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examine the causal impact ofWM training embedded in regular school
teaching, using a randomized educational intervention with 6–7-year-
old children. We find substantial gains in WM capacity and document
positive spillover effects on geometry, fluid IQ, and inhibitory control.
Three years later, treated children are 16 percentage points more likely
to enter an advanced secondary school track.
I. Introduction
Cognitive andnoncognitive skills affect important individual life outcomes
such as health, education, and earnings (Cunha et al. 2006; Heckman,
Stixrud, andUrzua 2006;Moffitt et al. 2011; Duckworth et al. 2012; Almond,
Currie, andDuque 2018). Executive functions (EFs; Diamond 2013), which
aremalleable through interventions in childhoodwith long-lasting effects
into adulthood (see, e.g.,Walker et al. 2022;García,Heckman, andRonda
2023), are thought to play a key role in a wide range of abilities. Working-
memory (WM) capacity—the ability to mentally store and process infor-
mation (Baddeley 1999)—is a key component of EFs and has been shown
to be positively associated withmath and language skills (Gathercole et al.
2004; Alloway and Alloway 2010), general fluid IQ (Kyllonen and Christal
1990; Ackerman, Beier, and Boyle 2005; Oberauer et al. 2005; Engel de
Abreu, Conway, and Gathercole 2010), and self-regulation skills such as
attention and inhibitory ability (Engle 2002; Hofmann et al. 2008;
Schmeichel, Volokhov, and Dernaree 2008; Diamond and Ling 2020). Con-
versely, individuals with learning problems and self-regulation and attention
deficits often have low WM capacity (Westerberg et al. 2004; Martinussen
et al. 2005; Van Snellenberg et al. 2016). In view of this relevance of EFs
and WM capacity for many important skills, the question is whether one
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can simultaneously improve several of these skills through WM training
and whether this can be achieved by introducing WM training into the
school curriculum. These questions are of fundamental importance for
human capital formation and its underlying mechanisms as well as for ed-
ucational policy.
Previous evidence suggests thatWM training can improve performance

on untrainedWM tasks (direct effects). However, the question of whether
training-induced improvements in WM capacity lead to improvements
in other important skills, such as academic and self-regulatory skills (spill-
over effects), lacks a conclusive answer, as even meta-analyses and review
studies are controversial on this point (Shipstead, Hicks, and Engle 2012;
Karbach and Verhaeghen 2014; Au et al. 2015; Melby-Lervåg, Redick, and
Hulme 2016; Aksayli, Sala, and Gobet 2019; Sala et al. 2019; Gobet and Sala
2023). This lack of a conclusive answer suggests that WM-training studies
face a number of considerable challenges (see, e.g., Greene et al. 2019
and Gobet and Sala 2023). For example, (i) potential spillover effects
are likely to need time to evolve, and identifying these effects requires
follow-up evaluations that go beyond just a few weeks or 3–4 months after
the training; (ii) unobservable background variation in school environ-
ments may swamp potential treatment effects; and (iii) training may lead
to spillover effects only in specific subject pools such as young children.
Other difficulties involve (iv) choosing an appropriate control group,
(v) using or developing appropriate age-adjusted outcome measures, and
(vi) sample size issues.
We tackle these challenges with a randomized controlled field exper-

iment—described in more detail below—in a sample of 572 typically de-
veloping school children in the first grade of primary school. We focus on
the training of relatively young children at age 6–7 years because evidence
from economics indicates that training programs for youths in their late
adolescence or young adulthood may be less effective than those for
young children (Cunha et al. 2006; Heckman 2006). Young children have
higher brain plasticity, which might increase the chances of generating
positive spillover effects (Heckman 2006; Constantinidis and Klingberg
2016; Klingberg 2016; Almond, Currie, and Duque 2018). In contrast to
most other WM-training studies in typically developing children, we track
children’s outcomes for longer than 3–5months after the training. Specif-
ically, we also measure outcomes after 6 and after 12–13 months, and we
examinewhether the training has an effect on children’s school trajectory
3 years later.
In our study, 31 school classes were randomly assigned to a treatment

group (15 classes) or a control group (16 classes). Since we randomized
within schools, we are able to control for unobservable background vari-
ation in school environments via school fixed effects. The children in
the treatment group participated in a daily (one lesson per school day),
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computer-based, adaptive WM training over a period of 5 weeks. Not only
do we find substantial direct effects on WM capacity that emerge right af-
ter the 5-week training period and last throughout all evaluation waves, we
also find spillover effects on several important skills, such as geometry,
Raven’s fluid-IQ measure, and children’s ability to inhibit prepotent im-
pulses. Interestingly, for all these abilities there is no significant treatment
effect shortly after the training; that is, the spillover effects do not emerge
in the short term. Instead, they show an increasing pattern over the course
of several evaluation waves and are typically highest in the last wave (after
12–13 months), with effect sizes between 0.24 and 0.38 SD (standard de-
viations). These effects are sizeable in view of the intervention’s intensity
(25 school hours).
One important aspect of our field experiment is that the WM training

was embedded into the normal school routine and was introduced like
any other new lesson or sequence of exercises that children experience
during a school year. Thus, the children in the treatment group did not
know that they were part of an experiment. The 5-week WM training took
place during one of the first two morning lessons, during which children
typically havemath orGerman classes. Thismeans that the children in the
treatment group missed 25 school lessons relative to the children in the
control group, who participated in their normal math and German les-
sons.Our treatment effects therefore already incorporate the opportunity
cost of the lost school lessons. This means that the children in the treat-
ment group seem to have experienced a net benefit from the WM train-
ing, because the training did not reduce any outcomemeasure but signif-
icantly improved the children’s skill level in several dimensions. This
interpretation is further corroborated by the finding that 3 years after
the training, the treatment grouphad a 16 percentage points higher prob-
ability of entering the academic track (called Gymnasium) of secondary
school. In Germany, the choice of the secondary school track after the
fourth grade in primary school is one of the most decisive educational
choices for a child. This decision typically has a large influence on the
probability of earning a high school (i.e., Gymnasium) degree and thus
on later university enrollment and adult labor market outcomes.1

