B Supplementary Material for “Climate Change, Directed
Innovation, and Energy Transition: The Long-run Conse-

quences of the Shale Gas Boom”

B.1 Additional Proofs for the Baseline Model

B.1.1 Proofs of Propositions A.1 and A.2

To prove these results, we start by defining the function I (s) = (e —1) (1 —s)* ¥ +s¥ —s%‘*

and characterize its zeros in the following two Lemmas.
1
Lemma B.1 Assume that £ > 2=V, Over the interval ((nn—B)w , 1), the function I (s) has:

- MB 1.
. nozer01f7<;,

. one gero with % < %B < 211_11, and this zero satisfies I’ (s*) < 0;

- 1B 1 d > 92 *>y 7B 11 1%1/)
.nozeroy‘7>21,wan ) e> oru)7>; +(e—=1)v) ;

1Y . .
. two zeros if 21%1# < %B < (1 + (e — 1)“’) and & < 2, the first zero satisfies I’ (ST) > 0 and the

1
&
second gzero satisfies I’ (sz) <O0.

Proof. Differentiating I (s), we obtain
Is)=(s"V—(e—1DA—-5)"")1—1), (B-1)

I"(s)=—y (s +(e—-1)A—-s)V")A—-1y) <O,

Therefore the function I is concave in s and always decreasing in s for s large enough (since
I'(1) = —o00).

Further, at the boundaries of the interval, one gets:

a1
and we get that [ ((’;—B)w) > 0 if and only if :’7—3 < 5t7. In addition I (1) = 1 —g%“, and

. . . 1 . _
we obtain that I (1) > 0 if and only if %B < 1. Since ¢ > 2%, we get that I(1) > 0 =

B-1



1
I ((%B)W) > 0. As I is concave, it has no zeros for ¢ < 1/2'~¥. This establishes part 1 of
Lemma B.1.

1

Assume now that % < %B < 21%1#’ then I ((T’WB)W) > 0 but I (1) <0, since I is concave,
1

then I has only 1 zero over the interval ((%)m , 1) and this zero features I’ (s*) < 0. This

establishes part 2 of Lemma B.1.

e
Consider now the case where %B > zll,w, sothat I(1) <0 and I ((%B)l—w) < 0. Then
either I has 2 zeros (one for I increasing and one for I decreasing) or I has no zero. First,

B
note that I is decreasing on (( n )1 ! ) if I’ (("ﬁ)l_w) < 0. In that case, we have

((3)7) < o= () en((2)") <o
— :’73 (1+(€—1)¢)w1.

1 ’4) n 1 n 1 1/1_1
If e >2, thenﬂ2(1+(8—1)¢) sothatWB>21—,¢:>WB>(1+(e—1)#') . Then,

1
I has no zero over the interval ((%B) o , 1). This establishes part 3i) of Lemma B.1.

Y—1
We now consider the case where ¢ < 2, and %B < (1 +(e—1)%) , then I has a
maximum, which is reached at s = 5, where § solves I’ (s) = 0. Using (B-1), we get
-1
= [1 +(8—1)%:| and

1Y MB

I@=(1+(E-17) —e2.

n

Therefore,

TIB

1()>0e 2 , (1+(s—1)w)

We note that when ¢ < 2, % (1 +(e— 1)%)1# < (1 +(e— 1)$)¢ , so that %B < % (1 +(e— 1)%)11)
immediately implies T’WB < (1 +(e— 1)%)1#_1. Therefore, if I (s) > 0, then I will have two
zeros, the first one when I is increasing and the second one when I is decreasing. This
establishes part 4) of Lemma B.1. Finally, if instead, I (s) < 0, then I (s) will have no zeros,

establishing part 3ii) of Lemma B.1. Note that 21 iy <2 (1 +(e— 1)1#) for all £ with strict

inequality unless ¢ = 2, therefore the interval (21 =i (1 +(e— 1)1/’) ) is non-empty for
E£2. m

We establish a similar Lemma for the case ¢ < 217,



B
Lemma B.2 Assume that € < 2'™%. Over the interval ((%)W , 1), the function I (s) has:

. Mg 1 .
. MO zeros lf7<m,

. one gero with 21171# < %B < % and this zero satisfies I’ (s*) > 0;

1\Y . .
. twogzeros if+ <18 < 1(14(e—1)¥ ), the first zero satisfies I’ (s*) > 0 and the second zero
€ n £ 1
satisfies I’ (sz) <0.

. 1\¥
. No zero i 717—B>%(1+(8—1)w) ;

1
Proof. The proof is similar to the previous case. With ¢ < 27, I (("73)“/) >0=>

I(1) > 0. Since I is concave, it has no zeros for %B < 1wa which establishes part 1.

21

1
Assume now that 5 < Z}—B <1 thenI ((%B)Hp) < 0butI(1)> 0, since I is concave,

£

_1
then I has only 1 zero over the interval ((:’7—3) v 1) and this zero features I’ (s*) > 0. This
establishes part 2.

Consider now the case where %B > % As in the previous proof, (1) < 0 and

_1
I ((%B)W) < 0, so I has either 2 zeros (one for I increasing and one for I decreas-

ing) or I no zero. I is decreasing on ((:’7—3)ﬁ , 1) if I’((%B)ﬁ) < 0, which is equiv-
alent to %B > (1 +(e—1)%)w_1. Otherwise, I has a maximum s = [1 +(€—1)$:|_1
and we still get that I (5) > 0 < %B < %(1 + (5—1)$)¢. With ¢ < 2%, then we al-
ways have that %(1 +(e— 1)%)1/) < (1 +(e— l)i)w_l. We can then consider two cases:
1< < %(1 + (e — l)i)w and 2 > %(1 + (e — l)i)w. In the former case, I has 2 zeros, in
the latter I has no zero (since either I decreases or its maximum is negative). This establishes
parts 3) and 4). =

We now establish Propositions A.1 and A.2. To do that, we derive the respective
conditions under which each type of asymptotic equilibrium exists. Using (21), the allocation

of innovation follows:

Y g pe—1
S KZA
(ﬁ) = & & : (B-2)

£ —&
1 1 1 1 _.¢ 1 1
—Ks(—+—) + K (—+—)
A ¢ \ A B A d At B,

Corner Asymptotic Steady State with Clean Innovation. In an asymptotic steady state
where Sge — 1, the (B-2) grows without bonds, which in turn confirms the corner allocation
for innovation. Therefore such a steady state is always possible and occurs whenever A, is

sufficiently large relative to the fossil-fuel technologies.
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Corner Asymptotic Steady State with Fossil-Fuel Innovation. Alternatively, consider a

steady state where s, — 1. Then (B-2) implies that:

-1
Sfe AKEBE + 4-K5BS )

The LHS tends toward o and the RHS tends toward o only if Bf, /A, grows without bound

(knowing that B;, /A, behaves similarly). This occurs if eng > 7. Therefore, we get that
for nz/m < 1/e, an asymptotic steady state where all innovation occurs in the fossil-fuel
technologies cannot exist. In contrast, such an asymptotic steady state occurs for nz/n > 1/¢

provided that A is sufficiently small.

Interior Asymptotic Steady State. We now analyze whether an interior asymptotic steady
state is possible. There are three possible cases: A., grows faster, at the same rate or less fast

than B,,.

