-)	-1.08	-0.21	0.00	-0.24	-1.53
Δ EV sales	-61,375	-26,162	-742	-33,196	-121,475