Our paper is related to the literature on the role of children’s cognitive
and noncognitive skills in human capital formation. Research in this area
has established that not only cognitive but also noncognitive skills have an
important influence on individuals’ life outcomes in terms of education,
1 Dustmann (2004) finds that individuals with a degree from the academic track of sec-
ondary school (Gymnasiumabschluss) earn, on average, 54%–73% higher wages at labor
market entrance than those with a lower secondary school degree (Hauptschulabschluss,
earned after ninth grade) and 22%–34% higher wages than individuals with an intermedi-
ate degree (Realschulabschluss, earned after tenth grade).
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income, andhealth (Cunhaet al. 2006;Heckman, Stixrud, andUrzua 2006;
Conti and Heckman 2010; Moffitt et al. 2011; Duckworth et al. 2012;
Duckworth and Carlson 2013). Furthermore, research discussed in Bor-
ghans et al. (2008), Cunha and Heckman (2009), Almond, Currie, and
Duque (2018), García and Heckman (2023), and García, Heckman, and
Ronda (2023) has focused on the determinants of children’s cognitive
and noncognitive skills and has identified the early family environment
and associated parental investments, the school environment, and early
health shocks as important determinants of adolescent and adult human
capital. In addition, researchers designed interventions to boost cognitive
and noncognitive skills and have conducted randomized controlled trials
tomeasure the interventions’ causal effects. This literature examined, among
others, the general role and malleability of (i) children’s “growth mind-
set,” that is, an optimistic belief about the role of effort in individuals’ suc-
cess (Dweck 2006; Yeager et al. 2014, 2019; Sisk et al. 2018), (ii) children’s
perseverance and patience (Duckworth et al. 2007; Duckworth 2011; Alan
and Ertac 2018), and (iii) children’s trust and social preferences (Cap-
pelen et al. 2020; Kosse et al. 2020).
Our paper differs from these studies by focusing on different outcome

measures and by choosing an intervention that has rarely, if at all, been
considered by economists as a potential mechanism for changing chil-
dren’s cognitive and noncognitive skills: WM capacity. WM capacity is a
key component of executive functioning (Diamond 2013)—with inhibi-
tory control and cognitive flexibility being the other two components—
and comprises not just the ability to store information in the short term.
The use ofWMalso requires the ability to process information in the pres-
ence of distracting impulses and competing information that is not con-
ducive for the individual’s goal. Research on executive functioning has
therefore emphasized that WM and inhibitory control “generally need
one another and co-occur” and that WM “supports inhibitory control”
(Diamond 2013, 143). This is the reason why WM capacity may also gen-
erate spillover effects on noncognitive skills by facilitating impulse control
and self-regulation.
The literature onWMtraining in typically developing childrenhasmostly

measured the impact of WM training only immediately after the training
or a few weeks ormonths after the training. There are, however, reasons to
believe that detecting spillover effects to more complex skills might re-
quire follow-up evaluations that leave more time for spillover effects to
develop. Cunha and Heckman (2007; also Cunha, Heckman, and Schen-
nach 2010), for example, have pioneered and provided supporting evi-
dence for the view that higher skill levels at earlier stages positively affect
skill formation at later stages as a result of “self-productivity” (skills attained
at one stage augment the skills attained at later stages) and “dynamic
complementarity” (skills produced at one stage raise the productivity of
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investment into skills at subsequent stages).2 This is the reason why we
evaluated outcomes not only shortly after the training but also 6 and
12–13 months after the training. Our findings on the time path of treat-
ment effects corroborate the view that spillover effects need time to de-
velop: in all cases in which we eventually document a significant spillover
effect, the effect is rising over time, but in none of these cases is the spill-
over effect already significant shortly after the training. However, after
6 months a spillover effect on geometry skills and Raven’s fluid-IQ mea-
sure emerges (also visible after 12–13 months), and after 12–13 months
we observe, in addition, a spillover effect on inhibitory control, namely,
the ability to inhibit prepotent impulses.
Our paper is also related to the literature in psychology and education

science that examines whether EF- and WM-training interventions (and
other forms of cognitive training) lead to spillover effects in children
(for an early contribution, see Klingberg et al. 2005; for reviews, see Dia-
mond 2013, Diamond and Ling 2020, and Sala and Gobet 2020). A rele-
vant share of this literature focuses on disadvantaged children, for exam-
ple, with disorders or very low WM capacity or from low-education family
backgrounds (e.g., Klingberg et al. 2005; Roberts et al. 2016). For inter-
ventions targeting these disadvantaged children, several studies show
strong positive long-term effects on EFs that also spill over to several other
domains, such as health, education, and (reduced) crime (Walker et al.
2022; García and Heckman 2023; García, Heckman, and Ronda 2023).
Our paper instead focuses on typically developing children. We contrib-
ute to this literature by demonstrating positive WM-training effects, show-
ing that improvements in one EF domain (WM) can create spillovers in
other domains (inhibitory control), which is consistent with a founda-
tional role of WM capacity for the dynamic process of skill formation
(Cunha andHeckman 2007). Finally, we show that improvements in these
domains can have causal, long-term effects on educational trajectories.
We believe that our approach has the advantages that (i) the children

in the control group are participating in their normal school lessons, that
is, we have a natural control group; (ii) the children in our study are
not aware of being part of an experiment, because the training was intro-
duced like other new topics during normal school teaching; (iii) we can
also examine a question of high policy relevance, namely, whether WM
training provides additional benefits or costs for the children relative to
normal school lessons; and (iv) we have short- and longer-run outcome
measures that enable us to study how the treatment effect evolves over
2 Several authors in thepsychology andeducation science literature (Holmes,Gathercole,
and Dunning 2009; St Clair-Thompson et al. 2010; Nutley and Söderqvist 2017) have also
pointed out that, while direct effects of WM training on untrained WM tasks may happen
in the short run, training-induced improvements inWMcapacity need time to affect spillover
outcomes.
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time. To our knowledge, there are only two other studies (St Clair-
Thompson et al. 2010; Rode et al. 2014) that implemented WM training
into the normal school routine such that the effects of training relative to
normal school lessons could be assessed. Unfortunately, these two studies
experienced large attrition after a few months and/or did not have long-
term follow-up measurements. In the light of our finding that many treat-
ment effects become fully visible only after many months, this may have
limited their ability to discover spillover effects.3

The rest of the paper is organized as follows. Section II describes our
study design, the data collection, and our outcomemeasures. In addition,
we put forward conjectures about the effect of WM training on our out-
comemeasures. In section III, we describe the estimationmethod. In sec-
tion IV, we present and discuss our empirical results in detail. Section V
summarizes the results and concludes the paper.
II. Study Design and Data Description
The field experiment was conducted in primary schools in Mainz, Ger-
many, in 2013–14 after receiving ethical approval in September 2012.
A. Participants
With the aid of the school authorities, we recruited 31 first-grade classes
from numerous schools in the city of Mainz, Germany, for participation
in the study. Each school participated with at least two classes. Out of
599 children in these classes in November 2012, we received consent from
the parents of 580 (consent rate of 96.8%) for four waves of data collec-
tion (W1, W2, W3, W4). We were able to collect test data for 572 of these
580 children at baseline (W1) and shortly (i.e., 4–5 weeks) after the train-
ing (W2).4 Randomization was done between classes and within schools:
15 classes (279 children, i.e., 49%) were randomly assigned to the treat-
ment group and 16 classes (293 children) to the control group. Random-
ization occurred within schools, enabling us to control for school fixed ef-
fects. Summary statistics are reported in table 1 below. About 49% of the
children were male, and mean age at the beginning of the year (i.e., on
January 1, 2013) was 82 months (6.8 years, SD 5 4:3 months). Attrition
3 There are also a number of studies that implement randomized WM training for chil-
dren outside the school context (see review by Sala and Gobet 2020), i.e., the children
know that they are part of a study. Most of these papers measure outcomes between a
few weeks and 3 months after the experiment.