Assume first that A., grows less fast than B,, (that is, n (sjj t) < mg where St i the

limit of s 7). Then (B-2) implies that

S* P KsAa—l
g g gt
— | ~ . (B-3)
(sjﬁ) At KE +A§:1K§

The RHS can only converge asymptotically to a constant if A,, and A, grow at the same
rate in the long-run. This is possible only if s; = SZ = 1/2, which combined with condition
1 (sjﬁ t)l_w < 73, requires that nz/n > 2¥~!. In addition, if Ag(¢—1) is shocked in such a
way that the RHS in (B-3) increases, then St should increase as well: so that the interior
asymptotic state can only exist in a knife-edge case and it is unstable.

The case where A., and B,, grow at the same rate follows the same logic since in that case

Y
(B-3) still holds up to a constant. We must then have s; =1/2and n (s}k t) = ny, which

can only occur for nz = n2¥7!. Again this interior steady state will always be unstable.

P
Consider now the case where A, grows faster than B, (thatis 1 (s}t t) > 13). Then

S* P KsAe—l
o) ggt

1 1 ’
Ly —Kk¢B¢, + —K¢B¢
ft ACt AS[

Pt dPst

(B-2) implies that

*

ft
satisfy I (s}‘ t) = eng/7n. An interior steady state will therefore exist if I (sjjt) =0 has a

which is possible only if the RHS tends toward a constant. This implies that s} must also
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solution in the interval ((%’*)ﬁ , 1). That steady state will be unstable if I’ (s}’it) < 0 since
then a shock leading to a temporarily higher s;, is associated with permanently higher s,.
The steady state will be stable if I’ (s}‘ t) > 0.

Lemma B.1 immediately characterizes the conditions under which this case occurs for
g > 217¥ and we get that:

1) There is no interior asymptotic steady state if :’7—3 < % ;

2) There is one unstable interior asymptotic steady state if % < %B and i) € > 2 or ii)
e <2 and %B ¢ (zll_w, 1 (1 +(e— 1)$));

3) There are two unstable interior asymptotic steady states and one stable interior

1
asymptotic steady state if + < Beg<2and e (zll_w, 1 (1 +(e— 1)E)).
Similarly, Lemma B.2 characterizes the conditions under which I (S;f t) = 0 has a solution

_1
in ((%B)Hp , 1) for ¢ < 2% and we get that:

1) There is no interior asymptotic steady state if :’7—3 < le,w;

2) There is one unstable interior asymptotic steady state if 211_1,, < %B < % and a stable

interior asymptotic steady state;
. . . . 1\Y
3) There are two unstable interior asymptotic steady states if % < %B < % (1 +(e— 1)1#)
and a stable asymptotic steady state;

. . . . . 1\Y
4) There is one unstable interior asymptotic steady state if "n—B > % (1 +(e— 1)¢) .

Conclusion. Bringing together the three cases establishes Propositions A.1 and A.2.

B.1.2 Complement to Proposition 5

In this Appendix, we complement Proposition 5 by showing that under the same conditions
=)
1+p

butwhenA,, > 1rg0, the natural gas boom decreases welfare provided that is sufficiently
large, that ¢, is small and that ¢, is large as mentioned in the text.

Proof. In that case, the economy is on a green path whether the boom occurred or not.
From Proposition 4, however, we get that emissions are lower without the boom for t large
enough. Therefore, if the stock of carbon depends mostly on current emissions (which is
the case when ¢, is sufficiently small and ¢ is sufficiently large enough), then S, is lower
without the boom for t large enough (though in both cases, S, tends toward a constant). In

addition, since innovation is reallocated away from clean technologies, A,, is lower with the

boom than without. Therefore, for t sufficiently large, we obtain that Cy, is also lower with



the boom than without. As a result, for t large enough output is lower with the boom than
without.
For T large but finite, Y, grows approximately at the rate y” — 1. Using (A-4), we can then

write the change in welfare following (a small) boom as:

dUu
TZ—E 1 d (Y ) 1-9 i Yl—ﬁ ( n(l—ﬁ))(T—T)( v’lgglC;T_ldln Cp. _vds )
= 1+p) S a+p) \1+p (1— v ALt 4 AR L CA A

As argued above, for T large dS. > 0. Furthermore, d InC, &~ dInA,. = Zu on(1— 1,[))3 11’ds

where all ds,,, <0, so that dInCp. is negative and bounded away from o. Therefore, the

Y

second sum becomes arbitrarily large if s sufficiently close to 1. The latter condition

is met when p is sufficiently small and ¢ < 1 for instance. m

B.1.3 Proof of Proposition 6

Anticipating that the social planner allocates labor symmetrically within intermediates
and that she maintains the equality E;, = Q;,, we can write the social planner problem as

maximizing

[ee] Yl—ﬁ
Z(l o)y 1—% (B-4)

t=0
subject to the final good equation (2) with Lagrange parameter A,, the energy equation (3)
with Lagrange parameter Ag,,

Ay Ey =C; Ly,

where for this equation and the following ones the term before the : is the associated
Lagrange parameter,
Ape t Yp =Ap,Lp,
ApeiLe+ L+ Lo+ Lp =1L
S 1y 1-y
Uee 2 Age = Y10 Acqmnys Mg 2 Ay =170 Agmyy and g, 1Ay =y ™s0 Ay,

XeiSpe+Sg = 1,

gc ct+€s st =P
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t+T

ws 1S, =5+ (o, +(1—9,) 9o (1—9,)) P
s=0

The first order condition with respect to Y, imposes that A, be equal to the marginal

value of consumption at time t,
y-?

t

T 1+p)

t

The first order condition with respect to Y,, ensures that aa;q = % = pp., Where the ratio
Pt t

Ap. /A, is the shadow price of the production input. Similarly, the first order condition with

respect to E, implies ;2‘ = % = pg,. The first order condition with respect to E,, implies
t t

A

JE JE , . . .
AEtﬁ; = Ag¢, SO that ﬁg‘t = A—g: = P~ The first order condition with respect to Y, gives

JOE E
A’Etﬁ; =Ay + & wp, = ﬁ; =P+ & Tes

with p., = A, /A, being the shadow producer price of coal-based energy and 7, = wp, /A,

being the shadow price of emissions. Similarly, we have

JE

ﬁ; = Ds¢ + gsTt'

First order conditions with respect to L;, for i = c,s, g yield p;,0E;./0L;, = A, /A, = w,
which is the shadow wage and similarly, p,,0Y,,/dLp, = w,. Therefore, and unsurprisingly,
the static optimal allocation is identical to the decentralized allocation provided that there is
a carbon tax given by 7,. Note that there is no monopoly distortion to be addressed because
all sectors are equally affected and there is no roundabout production (yet the shadow wage
differs from the decentralized wage by a constant).