4 Six children completed the W1 tests slightly after the actual start of the WM training
(two of them in the control group) because they were sick or absent on the original test
date. Since the delays were rather small, we kept these children in the sample. Dropping
them from the sample does not change our results.
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over the course of the four evaluation waves (from W1 to W4) was very
low (only about 7%, with no difference between treatment and control
groups; see app. 1.1 [appendix is available online]).
B. Treatment and Control Condition
The treatment consisted of a daily WM training session lasting approxi-
mately 30 minutes, taking place during the first or second lesson of a
school day over a period of 25 consecutive school days. The WM training
was embedded into the classes’ normal school routine. Accordingly, pa-
rental consent for their children’s participation in the training was not re-
quired, and thus all children in the treatment classes participated in the
training. In each class, a single teacher covers almost all the topics that
have to be taught according to the first-grade curriculum. Thus, the WM
training was introduced to the children as a normal sequence of exercises
by this teacher, similar to when the teacher introduces a new sequence of
TABLE 1
Summary Statistics

Variable Mean SD Minimum Maximum N

WM training .488 .5 0 1 572
Male .49 .5 0 1 572
Children’s age (months):
January 1, 2013 82.129 4.324 72.222 101.578 572
On test day W1 84.247 4.377 74.523 103.485 572
On test day W2 87.288 4.355 77.745 106.706 572
On test day W3 92.368 4.379 82.774 111.703 544
On test day W4 99.582 4.381 90.467 118.836 531

Migration background .451 .498 0 1 568
Language problems .247 .431 0 1 572
Monthly household net income (€):
<750 .023 .149 0 1 441
750–1,500 .12 .326 0 1 441
1,500–2,500 .209 .407 0 1 441
2,500–5,000 .433 .496 0 1 441
>5,000 .215 .412 0 1 441

Mother’s highest degree:
University .446 .498 0 1 444
Vocational .423 .495 0 1 444
None .131 .337 0 1 444

Secondary school type:
Academic track .692 .462 0 1 393
Mixed track .204 .403 0 1 393
Nonacademic track .104 .306 0 1 393
Note.—The table provides sociodemographic information about our sample. The gen-
der and age variables have been reported by the schools and are therefore available for all
children. The variables “Migration background” and “Language problems” are taken from
the teacher questionnaire in W1; for four children, teachers reported not knowing the mi-
gration background. Income and maternal education variables are taken from the parent
questionnaire in W1. The information about secondary school track is taken from a survey
administered to parents 3 years after treatment.
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exercises for math, reading, or writing as required by the curriculum. Ac-
cordingly, the teacher was present during the lessons when the WM train-
ing tookplace, children remained in “their” classroom, and they conducted
the training sessions at their usual desks. This minimizes Hawthorne or de-
mand effects because it ensures that the children viewed the WM training
simply as a usual topic of their curriculum, in which the sequential intro-
duction of new learning content during the school year is part of normal
school routine. In addition, we did not inform parents about the treatment
assignment of their children, and we also did not provide information that
would have enabled them to infer the treatment assignment.5

We used a commercially availableWM-training software providing train-
ing on different span tasks,6 using an age-specific user interface and adap-
tive levels of difficulty. Eight out of 10 training tasks focus on visuospatial
WM, while only two focus on verbal WM; that is, a much larger variety of
WM tasks andmore training time were allocated to visuospatial WM train-
ing. The teachers supervised children in each training session, and logins
for the training software were user specific and valid only during the inter-
vention period. Thus, the childrenhad access to the training software only
during their dedicated training sessions (see app. 1.2 for further details).
WM training typically took place in the first or the second lesson in the

morning. During this time, the control-group teachers taught their stu-
dents the usual content covered in the first and second lessons of the day
for first graders in primary school (mostly major subjects such as math
and German language). This means that students in the treatment
group missed 25 such school lessons. Therefore, even if WM training im-
proves some math or German skills, this improvement could, in princi-
ple, fall short of the improvement that the children in the control group
experienced because they received more direct training in these subjects.
This paper therefore analyzes thequestionof which activity improves skills
more. This allows us to address a question of particular importance for
education policy, that is, whether computer-based WM training during
school hours is beneficial for the children. In other words, when we com-
pare the treatment- and control-group children on the various skill di-
mensions, we automatically take the forgone school lessons during WM
training—that is, the opportunity cost of the training—into account. This
is important for an overall assessment of the desirability of WM training
for a general school population of young children—the training is not
without cost.7
5 For further details on the information received by the parents, see app. 1.2.
6 We used the WM-training software Cogmed. Cogmed and Cogmed Working Memory

Training are trademarks, in the United States and/or other countries, of Cogmed Inc.
(www.cogmed.com).

7 Part of the literature onWM training emphasizes the importance of so-called active con-
trol groups. In our case, the control group is involved in the normal teaching lessons. It is

http://www.cogmed.com
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Compliance with WM training was high in our sample. Only four out
of 279 treated children finished less than 20 of the 25 daily training ses-
sions. Since classes as a whole participated in the training, childrenmissed
a training session only when they did not attend school (e.g., for health
reasons).
C. Data Collection

1. Computer-Based Tests
Computer-based tests were completed by all children in four evaluation
waves: at baseline (i.e., 3–4 weeks) before the training (W1), shortly
(i.e., 4–5 weeks) after the training (W2), 6 months after training (W3),
and 12–13months after training (W4; see app. 1.3 for further details). Par-
ents of both treatment- and control-group children gave their consent to
participate in the data collection (consent rate of 96.8%). The tests were
highly standardized and developed specifically for the purpose of this
study. The entire sequence of tests was computer based, including au-
ditory explanations (via headphones) and comprehension checks. The
test items for each evaluation wave were adjusted to the relevant age
and school curriculum at the different waves. A pretest before W1 with
a different (smaller) sample of similar-aged children served to adapt
the initial level of difficulty. The input devices for the tests were large
touchscreens instead of computer mice because we wanted to avoid any
bias arising from the fact that children in the treatment group had been
working with computer mice during the WM training. The testing proce-
dure was run by a professional data collection service. The staff adminis-
tering the tests was blind to treatment conditions. Teachers were not pres-
ent during the tests and did not know their content. The teachers also did
not receive any information or feedback about the performance of their
students in the evaluation tasks. When the children had finished all eval-
uation tasks in a given wave, they received a small toy for participating in
the evaluation waves. These rewards were given to all children from the
control and treatment groups to avoid any motivational differences be-
tween them.
In each evaluation wave, the children completed three (nontrained)