The first order condition with respect to S, yields
ws, = ALY, (B-5)

whereas the first order condition with respect to P, implies:

wpe = Y (01 + (1= 0) 9o (1= 9a)) e

s=0
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We can rewrite this as

T, = Y:?ZO: (¢, +( —(;03_);0;)3(1 —4) )CY:;._;?' (B-6)

If 4 = 1, we obtain the closed form solution of Golosov et al.
YtY(]- +P)(% + (1—<PL)900).

ptpq

(2014), namely T,

The first order conditions with respect to A;, for i = c, s yield

C; 1y
Wi = A (A—M) L+ )/nfsf(fﬂ),ui(tﬂ).

it

Multiply by A;, and iterate forward to get
G o Cirss
MieAie = )'itA_ltEit +AirniMigen) = Zkitﬂ = Ej ys-
it

i s=0 it+s

h

The first order condition with respect to A,, gives

1—y
nu“gt = A'gtLgt + Ymg(tﬂ)nu’g(t+1):

which similarly leads to

[es)
‘u‘gtAgt = z :A’gt+sEgt+s'
s=0

The first order conditions with respect to s;, and s,, imply

(1—)In (Y)S;:p (UeAce + UsAse) = . = (1—1)In (Y)Sg_;pUgtAgr

Therefore the innovation allocation obeys

oo 1 Cc(t+s) Ccs(t+s)
(Sf_t)w _ UerAcr + UsAgy _ Zszo T+ c4s (Ac(t+s)pc(t+s)Ec(t+s) + Agirs) ps(t+s)Es(t+s))
Sgt

[S) 1 5
‘ugtAgt Zs:O 1+rt,t+spg(t+S)Eg(t+S)

where r, ., = A,/A., — 1 is the shadow interest rate between t and t +s. At the optimum,
the allocation of innovation depends on the ratio of the social values of innovation in each
sector. These social values are equal to the discounted sum of the marginal benefit of

innovation in all future periods. This contrasts with the decentralized economy where the
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allocation of innovation is given by:

2

Cct Cst
(Sft)w _ A_CrpctEct + A_StpstEst

Sgt pgtEgt

including in the presence of the carbon tax (since p., and p,, are pre-tax producer prices of
energy). The optimal scientist allocation can be decentralized through research subsidies.
In the quantitative analysis, we add an exogenous path of emissions from the rest of the

world Pf°Y

and direct disutility costs from carbon concentration on utility (to capture the

effect of climate change on the rest of the world), see (25). The former does not affect our

analysis, whereas the latter simply turns (B-5) into wg, = A, 1131%2)Yf — (LS;)){ ,

_ v N (prt(A—v)ee(1—¢4)") —8 :
T =Y Y R T (¢Y 7 —/(S,,,)) instead of (B-6).

so that we get

B.1.4 Proof of Proposition 7

We prove Proposition 7 and also establish that the shale gas boom decreases welfare provided

y1(1—=?)
that

is sufficiently large, that ¢, is sufficiently small and that ¢, is sufficiently large.

Proof of Part 1). With ¢ > 2, Proposition A.1 applies and establishes that for n; < n/e, the
economy converges toward a green path, so thats,, — 1 and ¢, must be finite. We then
show that from ¢, onward, green innovation increases over time. Using the notation f,

introduced in Appendix A.4, we get:

1-¢ 1— —€ - -y —¢
—2ns —2ns _ —2ns —2ns _
y It el r ft L + 1 ft el x st L
Age-1) ¢\ Ae-n) B Age-1) S\ Ase-) Byt Sgt ¥
1 o .
-1 2ns,, ' (e—1)
KE€ & gt
e

fr (Sgt) =

Assume that s, > 1/2 and that ns}:w > 1 then

fem (Sgt)
1=y A=y 1-y —€ 1=y 1y 1—p —€
Y LN G Y O L A L Y
Ace-1) ¢ | Ace-1) Be: Agemy) s\ Ase-n) Byt S
(5_1)n(51—¢_51t—¢) gt
Y ft g — =
KeCEL ,},ns;tw(e 1) Spe
g g(t—1

therefore s (;11) > S,
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Assume now that s, > 1/2 but that ns}:w < 1nj, then:

N B A R T A S AR
& &
K — K 7
Age-1) € Ac(e-1) Be Age-1) S Ag(e-1) Bse s O\
fea () = r™ i
t+1 \Pgt - 1
-1 2ns,, ' (e—1) S
KkeCe gt t
s g1 d
1— 1— —€ 1— 1— —€
—ns —ns —ns —ns
el ) oy e St L1
Yo 135 c(e=1) €\ Ace-1)  Bee Age-1) S\ Ase-ny B Sgt
< €T)B—n5f[ —NE—L)S,,
4 ere—1 nslﬂp(s—l) S
kéC y Pt ft

We wish to establish that en; — ns}?w —n(e— l)sgw < 0. To do so, we define h(s) =

eng—ns'™¥ —n(e—1)(1 —$)"Y. Twice differentiating h, one gets h” (s) > 0, so that h is

convex. Furthermore h(0) = enz —n (e —1). Since € > 2, e;—l > %, so that %B < %

< &1

— e 2

which ensures that h (0) < 0. In addition, h (%) =¢ (nB — n2¢_1) < 0 since ng/n < 1/¢ and

g > 2> 21"¥. Therefore, eny — ns}?w —n(e— 1)3;:1/) < 0 when s,, > 1/2. This ensures

that f, (sgt) <f, (sgt) so that s,(;41) > s, This establishes Part 1).

Proof of Part 2). To prove Part 2, it suffices to show that an increase in B,, leads to an

increase in s, as long as t < tg,;.,. We define

)

Sgt

-~

ft (Sgwsg(t—l)’"'75g17B50) o1y

e—1 Ser
Kgce_lsw 7]( )':Z:l g7
g 80 “ft

[ L1y —€
( R -1 S}T¢ —T]‘L_Elsfﬁr \
Kfy =1 y i 1
AL‘O ACO Bct
LI toq_ —€ >
2 0 % s
K.E,), =1 =1 1
+- + 5
AsO AsO Bst

so that the equilibrium innovation allocation is still defined by ft (sgt,sg(t_l), ...,sgl,Bso) =1

with f, increasing in sg. and in By,. We obtain for 7 € [1,t —1)

[ k(1Y At
—-= (A_ + B_) 1—¢ 1 < 1
ct ct cO m‘i‘m
— 1
K& 1 1 € Asr
= +1= —+—) 1—e"5
a lnft . Ast Ast BsO E‘FE
- A —€ & —€
dInsgz K_C(L+L) +"_s(i+i)
ct Act BcO Ast Ast BsO

B-10
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Yet, if t < tyi¢cp, then sz > 5.z, so that

ke (1 1\ K (a 1!
d1In slare) +rulEn _
Jo o oogyef i TR TEMTRI | v 0 y)iny.
0 1Ins,: E(L+L)€+K_§’(L+L coEE
ct AC[ BCt AS[ AS[ Bﬁ[
dlnf,

Therefore L < 0ife > 2.

Jlnsg
Therefore, the natural gas boom reduces f; leading to a lower value for s,;. It then

reduces f, both directly and because of its negative effect on s,,, leading to a lower value for

gl

S40- By iteration, the natural gas boom will reduce all s, at least until the switch toward

green innovation occurs.

Three Useful Lemmas. We establish three lemmas which are useful to prove part 3.

Lemma B.3 Consider a small increase in B;. Denote by t, the smallest t such that dInA;, <0

and assume that t, < 00. Then dInA,, > dInA;, .

Proof. Noting that

t t
InA,, =InA,+n(lny) Zs}?p and InA,;, =InA,,+n(Iny) Zs};w,
7=1 7=1

we obtain

t
dInA, =dInA, =n(1—y)(ny) > s, ds.. (B-7)

7=1
By definition of t,, dInA,,,_;)> 0 and dInA,, <0, so that we must have ds;,, < 0. Since

dsge > 0 for t < tyicp, it must be that t, > t;,;.,- We can similarly write

t
dInA, =—n(1—)(ny) > s, Vdsy.. (B-8)
=1

Using (B-7) and (B-8), we get
ta
dInA;, —dInA,, =n(1—1)(Iny) (Z (s;p —sg_;/’) dsff) .
T=1

We know that ds;, > O for t < t,,;,., and that ds;,, <0, therefore ds;, must change sign as t
increases at least once. We index the times where ds;, switches signs by t,, and t,,.,, such

that ds;, becomes negative at t,,,; and positive at t,, and p is a weakly positive integer in
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the integer set {0, ..., P

dlnA;, —dInA,,,
towitch— 1
( 2 (57 =52 ) sy
= n(1—¢)(1nY) pP—1 [ tap+1—1 = tapra—1
\ +Z( > (s;;p gf)dsf7+ > ( s;")dsﬁ)
p=0\_ 7=ty T=tops1
tswitch_z
— _
( Tgl (SfT _Sg’t' )deT
= n(1—vy)(ny) p—1 [(tops1—1 K topra—l ¥
GBS (- S (-5
p=0\ 7=ty 5 T=lop+1 Sgz

s

— 1} with P > 1. We denote by t, = t,,in and t,p = t, + 1. We get:

(B-9)

Using that sf_ —s ;/’ <0 for T < tg,;sh, that sf * is decreasing for T > t, .., (as established

8T

in the Proof of Part 1), that ds;, > 0 only on intervals [tzp, topt1 — 1], we get

dInA,, —dInAg,, <1 (1— w)(lny)Z(l—

ftopm

g t2p+1

top+a—1

Z Sfo dsz

T= t2p

)

ta
By definition t, is the smallest t such that Zs;j’dsff < 0, therefore for any ty < t,, we
=1

have Zs ds;, > 0 and Z

T= tX+1
P—1 ft topta—1
2p+1
L PIERLUS
p=P-2 gf2p+1 T=tp
ft top_o—1
1— 2= Z s;;pdsz +{1—
gfzp 3 /) T=lopg
A
1— ftzp : Z s;;pdsff.
gtzp 3/ T=lop—g

Iterating, we get

dInA,, —dInA,, <n(1—1)(Iny) (

Therefore dInA,, > dInA;, . =
A A

We establish a symmetric lemma:

B-12
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1_&

8f1

ffzp 1

8tap

:)

):

dsz < 0. Therefore, we get that

Z Sfo dsz

T=lap—2

Z f;pdsff <

T=Lswitch



Lemma B.4 Consider a small increase in B;. Denote by t, the smallest t such that dInA,, >0

and assume that t, < 0o. Then dInA,,, > dInA,

Proof. The proof starts as for the previous lemma: d InA,, > 0 requires that ds;,, <0,

which implies t, > ., and that ds;, switches sign an odd number of times. We use (B-9)

to write:

dInA;, —dInA,,,

tswitch_l
Z (sf;p—s ‘l’)dsff
= n(1—vy)(ny) tzpﬂ_l -

— ng topy2—1 5?1 v
Z Vdsp+ D, x Seddsss
= T= tzp fT

=0 T=lopt1
pP— 1/) topa—1
8lapt1 _
< n(1—y)(ny) Z( ” ) D sptdsge,

0 T=typ

ff2p+1

ta
following the same logic as before. By definition t, is the smallest t such that ng_f ds,. >0,

5%
then for any ty < t,, we have »;s.¥ds,. <0 and Z s;0dsy. > 0. As dsy, = —ds;, then
=1

T= tX+1
ta

tZHs;/’dng < 0. Using the same reasoning as before, we get d InA;, —dInA,, <0. m
T=tx

We can then derive:

Lemma B.5 For Iny small, the shale gas boom increases A,,, A,; and decreases A

Proof. We prove this result by contradiction. Assume that A,, does not decrease for
all t following the shale gas boom. Denote by ¢, the first time that d InA,, > 0, then if
Iny is small enough, it must be that dInA,, ~ dInA,, _; ~ 0. According to Lemma B.4,

dInA,,, > dInA;, , therefore either dInA;, ~ 0 or dInA;, < 0. Log differentiating f, , one

obtains:
1 _ere
ASIA S StA CStA
dinf, = —(e—1)dInAg,, )+ B " edInB;,,
ACA 7 KiCG, + —th Cst, Psta
s € CfA _ € SfA _
ActA ¢ CCtA ( ActA 1) Aty KS CStA ( Asty 1)

d lnAs(tA—l) .

L KECE, + 7 KECE

Aty sty

Assume that dInA;, ~ 0, then for Iny small dInAy,, ;) ~ 0, and we get dInf, =~

1 £E

o “A edInB,, . Following the shale gas boom dInB; > 0, in order for A, to
Ao e +Ast kECE Bsey &ta

cty € ctp s Usta
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increase, it must be that d Ins I has been negative for a number of periods before t,, which
) ) ) Cses .
requires that sg—ct < 1 for a number of periods. This ensures that ﬁ is bounded above, so
C S A

1 £E

T —K

AstA sCstA CstA
_1 ecE 1 ece B
ActAKcCctA+A5tAKsCstA St

contradicts the fact that dInA,,, > 0> dInA,, ;.
A 8t

that — ¢ is not too small. As a result, dIn f, > 0 so that dIns;, > 0 which

Similarly, assume now that A,, decreases at some point. We denote by t; the first time
at which dInA,,, <0 (tz could be equal to t,). Since dInA, > 0> dInA_,, then for
Iny small, we have dInA.,,  ~ dInA,, ~ 0. Using Lemma B.3, we get dInA,, ;) <0
or dlnA,, ~ 0. Following the same reasoning as above, we get that d Ins;, > 0, which
contradicts dInA,,,  >0>dInA,, .

Therefore, it must be that A ., A,, increase for all t and A,, decreases for all t. =

ct>
Proof that Emissions Increase Asymptotically. We now show that emissions increase

asymptotically. Log-differentiating (A-3), we get:

dInP, (B-10)

CKiccgt gstcset
= ¢ eCE€ e edlnCCt+ e € - EdlnC”
Ek2CE + ExeCy, E.KeCE + E,kECE,
N (1 L Gena—war ) (Kﬁc;—ld InC,, +K*C5Nd NG, +KEATd lnAgt)

VATICH (1= Ap KECH ! +rECT + KkeAy

As sge — 1, we get:

kG K Gt
dlnP, ~ ¢ . —dInC, + ~ —dInC,, (B-11)
EKECE + EKEC SkECh + EKeC

s st s st

dInA,,.
1 A—1 gt
VAICET + (1— ) 1A§‘,t1)

We can rewrite this expression as:

1-A)(1—v) AL
dlnP, —» —|e—1+ (M A=) A, dInA,,

(1)
AAA—1 . "e=T AA—1 PRV VES
VAL K, e (1= )" Ap;

Ce G
EckcCoa, T 8K Coz, §xC G
+¢ . —dInA, +¢ . ——dInB,,.
chicct + gsKgcst chZ:Cct + gsKgcst Bst

Since A,, decreases and A, and A;, increase, emissions increase asymptotically following the

natural gas boom.