WM tasks. WM capacity was measured with a verbal simple span task, a
sometimes also argued that an active control group might perform nonadaptive WM train-
ing, i.e., the children are not exposed to increasingly challenging tasks when they have solved
the less challenging ones. However, one disadvantage of nonadaptive training is that the chil-
dren may become bored and demotivated if they face tasks that constitute no real challenge
and that, therefore, lead to no improvements. For this reason, and because we were inter-
ested in the policy question of whether WM training enables improvements relative to nor-
mal teaching lessons, our control group is involved in normal teaching lessons that typically
involve increasingly challenging material.



working-memory training and children’s skills 000
verbal complex span task, and a visuospatial complex span task (for details,
see app. 1.4). Importantly, both the verbal complex span task and the
visuospatial complex span task clearly differed from the tasks used in the
WM training.We included a verbal simple span task (but not a visuospatial
simple span task) in the set of our WM evaluation tasks because the WM
training places considerably less weight on verbal than on visuospatial
WM.Direct effectsmay therefore beweaker for verbalWM.The verbal sim-
ple span task might allow us to capture these presumably weaker effects.
The three WM tasks mentioned above not only enable us to study direct
effects but also serve the purpose of examining the extent to which WM
capacity mediates training-induced improvements in other important skills.
In each evaluation wave, the children also completed a set of tasks that

enabled us to measure such spillover effects. Educational achievement
was measured in three areas: arithmetic, geometry, and reading. We in-
cluded geometry as an outcome measure because—like arithmetic and
reading—it plays an important role in everyday life (e.g., orientation,
reading maps, driving, and parking) as well as in various professions
(e.g., construction/architecture, fashion/art design, geography, physics).
In addition, wemeasured three other important skills that capture key as-
pects of EFs, such as fluid IQ (higher-level EFs), the ability to inhibit pre-
potent responses (inhibitory control), and the ability to sustain attention
and display frustration tolerance (attentional stamina). We use Raven’s
Colored Progressive Matrices test (Bulheller and Häcker 2010) as a mea-
sure for fluid IQ. The ability to inhibit prepotent responses (inhibitory
control) was measured with the go/no-go task (Gawrilow and Gollwitzer
2008), and attentional stamina wasmeasured using the bp (letter discrim-
ination) task (Esser, Wyschkon, and Ballaschk 2008). For a detailed de-
scription of all these tasks, see appendix 1.4.
2. Teacher Ratings
In each data collection wave (W1–W4), teachers filled out a question-
naire containing items on children’s and teachers’ characteristics and
behaviors, and (for treated teachers) expectations about the interven-
tion. We achieved a 100% return rate for the teacher questionnaire in
all four evaluation waves. A key part of the teacher questionnaire is a
series of questions capturing teachers’ assessment of each child’s self-
regulatory abilities (for details, see app. 1.4).
3. Secondary School Track Choice
In a follow-up survey in spring 2016, we asked parents to report their chil-
dren’s school track for secondary school in fall 2016. Secondary school
starts at grade 5, that is, 3 years after the WM training, when the children
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are 10–11 years old. Essentially, there are three different secondary school
tracks available: (i) an academic track (Gymnasium), (ii) a mixed track
(Integrierte Gesamtschule), and (iii) a nonacademic track (Realschule Plus).
In this particular federal state in Germany, 86% of the children in the ac-
ademic track earn a degree that qualifies them for general university en-
rollment (Abitur), whereas only 25% of children in mixed-track schools
achieve this (Rhineland-Palatinate Statistics Office 2018).Within the non-
academic track, students cannot earn a degree that qualifies them for gen-
eral university enrollment. For children in the nonacademic track, the
probability of switching tracks is small (<5% per year; Bellenberg 2012).
Moreover, since the school track choice at this age has a decisive influence
on the whole educational career path, it also exerts a substantial influ-
ence on later wages (Dustmann 2004). Thus, the choice of the secondary
school track constitutes a major educational decision that strongly affects
a child’s future outcomes and lifetime earnings.
D. Conjectures about the Treatment Effect
on Outcome Measures
In addition to direct effects on WM capacity, WM training may have pos-
itive spillover effects on our educational outcomemeasures, but in varying
degrees. Performing arithmetic tasks, such as adding or subtracting sev-
eral numbers, requires children to store and recall “intermediate results”
while performing the computations, thus requiring WM capacity. Like-
wise, geometry tasks, such as estimating howmany times a smaller geomet-
rical object fits into a larger one, and reading comprehension requireWM
capacity. However, in our context it is important to take into account that
teaching time in primary school is very unevenly allocated between arith-
metic and geometry: during the first grade, the curriculum requires that
about 70% of the math lessons be spent on teaching arithmetic. Because
the treatment subjects missed a considerable number ofmath lessons and
because our WM training was focused on visuospatial WM (see above), it
seemsmore likely that we would find positive training effects on geometry
than on arithmetic skills. With regard to reading performance, it is impor-
tant to keep in mind that the children gradually learn the letters of the
alphabet during the first grade, allowing them to read and understand
an increasing number of letters and words over time. We measured read-
ing skills by a reading comprehension task that required children to un-
derstand and process all words in a sentence and to assign meaning to
the full sentence. This is obviouslymuchmore difficult when children still
have problems reading single words. Moreover, correlational evidence
suggests (Kibby, Lee, and Dyer 2014; Nutley and Söderqvist 2017) that
WM capacity does not predict word identification but seems to be an
independent predictor of reading comprehension once word-reading
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ability has been acquired. This suggests an additional, independent rea-
son—apart from the possibility that spillover effects generally may need
time to emerge—for why WM-training effects in our reading task may
emerge only over time.
Turning to more general cognitive skills, WM capacity has also been

shown to be correlated with fluid intelligence as measured, for example,
by Raven’s matrices task—a task that requires visuospatial WM but is nev-
ertheless different from pure WM tasks because it requires (i) reasoning
in novel situations without prior knowledge and (ii) the ability to generate
high-level schemata in order to handle complexity, as well as (iii) the abil-
ity to absorb, recall, and reproduce information provided in the task (Car-
penter, Just, and Shell 1990; Oberauer et al. 2005; Wiley et al. 2011).8