Proof that Gross Output Decreases Asymptotically. Using (A-4), we can write output

gross of climate damages ¥, =Y,/ (1 —D(S,)) as:
~ A ~ 1
Y, =((1—») AL+ VAL ek ) L.
Log-differentiating, one gets

AFA—1 A—1
VAL Ch

A Ar—1 AA— A—1
(1—») A} + AL Cr

dInY, = dInCg,. (B-12)

In return, log-differentiating Cy, yields:

e Co e G e Co e re—1
K —Cid InA, +K; A—Cfd InA;, + ¢ B—sid InB,, + ke Cer dInA,,

cA
e—1
CEt

dInCg, = (B-13)

Plugging (B-7) and (B-8) in (B-13) and using that A,, grows exponentially but C;, and C,,

do not, we get for t large enough:

dInCg,
ce ce
tof kEL ke
Ace s At — —
~ n({1—4)(ny) Z CETs;pfsf;p —1 sg;l’dsff
=1 Kg gt
Further, use (21) to get:
dIn Cg, (B-14)
e—1 € Ccst £ Ccet
t C (KCfTr + Ks A—C[)

~ n(1—y)(ny) 21: Cil(Ke%_i_Kg%)
= gt cA.; s A

cT

— -y
L |sgs dss.

We want to establish that d In Cy, < 0, but since ds;. may not be positive for all 7, we
cannot show that directly. As above, we index the times where ds;. switches signs by t,,
and t,,,,, such that ds;. becomes negative at t,,,, and positive at t,,. The first sign switch
occurs after t,,;,, and we also define t, = t,,;,,- We assume that at t, ds;, is negative and

denote t = t,p — 1 (the reasoning extends easily to the case where ds;, > 0). We can then



decompose:

dInCg,
n(1—1vy)(ny)
tops1—1 P
Sgz St dsz
Eswitc —1 p—l Z ( Frn N 1)
() )| B
SfrS Y gzl ¥ d
T=1 frogt Sgr p=0 4 Z ( Sgr Sft _1)£
T=lop11 (sfr Sgt) S;pr

Using that ds;, <0 on [t,p_;,t,p — 1] and that zi—: is increasing after ¢, We can write:

dIn Cg,
n(1—+)(ny)

tswitch_l T/) T/)
Sor S S S
< () () v

=1 SfT ng Sf top—1 'ng
p—2 [t -1 t -1

+ Zi ((sg_fsﬁ)w _ (sg_fzpl Sf_f)w) dspe Zi ((Sg_fsf_f)w _ (ngzpl sf_r)w) dsy-
p=0 \_ 7=ty SfrSgt Sftypy Sgt s}gpﬂ: T=tp41 S Sgt Sftpy Sgt S;pr
top1—1 " ! "

+ Zi (sg_’fsf_f) . (Sgtzpl Sf_f) s_wdsf +[ 1= (Sgtzpl m) d lnAgt
L\ \spe s Sty St gr )T Sty Sat n(1—+)(ny)

where we use (B-8). Reiterating the same procedure, one gets:

dInCg,
n(1—)(Iny)

Sft 'lp tswitch_l S 'lp S . 1/1
T
< () 2 () () )
Sgt T=1 Sfr Sffl
s WP s P
2% [ typn ¥ g‘w) _(M) dInA
+P22:Sf_t Zi (Sg_T)w o Sstapm deT + ((sft2p+3 Sftapt Ntz
v Sfs sh. n(1—)(Iny)
P tap1—1 Y P Y
+(Sf_f) zi (Sg_f) _(sgfzpl) s—qus + 1_(58f2P1 ‘h) dlnAgf
sgf T=tgp_y SfT Sf top—1 g U7 Sftzp_l 'Sgt n (1 - "lj) (11’1)/)
The first term is negative because t; > tyyiqcp, SO Sgp, > Sp,, While for T < 1> Sgr < Spr

topr1—1 WP Sor )
and ds;, > 0. The terms in ), ((Sg—f) — (M) )sg_fdsﬁ are negative because over

Sft Sfe
T:th f f 2p+1

p=0 sgt T=ty, Sft2p+1

. . .. . Y s ¥
such intervals ds;. > 0 and since t > t;,;,cp Sg 1S increasing so (zi—T) - (Sj:—l‘:) <0.In
addition, we have established in Lemma B.5 that d InA,, <0 for all t's. Therefore we get

that for t large enough d In Cy, < 0. This ensures that gross output decreases asymptotically.
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B.2 Proofs for the model with endogenous innovation in extraction

Proof of Proposition A.3. Assume first that we have asymptotically positive growth in
fossil-fuel power plant technologies A, and A.,. We first establish that there must be growth
at the same rate in either B;, or B,,. Assume instead that both extraction technologies grow

more slowly than A, and A.,. Then using (A-5), we get

Y epe—1 P enpe—1
SBct Kcht SBst Ks Bst
~ < : = - and — 3 . = .
ct &— st E— ct E— st &—
Saft A_ngBct + K:‘A—StBst Saft A—“KSB + K;;EB”

cct

Assume without loss of generality that %Bft_l grows at least as fast as f%Bjt_ ! then we get
ct St

W
SAft B, ’

so that s,;, — 0. This leads to a contradiction as it implies that B, cannot grow more slowly

than A,. Hence at least one of the two extraction technologies must grow at least as fast as
A

ct*

Assume now that B,, grows faster than A_,, then (A-5) implies

Y epe—1
(sBct ) ~ Act KcAct <

e—1 Cst pe—1 —
Saft B, KﬁAct + KfA_ztcst

>

ct

oo

ct

As aresult, sp., tends to o, which is, again, a contradiction. Therefore, extraction technologies
cannot grow faster than A_, on a fossil-fuel path, and at least one extraction technology must
grow at the same rate as A,.

Without loss of generality, assume that B,, grows at the same rate as A., (while B,, grows

weakly less fast), using (A-6) we get:

Sgt Ay '

Then, if A., grows faster than A,,, s,, — 0. In contrast, if A,, grows more slowly than

A, then s;, — 0, which contradicts the assumption of positive growth in the fossil-fuel
sector. Therefore, there is path dependence in innovation and (except for a knifed-edge case)

innovation is asymptotically entirely either in the fossil-fuel or in the green sector.



Proof of Proposition A.4. Log-differentiate (A-5) for the natural gas sector (assuming that

one can ignore the dependence of the right-hand side on the allocation of innovation) to get:

C &Kace—l
A ¢t
Ydlnsy —pdlns,, = e— . —1 |dInB,,. (B-15)
f By ke ClT + K Gl ’

Log-differentiating the ratio of the two equations in (A-5) gives:

C
Ydlnsg —pdlnsg = (sB—“—l)dlnBst. (B-16)

st
Log-differentiate the ratio of (A-5) for natural gas and (A-6) to get:
Cise
Ydlnsg —vdlins,, = sB——l dInB,,. (B-17)
st
Log-differentiating the scientists market clearing condition gives:

Spsed Insp, + 847 dInsyp, + 55, dInsg, +s,,dIns, = 0. (B-18)

Take the difference between (B-15) and (B-17) to get:

1_,1/) Cst ere—1
dIn fs—tw = ( Qp) — Cet e A;t—ls SCt e—1 d lnBSt’ (B'I9)
SAft 1/) Bsf ﬁKctht +ﬁKSECSf

which establishes that a natural gas boom redirects innovation away from green technologies
relative to fossil-fuel power plant technologies.

Plugging (B-15), (B-16), and (B-17) in (B-18) implies:

Cet .6 re—1
1 C A Keber C
dInsg, = — | sap. | €= 2 —1 |+ (spee +55.) [ =X —1] | dInBy,.
— _ gt t
Ty By feke Gt + SExe e B,, s
Then (B-17) gives:
Cst .8 pe—1
1 C C A s Cst
dlns,, =—— | s t(s—“—l)+sAfte—” 2 dInB,,.
¢ Y | 7\ By B, %K‘;‘Cft_l + %KﬁCffl ’

. . . C
Therefore a natural gas boom decreases green innovation if £3* —1 > 0.
st
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B.3 Additional Proofs for the Extended Model

B.3.1 Proof of Proposition A.5

We can decompose the change in the emission rate as:

g Cct )O‘ (o ( Cst )0)
olng; , 81n(Cy./Cp.) N d ln( K. ((1+%C)cf[ + Sk (aoen
d1nB,, J1nB,, d1n(B,,) '

Sub,: substitution effect away from green Suby: substitution within fossil fuels

The substitution effect away from green electricity is naturally positive:

KE A e—1 Kg' C o—1 C
Subg =€ sil ( g't*' ) o-s_l ( St~ ) _St; (B-ZO)
Ci \1+7, o 1+7, B,

where we use the fact that

e—1

dInCy &7 ( Cyi )“‘1 Cu . 0InCy _Cri Gy
dlnB, C/T'\1+7, B,, dInB,, C:'By

(B-21)

Combining (A-20) and (A-19), we get that the tax-inclusive expenditure share of gas

electricity in fossil-fuel electricity obeys:

0. — (14 7,) psEy _ Kf ( Cst )0_1 (B-22)
sft pftEft C}Tt_l 1+ %S '
The tax-inclusive expenditure share on clean energy, using (A-21) is given by:
o — (1+ Tgt)pgtEgt _ Ky ( Agt )g_l
8t PrcE; Cgt_l s %g
Then, we can rewrite (B-20) as
CSt
Sub, = 8@gt95ftB—. (B-23)

st



Further, we have

_ Co, o—1 C., o—1
ciowox? ($5) (52) C. c.. 1€,
Suby = —o ¢ Cy 137 117 |p, &Y
(‘ch?(uﬁi)) +55’<0((1+r)) ) ¢ s Tt
PC,f gs Cst 1+ %c Cst
= Uesft— l-———— =,
Pt gc 1 + TS CCt Bst
where o
& _ gc ((1+Tc)cft) (B'ZS)

P Ce G g
CecKY ((H%f)cf[) + &Ky ((H%f)cft)

is the pollution share of coal based electricity. Therefore the substitution effect within

fossil-fuel is negative as long as &. 1 > 55 ik

using (B-22) and (B-25), we obtain equation (A-26).

To compute the scale effect, we log differentiate (A-25) and get:
dInE, =dInCy, +dInLy,. (B-26)
Log-differentiating (A-10), we get:
dlnLEt=¢%?(Ad1ncg,—d1n€gg. (B-27)

Aslong as dIn C £ &~ dInCp,, then an increase in B;, is associated with a decline in labor in
the energy sector Lg,.

From (B-26), we then obtain the change in total energy production:
Lp, Lg, =~
dll’lEt = Tld lnCEt + lenCEt, (B-28)

which is positive (as long as d In C, is not largely negative).

Using the definition of Cy, in (A-24), we get:

oc—1Dk°(1+7)7¢Co!
( )] ( ) Cy )dlnCst

dinC;, =|c6.,, —
ft ( YU ke (14 F ) CTT ke (14 F) O CIT

Using the definition of EEt in (A-25) and plugging in the previous expression, we can express
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the change in the productivity variable EEt as:

e S1 (c—1x7(1+7,)7¢co™
Cftht ((O‘ —¢) Gsff B Kg(l-ﬁ-c)“’Cg‘1+xg(1+%s)‘acs‘{‘1)

~—1 = Y 7f pe—1
ct,Cr, +KZ(1+Tg) AL

dInC;, = | €0©,, + dInC,,. (B-29)

For 7,7, and 7; small, we get

dInCplz, 7, z~o ~ dInCy = O, dInC,, (B-30)

’FL—(,"TSN

which, using (B-28), leads to the same scale effect as in the baseline:

dInE, o Leet ALy G

|? T, TR0 Y st
dInB,, L B,

(B-31)

The overall effect on emissions is then given by the sum of (A-26) and (B-31), which we

can rewrite as

d1nP, Cst (1—2A)Lp, Py
oInB, |%g,%c,%smo ~ _B_st [(Cf —€) stz +(e—1)6, + f@st - U?t] .

P, . . ..
For &,/&. small, the term 5 s small, given that o > ¢ and A < 1, then emissions decrease

following the natural gas boom.

B.3.2 Proof of Uniqueness and Maximal Growth Rate

We show that the equilibrium is unique for Iny small enough. Using (A-32) and defining

Sfe =S¢ + S5, We can write:

(A+7)° A, (1+7,)7 A,
See = _ _ 1 _ ——t5r32)
1 axe(148)cs ko (14A,)CS \ ¥ 1 (xo(14+A.)CS o (14+A,)Cg \ ¥
(1_qc)w(xl<c(+ ) t K(+ ) t) +(1_qs)w(’<(+ ) t XK(+ ) f)

(1+7)7 Ace (1+7,)7 Ay (147)7 At (1+75)7 Ayt

1
1 (x9(1+A.)Cs  xx(14A,)CI\ ¥
(1 _qs)w ( ( ) ( ) ) Sft

(1+7)° A (1+7,)° A,

1
1k (1+A)CS  xO(1+A5)CT\ ¥
(1—q.)? ( (1r) (+2,) ) Sft

(1—gq )% (lxg(1+Kc)cg Kg(1+Ks)cg)$ +(1—q )% (Kg(uxc)cg xxg(1+Ks)c;’t)$-
C S

(1+7c)7 A (1+7,)7 A (1+7c)7Ac (1+7)7A

For Iny small enough, we can ignore the dependence of the RHS on s, and s,,, so that the

previous equations define s, and s, as increasing (and nearly linear) functions of s;.. We
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then get that the numerator in the LHS (A-33) is decreasing in s;, (as for Iny small, we can
ignore the dependence of C;, and A;, on innovation). The denominator is increasing in s,
as s,, = 1 —s;, (and again ignoring the dependence of C,, on the innovation allocation).
Therefore the LHS decreases from infinity to o in s;,, and the equation defines a unique
solution.

We show that the maximal growth rate that can be achieved on a fossil-fuel path
1

Y
P
B ) — 1. The growth rate of C, is maximized if the

corresponds to the growth rate }/nf (
growth rate of C;, is maximized which occurs if the growth rates of either C;, or C,, are
maximized. Without loss of generality, assume that A,, grows faster than A;,. Then, the
growth rates of C,, and that of A,, are maximized when sclt_ vy )(sslt_ ¥ is maximized, which
occurs if s, = s,/ (1 + x%). In that case, B., and B,, grow faster than A,, and (B-32) gives

St =S5/ (1 + x%) for q. = g, so that this optimal growth rate can be achieved. We then

P
~ . ng (1+X %)
get that Cg, and C, grow asymptotically at the rate y —1.