Therefore, WM training may improve performance in Raven’s matrices
task. However, the previous empirical literature is in sharp disagreement
about whether WM training improves fluid IQ measured using Raven’s
matrices tasks (Au et al. 2015; Melby-Lervåg, Redick, and Hulme 2016).
WM is one of three core components of executive functioning—with

inhibitory control and cognitive flexibility being the other two (Diamond
2013). The literature on executive functioning hypothesizes that WM and
inhibitory control “generally need one another and co-occur” and that
WM “supports inhibitory control” (Diamond 2013, 143). This is also con-
sistent with the view that WM capacity is crucial for the ability to actively
maintain task-relevant and suppress/inhibit task-irrelevant information
(Engle 2002). WM capacity might thus enhance the ability to avoid dis-
traction, which is consistent with the evidence showing that individuals
with low WM capacity are less able to suppress salient distractors (Gaspar
et al. 2016). On the basis of this account, WM training may thus generate
spillover effects on inhibitory control. In the context of the go/no-go task,
this means that children who undergoWM training should be better able
to avoid commission errors, because the children in this task almost always
see symbols that require them to press a button within a very short time
interval, placing them in the “go mode.” Occasionally, however, a “no-go”
symbol is shown that requires them to refrain from pressing the button.
In this view, the frequent display of “go” symbols distracts individuals and
makes it difficult for those with low WM capacity to maintain the goal
and provide the appropriate behavioral response associated with the
“no-go” symbols. We also measure children’s attentional stamina with a
letter discrimination task, the so-called bp task. To our knowledge, it is
an open question whether WM training improves this aspect of EFs.9
8 Note that Raven’s matrices task does not measure general IQ but is a nonverbal test
that is regarded as a measure of fluid intelligence based on visuospatial capabilities.

9 Our WM training may also be viewed from the perspective of prominent interventions
that boosted executive functioning (see, e.g., Walker et al. 2022; García, Heckman, and
Ronda 2023) and led to long-lasting spillover effects on a wide range of skills.
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Finally, in case we find that WM training has spillover effects on aca-
demic performance or other important skills, it might be possible that
WM training also positively affects secondary school track choice because
that choice is presumably influenced by children’s academic skills, their
fluid IQ, and their self-regulatory skills.
III. Empirical Results
To estimate the treatment effect of WM training, we regress outcome
scores measured after the training (W2–W4) on a treatment indicator
and a vector of control variables.10 All outcome scores are standardized
within each evaluation wave to mean 0 and SD 1. We control for the pre-
training baseline level of the respective outcome score in our regres-
sions. Thus, instead of identifying howWM training changes individuals’
outcome scores between pre- and posttreatment waves (i.e., using the
difference-in-differences estimator), we estimate how the training changes
outcome levels and control for the baseline level of the respective out-
come. The advantage of this method is that the variance of the estimated
effect is smaller; that is, the treatment effect is measured with more preci-
sion (Frison and Pocock 1992; McKenzie 2012). Finally, in order to allow
for interdependence of observations within school classes, standard er-
rors are clustered at the classroom level. In our robustness analysis, we also
apply the Romano-Wolf step-down procedure to control for multiple-
hypothesis testing (Romano and Wolf 2005, 2016)—a technique that is
increasingly used for large-scale intervention studies (see, e.g., Cunha,
Heckman, and Schennach 2010, Campbell et al. 2014, and Gertler et al.
2014)—and, simultaneously, we control for potential biases that may arise
when the number of clusters is relatively small with the BRL (bias-reduced
linearization) correction method (Bell and McCaffrey 2002).
A. Sample Balance
To examine whether randomization led to a balanced sample across treat-
ment and control groups in terms of socioeconomic characteristics, we re-
gress various sociodemographic characteristics (gender, age, and migra-
tion background, as well as parental income and education) measured
before the treatment (W1) on the treatment indicators and school fixed
effects (see table S1; tables S1–S23 are available online). The results
show that the treatment coefficient in all regressions is close to zero
10 The vector of control variables consists of school fixed effects, gender, age, age on test
days, baseline value of the outcome, and indicators for other treatments (unrelated to the
WM training) that were conducted in the same sample. For further details on estimation,
see app. 1.5).
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and insignificant, indicating that there were no significant imbalances be-
tween treatment and control groups with respect to these variables.
As a further sample balance check, we regressed standardized outcome

test scores at baseline (i.e., test scores measured before the treatment, in
W1) on the treatment indicators, school fixed effects, and the same con-
trol variables that are included in the main estimations of the treatment
effect. Table S2 shows that with the exception of the baseline score for
the verbal complex span task, none of the coefficients related to the treat-
ment dummy is significantly different from zero, indicating that for all
other baseline test scores there is no evidence for significant imbalances
between treatment and control groups.With regard to the possible imbal-
ance in the baseline score of verbal complex span, we have to take into ac-
count that we conducted a total of 15 imbalance test regressions. For this
reason, we further examined the issue by adjusting p-values for multiple-
hypothesis testing and applying the BRL clustering method (which ac-
counts for small numbers of clusters). This then yields a p-value of .332
for the verbal complex span outcome, suggesting no significant differ-
ence between the treatment and control groups once we account for the
number of tests conducted. In addition, we would like to mention that
we control for the baseline tests scores in W1 in all our regressions that
measure the treatment effect ofWM training on outcome scores inW2–W4.
B. Treatment Effect on Computer-Based Test Outcomes
To estimate the effect ofWM training, we regress outcome scoresmeasured
shortly after the training (W2), 6 months after the training (W3), and 12–
13 months after the training (W4) on the treatment indicator and con-
trols (see above). The estimated direct effects of WM training on WM ca-
pacity are presented in figure 1 and table S3.We find significantly positive
treatment effects for the visuospatial complex span task in all three post-
treatment waves, with an effect size (d) of 0.40–0.46 SD (p 5 :00004–:006).
We also find a significantly positive training effect on performance in the
verbal simple span task of d 5 0:38 SD (p 5 :000008) in W3 and d 5
0:30 SD (p 5 :015) in W4. We do not find any significant treatment effect
for performance in the verbal complex span task. The stronger effect of
training on visuospatial WM compared to verbal WM is plausible, as the
training focused primarily on visuospatial WM (see sec. II.B).
Spillover effects ofWM training on educational outcomes—arithmetic,

geometry, and reading—andRaven’s fluid-IQmeasure are reported infig-
ure 2 and table S4. While there is no treatment effect on arithmetic in all
three posttraining waves, we find an effect on geometry skills that is in-
creasing over time. The effect size d 5 0:17 SD inW2 is not yet significantly
different from zero (p 5 :108), but the effect size increases in W3 and
W4 to d 5 0:24 and d 5 0:38 SD, respectively, with significance levels of
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p 5 :021 inW3 and p 5 :001 inW4. Thus, it seems that WM training had
a positive and increasing spillover effect relative to the normal school cur-
riculum on geometry skills but not on arithmetic skills. The significant
and relatively strong impact on geometry skills is also consistent with
the fact that training focused primarily on improving visuospatial WM ca-
pacity. The spillover effects on reading are generally lower than those on
geometry, but they are also rising over time and become significant inW4.
There is no positive effect on reading shortly after the training, but we
observe a larger, yet still insignificant, effect in W3 and an effect size of
d 5 0:23 SD at p 5 :037 in W4. This rising spillover effect on reading is
consistent with the view (Nutley and Söderqvist 2017) that WM capacity
plays a smaller role for reading comprehension when children are still
struggling to understand words but eventually becomes relevant for read-
ing comprehension when word identification has progressed sufficiently.
We also find a significant spillover effect on Raven’s Colored Matrices

task 6 months (d 5 0:24 SD, p 5 :004) and 12–13months (d 5 0:24 SD,
p 5 :002) after the training. We emphasize that this finding does not
mean that WM training increased all dimensions of fluid intelligence,
FIG. 1.—Direct effect of training on WM capacity. The dots show the point estimates (as
fractions of an SD) of howWM training changes the performance in the threeWM tasks (in-
dicated in the subfigure title) relative to the control group. The bars indicate the 95% con-
fidence intervals. All estimates are based on least squaresmodels controlling for school fixed
effects, pretreatment outcome scores, and further controls (see app. 1.5 for details). The
econometric estimates are shown in table S3. The confidence intervals and the associated
significance statements are based on the clustering of standard errors at the classroom level.
**p < .05, ***p < .01.
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as some research indicates that only 64% of the variance in performance
in the Raven task is attributable to general fluid intelligence ( Jensen
1998). However, the Raven task measures important dimensions of fluid
intelligence that require WM capacity (Carpenter, Just, and Shell 1990)
and its deployment in novel situations (Wiley et al. 2011).
It is also important to mention that none of the treatment effects in

geometry, reading, or Raven’s fluid-IQ measure are driven by a decline in
the performance of the control group. As a result of cognitive maturation
over the course of 1 year, both the treatment and control groups increased
their performanceover time. Accordingly, the treatment effects are due to a
differentially larger increase in performance in the treatment group.
Finally, we turn to the effects of WM training in the go/no-go task and

the bp task (fig. 3; table S5). We find positive spillover effects of WM
training on children’s inhibitory control measured in the go/no-go task.
We measure inhibitory control by multiplying children’s standardized
number of commission errors by 21; that is, a reduction in commission
errors shows up as a numerical increase in this performance measure.
Figure 3 indicates a highly significant reduction in commission errors
in the treatment relative to the control group in W4 (d 5 0:33 SD,
FIG. 2.—Spillover effects on arithmetic, geometry, reading, and Raven’s IQ. The dots
show the point estimates (as fractions of an SD) of how WM training changes performance
in arithmetic, geometry, reading, andRaven’s fluid-IQmeasure relative to the control group.
Thebars indicate the 95%confidence intervals. All estimates are based on least squaresmod-
els controlling for school fixed effects, pretreatment outcome scores, and further controls
(see app. 1.5 for details). The econometric estimates are shown in table S4. The confidence
intervals and the associated significance statements are based on the clustering of standard
errors at the classroom level. **p < .05, ***p < .01.
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p < :0001).11 Interestingly, while we observe no treatment effect on com-
mission errors in W2 and W3, we observe a weakly significant treatment
effect on performance in terms of a reduction in response times in W2
(d 5 0:23 SD, p 5 :053) and W3 (d 5 0:37 SD, p 5 :094). Thus, al-
though the children in the treatment group did not make fewer mistakes
in W2 and W3, they were quicker in delivering their responses (without
increasing their mistakes) in these evaluation waves.12

Overall, these data patterns suggest that, similar to the cases of geome-
try, reading, and Raven’s fluid-IQ measure, spillover effects on inhibitory
FIG. 3.—Spillover effects in the go/no-go task and the bp task. The dots show the point
estimates (as fractions of an SD) of howWM training changes the performance in the tasks
relative to the control group. The bars indicate the 95% confidence intervals. All estimates
are based on least squares models controlling for school fixed effects, pretreatment out-
come scores, and further controls (see app. 1.5 for details). The econometric estimates
are shown in table S5. The confidence intervals and the associated significance statements
are based on the clustering of standard errors at the classroom level. ***p < .01.
11 We also analyze the standardized (i.e., z-scored) d0-measure of performance in this task—
which subtracts the standardized fraction of commission errors in the no-go trials from the
standardized fractionof correct responses in the go trials—andfinda significant performance
effect in W4 (W2: d 5 0:118 SD, p 5 :410; W3: d 5 0:071 SD, p 5 :619; W4: d 5 0:475 SD,
p < :0001). If we analyze omission errors (i.e., failing to push the button in go trials, which is
often interpreted as a measure for “attention”) separately, we also find similar positive treat-
ment effects as for inhibitory control, with the strongest and most significant improvements
in W4 (W2: d 5 0:282 SD, p 5 :109; W3: d 5 0:133 SD, p 5 0:357; W4: d 5 0:416 SD,
p 5 :001).

12 Similarly, when analyzing teacher-reported overall self-regulation as a measure of ev-
eryday self-regulatory behavior in the classroom, we also find significant positive treatment
effects (see apps. 1.4 and 1.5 and table S19).
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control emerge over time. This effect supports the theoretical conjecture
that WM “supports inhibitory control” (Diamond 2013, 143). Note also
that this spillover effect is due to a differentially larger increase in the per-
formance of the treatment group relative to the control group in terms of
fewer errors. In contrast to the results in the go/no-go task, we cannot de-
tect a training-related improvement in performance in the bp task. In fact,
the time profile of the treatment effects is completely flat and close to
zero, suggesting that WM training does not affect attentional stamina.
C. Treatment Effect on Choice of Secondary School Track
Our finding that WM training has positive spillover effects on several out-
comes relevant for the school context suggests the possibility that it might
affect children’s further school career. As mentioned above, one of the
most consequential school track choices in the German education system
is whether the children enter the advanced track (academic track, also
called Gymnasium) of secondary school. This choice is typically taken
around age 10, that is, 3 years after the children received theWM training.
Controlling for the same set of variables as for the other treatment ef-

fects, we find that children in the treatment group are roughly 16 percent-
age points more likely to choose the advanced track of secondary school,
relative to children in the control group (table 2, col. 1). If we estimate
the treatment effect with a probit model instead of a linear probability
model (table 2, col. 2), the result is very similar—the children in the treat-
ment group are again roughly 15 percentage points more likely to be en-
rolled in the advanced track of secondary school. If we take the full range
of secondary school choices (advanced track, mixed track, nonacademic
track) into account, we again find a sizeable positive treatment effect on
enrollment in the advanced track (cols. 3 and 4). Column 4 of table 2 also in-
dicates that the increase in advanced-track enrollment by roughly 14percent-
age points is due to a decrease in mixed-track enrollment by roughly 7 per-
centage points and a similar decrease in nonacademic-track enrollment.
As we measure the secondary school track enrollment 3 years after the