B.3.3 Proof of Proposition A.6

Log differentiating (B-32), and assuming that Iny is sufficiently small that we can ignore the

dependence of A;, on s;,, we can write:

(1 _ 2) k7 (14A,)cg k7 (1+A,)CS Gy g InB,

g Sst (1+%c)gAct (1+%s)gAst lg

dIns. ~dlnss, — P 'Sf_t x9(1+A,)CS xo(1+4,)Cg ko (1+A.)cs  xo(1+A,)cq )’ (B-33)
(14+7.)%A.; + (147,)% Ay (1+7.)% A (147,)° A,
oy x7(1+A.)cs x7 (1+A,)CS ¢,
o SC[ (1 B ) (1+%5)0Act (1+%5)UA“ B_std lnBSt
dlns, ~dlns;, + (B-34)

(1+7:)7 A (1+75)7 A (1+7:)7 At (1+7)7A

Esf_t (xg(1+Kc)cg't +y Kg(1+Ks)cg) ( ko(1+A.)cs  xo(1+A,)Cs ) .

This directly implies that the ratio s,, /s, increases with B,,. Log-differentiating (A-33) and

using (A-32) and (B-21) (and Iny small) leads to

g Ac)Co o TYO N\ O (1270
2 K¢ (1+AC)Cct Ks (1+AS)CSI Ks (1+A5)Cst ﬁ
((x Eir A T A (70, O By 41 Bse

2( k7 (1+A.)C, + 17 (1+A)CS, )( k7 (1+A.)CS, + 17 (1+A;)CS, )

(1+7c)% Act (1+75)9 Ast (1+7c)% Act (1+75)9 Ast

KC o—1
+(e—0) g () 2dInB, —%dlns, — YdIns, +ydIns,,

c}gft—l 1+7
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Noting that d lnsgt = —zf—id lnsft and plugging in (B-33) and (B-34), we get:

dlInsg, (B-35)
k9 (1+A)CS St 23) k7 (1+A.)cCg, K9 (1+A)CS
Sgc | (e—0)xICT (17,7 As. ((f tX ) aEYA (1+7,) A C,dInB,,
N = o
Y | Cco'(1+7F )0—1 ko(14A)Cg  xo(1+A,)Cq [ xo (1+A.)CS ko (1+A,)CS B
ft $ (1+7.)° A, (147, Ay A5 7A, T X areya, o

The second term in the brackets is positive whereas the first term is weakly negative since
¢ < 0. Therefore if € ~ o, then the first term is small and the shale gas boom increases the
mass of scientists in fossil-fuel innovations and decreases green innovation. When o > ¢,
then green energy is more complementary to natural gas than coal is, this creates a force
that pushes toward more green innovation following the shale gas boom.

Combining (B-34) with (B-35), it is also immediate that for € ~ o, an increase in B,

leads to an increase in natural gas innovation. Combining (B-33) with (B-35), we get:

dlIns,,
K7 (1+A,)CS 9 k7 (1+A.)CS, K7 (1+A,)CS
Sg (€—0)KICT O a+F YA, ([_Sst” (sge +5:e) ] Trmpa + et mya C.dInB,,
IR T () (A ) | e

The effect of an increase in B,, on s, is ambiguous even for € = o: the second term in
brackets is positive if y is close to 1 but negative for y close to o. This establishes Part i).

Assume now that y = 1, then (B-35) gives:

a( G )"—1 wg (1+A,)Cg
S 1+7 z)° C
gt s +7 (1+75)°A t
dinsg|,o; ~ — |(e—0) — —+0 — —dInB,,
Y U( C.t )‘7 +K‘7( Cor )U x¢(1+A)cg | x¢(1+A)Cg | By,
c \ 1+7, s \U1+7 (1+7.)%A. (147,)° Ay

2
|

— ~ A K?(1+KS)C§ Cst

Sgt .t (c—e)xICo™ B (1+7,)(1+A)A,C., ~areya. 5. dInBg

(1+7)7 ¢y (1+7)(1+A,)A,C, ) | xe(i)cs | xe(1+R)cq”
(1+7:)7 A (1+7,)7 Ay

(1+A)Ce  (1+A)Cee ©
(I+T)A — (14T )A

) is not too negative).

s¢. increases following the shale gas boom when y =1 provided that
(47 (1H+A )AL Cer
(+T)(1+A JAct Cor

more generally as long as (o — ¢) (1 —
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B.4 Complementarity between Natural Gas and Renewables

In this Appendix, we present and solve the model sketched in Section 5.3. To capture the
notion of greater complementarity between natural gas and renewables, we now assume
that energy is produced according to:
el e1 =1 1\ 51
E, = (KCEC; + KBy + 1, E e +14,E, ¢ ) . (B-36)

E,, is a hybrid energy which uses gas (sb) and green (gb) as inputs according to the

Cobb-Douglas technology E,, = E; “E% . E,,, and E

sbe Egpe- represent natural gas and green

gat
technologies which are used “alone” (e.g., nuclear power).

In the following, we solve for the competitive equilibrium and derive the effect of the
natural gas boom on emissions. Then, we solve for the dynamic equilibrium and derive the
effect of the boom on innovation. The effect is theoretically ambiguous, but we quantify the

model and show that for reasonable parameter values, the shale gas boom still decreases

green innovation.

B.4.1 Competitive Equilibrium

To solve for the competitive equilibrium, we follow the same strategy as for the baseline
model. The Cobb-Douglas structure within the bridge technology implies that the effective

productivity of the bridge technology is given by

l—a a
clece,

st

=— B-
RS (B-37)

Cbt

so that the price of the bridge technology is given by p;, = E—Z Total energy production is
still given by E, = Cy,Lg, and the price of energy is p;, = yw/Cg, with Cy, now given by
1
Cre = (rEC s HreCE s C ) T (B-38)

s st b bt

Similarly to (13), we get




Using that the bridge technology is produced in a Cobb-Douglas way, we have p . E ,, =

(1—a)ppEp, and PgcEghe = apy Ep, SO that

aC 1—a)C
Ebt and Esb,t = gEbt.

bt Cbt

gt

Egb,t =

The aggregate clean and natural gas energy productions are then respectively equal to:
C..\° aC C.. \¢
gt gt b
Bo=(w(2) + 22 (22) )=
Et bt Et

C.\ (A—a)C Coe \°
and E, , = (K‘g (—“) + U= a)C K (i) )Et.
' ) CEt Cbt CEt

Total emissions are given by P, = £, E,, where the emission rate is now:

C..\° C.,.\° 1—a)C Cp. \*
fromeat (S0 ) e () + B2 (),
CEL’ CEt Cbt CEt

Labor allocation is still given by (15).

B.4.2 Emission Effects of a Natural Gas Boom

As before we derive the effect of a natural gas boom on emissions (at a constant level of

extraction technologies). We get that:

dlnP 0In&;dInC; JInE 3InC;
dlnB, dInC,dInB, 2dInC,dInB,

dIné& . . . . .
T cf represents the substitution effect and is given by:

oln&, P.oInCy Py (1 dln CE) \ P aIn(C.C:™)  alncy
— = —e———+eg—|(1— — —¢€
2 InC; P dInC, P d1InC; P d1InC; 2 InC;
P, P, 2InC,
= e—+((1+(1— —-1)—— :
£ (1+(1—-a)(e ))P 3mc,
where
Jln CE — Kfcse_l + (1 _ a) K;’;C;_l — pstEsat + (1 - a)pthbt — pstEst —
d1InC; CE_I Cé_l PrcE, PrcE, PrcE, v
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where as before ©, denotes the revenue share of natural gas in the energy sector. We then

get that the substitution effect is determined by:

ElngE ( }sa lsb @)
alnc, \"Pp (1+d-a)e=1)7—¢6, ).

which, for given revenue share and pollution share of natural gas, is lower than in the no

. . dInC, . . .
bridge technology case. Since 37 ¢ =6, the scale effect is still determined by:

OInE, JInCgLg,
dlnc, dInC,

=0,(A+(1—-2)Q;).