WM training, we naturally observe some attrition. This is due to reasons
such as families moving away from the city of our study or when the par-
ents do not answer the long-run follow-up questionnaire. Importantly,
however, we do not observe a systematic difference in attrition between
treatment and control groups. In the treatment group, we still can collect
data of 68.1% of the sample in W1, and in the control group we have data
of 69.3% of the sample in W1 (see app. 1.6 for further robustness checks
on attrition).
We also address systematic attrition by estimating inverse-probability

weighting models. To apply these models, we compared the sample char-
acteristics in W1 with the sample characteristics at the time of secondary
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school choice. This comparison shows that at the time of secondary school
choice there are (i) fewer children with amigration background, (ii)more
children with higher academic performance (i.e., geometry, arithmetic,
and reading), and (iii) more children with higher cognitive skills (i.e.,
WM capacity and Raven’s fluid-IQ measure). Therefore, we calculated
the inverse-probability weights for groups defined on the basis of three
binary variables: (i) migration background, (ii) high/low academic per-
formance in geometry, arithmetic, and reading, and (iii) high/low cogni-
tive skills as measured byWM capacity and Raven’s fluid-IQmeasure. The
result of this model (shown in col. 5) indicates that the WM training in-
creases advanced-track enrollment by roughly 17 percentage points.
To gauge the size of our effect on school track choice, consider the re-

lationship between parental education and school track choice for the
control group: for children whose mother has a university degree, 86%
chose the advanced track; for those whosemother does not have a univer-
sity degree, the number is 54%, that is, a difference of 32 percentage
points. This difference declines to 27 percentage points when children’s
TABLE 2
Treatment Effect of WM Training on Secondary School Choice

at Age 10 (N 5 393)

Secondary School
Choice

OLS Probit
OLS Categorical

Variable
Ordered
Probit

Inverse-Probability
Weighting

(1) (2) (3) (4) (5)

Academic track .157*** .148*** .221*** .136*** .170***
(.050) (.045) (.078) (.046) (.050)

Mixed track 2.067***
(.025)

Nonacademic
track 2.069***

(.023)
Note.—Column 1 reports the effect of the treatment on the probability of being en-
rolled in an academic-track secondary school, based on an ordinary least squares (OLS)
model. When we cluster the standard errors using BRL, the standard error in col. 1 be-
comes 0.070 (which corresponds to a p-value of .026). Column 2 reports the marginal treat-
ment effect of the probit estimate on the same dependent variable as in col. 1. Column 3
reports the least squares effect on a categorical dependent variable. This variable takes on
value 1 if the child is enrolled in a nonacademic-track school (Realschule Plus), value 2 if the
child is enrolled in a mixed-track secondary school (Integrierte Gesamtschule), and value 3 if
the child is enrolled in an advanced-track school (Gymnasium). Column 4 reports the mar-
ginal treatment effects of the ordered probit estimates on the same dependent variable as
in col. 3. Column 5 reports an estimation similar to that in col. 1 but accounts for attrition
by applying inverse-probability weighting. The weights are calculated for groups defined
on the basis of migration background, high/low academic performance (math and read-
ing performance), and high/low cognitive performance (WM capacity and Raven’s fluid-
IQ measure). All models include school fixed effects and further controls (see app. 1.5 for
further details, including our calculation of the inverse-probability weights). Standard er-
rors, in parentheses, are clustered at the classroom level.
*** p < .01.
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baseline measure of Raven’s fluid IQ is controlled for. Thus, the 14–17 per-
centage point increase in advanced-track enrollment is substantial when
compared with this socioeconomic gap.
D. Heterogeneous Treatment Effects?
Do disadvantaged children benefit particularly strongly from WM train-
ing? Existing work has raised this question and remains inconclusive
(Katz and Shah 2016; Roberts et al. 2016). We examined the heterogene-
ity of treatment effects with regard to initial WM capacity by including a
dummy variable for the children who are below the 25th percentile in
the distribution of WM capacity at baseline (W1) and by interacting this
dummy variable with the treatment dummy (see tables S6–S8). The re-
sults show that children with low baseline WM capacity perform substan-
tially worse in all spillover outcome measures (and all data collection
waves), with the exception of the bp task. However, the interaction be-
tween low WM capacity and the treatment dummy is almost never signif-
icant (with the exception of geometry in W2, where we observe a positive
interaction, and the bp task in W2, where the interaction is negative).
This suggests that the treatment effect is not systematically different
for children with low WM capacity. Importantly, however, the treatment
effect is robust to the inclusion of the low-WM-capacity dummy and its
interaction with the treatment dummy for all outcome variables for
which we previously found a significant treatment effect.
E. Robustness Checks
We perform a series of robustness checks, including checks for attrition,
the potential role of computer use, Hawthorne or demand-type effects,
and multiple-hypothesis testing corrections. For the multiple-hypothesis
testing, we grouped our outcomes into four families, following the above
conjectures for treatment effects: (1) WM outcomes (verbal simple span,
verbal complex span, visuospatial complex span), (2) spillover effects on
educational outcomes (arithmetic, geometry, reading), (3) spillover ef-
fects on general cognitive skills (Raven’s IQ), and (4) spillover effects
on general noncognitive skills (go/no-go task, bp task). Note that each
family includes three measurements for each outcome (at W2, W3, and
W4). Overall, these robustness checks confirm our findings, except for
the treatment effect on reading in W4, which turns insignificant if we
correct for multiple-hypothesis testing (see table S9).13 All details on ro-
bustness can be found in appendix 1.6.
13 We also provide further multiple-hypothesis testing analyses in table S10, using an
even more conservative grouping into only two families (direct effects and spillover
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IV. Mechanisms
In our view, the documented treatment effects on WM capacity and on
spillover outcomes have a plausible interpretation. For example, it is plau-
sible that WM training has an immediate effect on visuospatial WM capac-
ity (i.e., the aspect of WM that received the most emphasis during the
training), while spillover effects need more time to evolve—which is what
we observe in our data. Likewise, the finding that WM training does not
increase arithmetic but does increase geometry skills may be due to the
fact that the training emphasized visuospatial WM, which may well play
a larger role in geometry than in arithmetic. Similarly, visuospatial WM ca-
pacity is likely to be a basic prerequisite to deploy the problem-solving skill
that is required to solve Raven’s fluid-IQ task.
To provide a quantitative assessment of the extent to which WM capac-

ity might be a mediating mechanism for the observed spillover effects, we
performed a mediation analysis by using the method applied in Heck-
man, Pinto, and Savelyev (2013), and similarly in, for example, Carlana,
La Ferrara and Pinotti (2018) and Kosse et al. (2020). The formal details
of this method are described in appendix 1.5. Intuitively, themethod pro-
vides us with the share of the total treatment effect of the training on each
spillover outcome that can be explained by the training-induced changes
in WM capacity.
The results of our mediation analysis are presented in figure 4. The fig-

ure shows that for geometry, reading, and Raven’s fluid-IQ measure, a
large part of the total treatment effect—roughly between 50% and 66%—

is mediated by WM capacity. Interestingly, the mediation effect of WM ca-
pacity is much lower for our measure of inhibitory control (performance
in the go/no-go task). Perhaps this lowermediation effect ofWM capacity
is one reason why the training effect on the ability to inhibit prepotent
impulses took more time to develop.
Overall, this analysis suggests that training-induced changes in WM

capacity appear to explain substantial parts of the treatment effect on
spillover outcomes. In view of the previous literature on WM training
(e.g., Sala et al. 2019; Sala and Gobet 2020), we were, however, surprised
by themagnitude of the effects on spillover outcomes. Therefore, we point
out specificities of our study that are likely to be relevant in this context.
First, we delivered theWMtraining in a school context as part of the regular
curriculum, which ensures high external validity. Moreover, the integration
of the treatment into regular classroom teaching may have facilitated the
effects). Again, three measurements are included for each outcome in a family (at W2,
W3, and W4). While we believe that the grouping of families described in this subsection
is the most reasonable, the choice of families of outcomes is always somewhat discretionary.
With the very conservative grouping of outcomes into only two families, results remain sim-
ilar to those in table S9, but the treatment effects on Raven’s IQ are no longer significant at
conventional levels (W3: p 5 :136, W4: p 5 :114).



FIG. 4.—Relative importance of WMcapacity for treatment effects on spillover outcomes.
This figure displays the estimated decomposition of the total treatment effect on those spill-
over outcomes that are significantly improved by the WM training in W4 (12–13 months
after treatment). For each outcome, we estimate the effect of the treatment that is mediated
by WM capacity (see app. 1.5 for details). Light blue bars show the percentage of the treat-
ment effect that is mediated by training-induced increases in WM capacity.
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spillover effects on other school-related skills. The context of regular class-
room teaching is also likely to minimize placebo orHawthorne effects. Of
course, we cannot rule out the possibility that placebo effects may have
played a role, for example, because the children in the treatment group
received extra attention (e.g., because they used computers in class or be-
cause of the presence of a research assistant during the training; see
app. 1.2). Moreover, by design minor differences between treatment and
control groups inevitably remain that could potentially affect abilities
other than WM capacity (e.g., narrow task learning due to familiarity with
WM tasks).14 However, the facts that (i) we carefully developed outcome
measures that are different from the training tasks (even with respect to
input devices, i.e., touchscreens vs. external mice; see sec. II.C), that
(ii) we see treatment effects on very specific spillover outcomes that re-
quire visuospatial WM (and no effect on other important educational out-
comes), and that (iii) the pattern of effects increases over time suggest that
placebo effects or remaining minor group differences are unlikely to have
played a substantial role.15

Second, asmentioned above, our studymay be better capable of detect-
ing spillover effects because we also measure the relevant outcomes 6 and
12–13 months after the treatment, while most other studies stop collect-
ing spillover outcomes after a fewmonths and thus cannot identify effects
that might take a longer time to evolve. Third, because we treated com-
plete classes (class-wise randomization), in addition to effects on individual-
level skills, the treatment possibly led to various sorts of positive peer-group
and classroom effects that, in turn, could have affected teachers’ behavior
and attitudes. In our setting, such beneficial peer-group effects seem plau-
sible, given that the children usually stay together in the same class and
with the same teacher for 4 years in primary school. Evidently, these peer-
group effects constitute an important factor for the persistence of treat-
ment effects of interventions at young ages (see Bailey et al. 2017).
V. Summary
On the basis of a randomized controlled trial with 572 first graders in pri-
mary schools, we found that a 5-week, one-lesson-per-school-day, adaptive
14 For example, in a computer-based WM training, treated children will automatically
become more familiar with WM tasks. Thus, they may perform better in subsequent WM
tasks merely because they are more familiar with the type of tasks and not because they
have higher WM capacity. Similarly, they have more screen time than children in the con-
trol group, which could potentially improve skills such as perceptual speed.

15 Note also that our intervention was part of a larger educational study, involving other
treatments (see Schunk et al. 2022). However, we control for the other treatments in all our
estimations, and we conduct various robustness checks, including correction for multiple-
hypothesis testing and the small number of clusters, to minimize the likelihood of false
positives or spurious findings (for details, see apps. 1.5 and 1.6).
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WM training during class not only improves children’s WM capacity but
also has spillover effects on their geometry skills, Raven’s fluid-IQ mea-
sure, and ability to inhibit prepotent impulses. We observe an increasing
pattern of treatment effects on these spillover outcomes over the three
evaluation waves, with effect sizes ranging between 0.24 and 0.38 SD. In
addition, the general pattern of our results and our mediation analysis
suggest that training-induced improvements inWMcapacitymediate con-
siderable parts of the spillover effects. When assessing the reported effect
sizes for the spillover effects, it is interesting to compare them with effect
sizes observed in other (more intensive) intervention studies—such as the
Perry Preschool Project, the Jamaican supplementation and stimulation
study, and others—producing improvements in EFs even in the very long
run of 0.25 SD to well above 0.5 SD (Riggs et al. 2006; Raver et al. 2011;
Heckman, Pinto, and Savelyev 2013; Gertler et al. 2014; Walker et al.
2022; García, Heckman, and Ronda 2023). Finally, we document that
the WM training can have an impact on one of the most consequential
school career decisions in the German school system: whether to enroll
the child in the advanced track of secondary school (Gymnasium). This
fact has potentially far-reaching implications for the treated children’s
probability of entering university and their labor market outcomes, be-
cause children who complete the Gymnasium are much more likely to
go to university and earn significantly higher salaries. The increasing pat-
tern of effects on spillover outcomes combinedwith the effect on long-run
educational choices is consistent with the idea of self-productivity in the
process of skill formation (Cunha and Heckman 2007). Taken together,
our findings thus provide novel evidence consistent with the dynamic pro-
cess of skill formation, and they suggest that our treatment generated sub-
stantial benefits for the children.
Data Availability
The data for this publication have been collected in a project that has
compiled a large set (and combination) of children’s abilities, prefer-
ences, and family (sociodemographic) characteristics (see apps. 1.3 and
1.4) and thus represents highly sensitive data. This dataset cannot be
made available for data protection reasons. In addition, parental consent
for data usage covers only strictly scientific purposes. The restriction to
scientific purposes was also necessary to comply with data protection re-
quirements, and use of the data for strictly scientific purposes cannot
be guaranteed if the dataset is made (publicly) available. Not all the data
collected in this project are analyzed for this publication; see appendix 1.4
for details. Researchers interested in replicating our findings can get ac-
cess to the dataset after filling out a research agreement with our universi-
ties. The code replicating the tables and figures in this article can be found
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in Berger et al. (2024) in the Harvard Dataverse, https://doi.org/10
.7910/DVN/PQNQU0. We confirm that in the paper and the appendix,
we have reported all measures, conditions, and data exclusions and how
we determined our sample sizes.
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