Therefore, one gets:

B

(1+(1—a)(e—1))
8 lnP CS Psa + € PS
g = (e( > b—@s)+@s(l+(1—A)QE)),

S S

which is lower than in the baseline case for given observables (©, € and P;/P). We get:

Proposition B.1 When there is some degree of complementarity between natural gas and the

green technology, a natural gas boom leads to a larger reduction in emissions.

Intuitively, an improvement in the natural gas technology improves the bridge technology
which is less polluting than natural gas alone, this tends to make the substitution effect more

negative than without the bridge technology.

B.4.3 Innovation Effects of a Natural Gas Boom

We keep the same structure for innovation as in the baseline model, so that again the direction
of innovation depends on relative profits from innovating in the various technologies. We

now have that expected profits from clean innovations obey:

—y 1
Mge=msg | 1— ; (pgtEgat +pnggbf) ’

and expected profits from fossil-fuel innovations obey:

1

_ C C
Hft = ﬂsf;p (1 - ?) (A_CpctEct + A_St (pstEsat +pstEsbt)) .
c st
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The revenue share of green technologies alone is given by:

e re—1
PgtEqgar _ Kgcgt

PecE, CEt_l

and the revenue share of green technologies within the bridge technology is given by:

1-apa e—1
-1 £ st gt
PgcEgne _app By OLKZCZt _ Ky ((1_‘1)1_a“a

PecEs PecEy Cgt_l Cgt_l

With similar expressions for the revenue shares associated with natural gas, and using that

Il,, = II;, in equilibrium, one gets:

—apra -1
v Sxeet S (e 4 (1—aywe ()
sft A.Tc et Agt s st b (1—a)17"‘a<1
S - .

‘ 1 Clt—acat e—1
g eCET e _Zst_—st
kCor +aKy ( )

(1—a) " %qa

To look at the effect of the natural gas boom on the innovation allocation at t =1, we
log differentiate the right-hand side of this expression with respect to B;. If that derivative is
positive (and Iny is sufficiently small that the innovation allocation is unique), then a natural
gas boom leads to an increase in fossil-fuel innovations and a decline in green innovations.

We get:

l1-acra

B e—1
@ _ C C,
A%[Kgcsst 1g+(1—a)K2(—(1j;)1_f;a) ((s—l)(l—a)+l):|

Sfe v c 1, G - clecg, \7
dIn (Sgt) Senecs 5t | kecy 1+(1—a)xz(—(l_sa)l,§aa) d1ncC,,
—_— 1 .
InB Giocg Y InB
0 st (e—1)(1—a)ax} ujxt)T‘ia d st

1-aca e=1
C C
e re—1 € st gt
i KgCg[ +aKb((1,a)1*aaa ]

This expression is not necessarily positive, so that the natural gas boom could lead to
an increase in green innovation. Intuitively, the natural gas boom leads to an increase in
the hybrid share, which can in return boost innovation. This effect may dominate when the
coal technology is very advanced relative to the natural gas and hybrid technologies (C., is
large so that the first term is arbitrarily small): in that case, since most of the revenues of
the fossil-fuel power plant sector come from coal, the natural gas boom has a small effect on

the incentive to introduce fossil-fuel innovations.
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Therefore, one gets

dln ;e 1 %jf[e%fﬂ(s—ﬂ(l—a)ﬂ)%]@s (e—1)(1—a)E, | dInc,
dInBs,, o, + Sup, E, d1nB,,’

where the approximation comes from the fact that we ignore the dependence of the A’s on the
current innovation allocation. In contrast, without the hybrid technology, the corresponding

expression is
Cat
dln Sy, 1 a, Ot dInC,

_lK =O~_C C )
dInBs,, ° Y 26 + 30, JdInB,,

s Ogt
which is larger for given observables (the revenue shares). However, rearranging terms, we

get that the natural gas boom still increases fossil-fuel innovation provided that:

KEKE Cs—l Ce—l

S st _
e T+ (e - DA @)+ DA a)kiCy (B-39)
b~'bt
+le—(e—1D(1—a)]ax’CS +a(l—a)xiCy !
A, C
> (=D —a)az=FrC

st C

We then obtain:

Proposition B.2 When there is a hybrid technology, the increase in fossil-fuel innovation

following the natural gas boom is smaller; though it is still positive when (B-39) is satisfied.

Intuitively, a drop in the price of natural gas may incentivize clean innovation through
its effect on the hybrid technology. This counteracting force may dominate if the natural
gas and the hybrid shares are small compared to the coal share. In that case, the natural
gas boom has little impact on the returns to fossil-fuel innovation (which are dominated
by coal), but some positive effect on the returns to clean innovation (through the hybrid
technology). For this effect to dominate, however, the coal share needs to be very large (as
stipulated in (B-39)) and we now show that for reasonable parameter values, this does not

occur so that the natural gas boom still reduces green innovation.

B.4.4 Quantification

This section presents a quantification of the model with complementarity in order to

investigate whether condition (B-39) holds in the data. To map (B-36) to the data, we

B-28



assume that all solar and wind generation is in the hybrid nest E,;,, whereas all other green
base period generation (e.g., nuclear, biomass) is in the stand-alone green category E,,.
To begin, we solve for the Cobb-Douglas exponent a based on the equilibrium price of the

renewable-gas bundle:
l1-a,a
Pst Py

= — B-
(1—a)ax (B-40)

Pbt

The University of Chicago Energy Policy Institute (EPIC) has produced recent estimates of
the levelized costs of renewables backed up by natural gas for both (onshore) wind (p;,, =
$54/MWh) and solar photovoltaic energy (p,, = $61/MWh) (Greenstone and Nath 20271).
The corresponding EIA’s Annual Energy Report posits levelized costs without backup for
onshore wind (Pg: =$34/MWh), and for solar (Pg: =$33/MWh)." Combined with EPIC’s
estimate for the levelized cost of natural gas generation (p,, = $42/MWh), we can use
(B-40) to back out the implied value of a for wind generation (& = 0.8457) and solar
(a@ =0.7561). We take the generation-weighted average between wind and solar for 2011,
yielding a = 0.8446.

Next, in order to calibrate the distribution parameters in (B-36), we must specify
the remaining base year quantities. For natural gas, we proxy stand-alone generation
E,,. through combined-cycle plant output, and treat all combustion or steam engine gas
generation as in the nest with renewables (E,;,). This distinction is motivated by the EIA’s
observation that combined-cycle plants are “often used as baseload generation” whereas
combustion and steam turbines are “generally only run during hours when electricity demand
is high.”’Importantly, this approach almost surely overstates the amount of natural gas that
is complementary to renewables since many areas may rely on gas peaker plants to deal
with demand fluctuations even in the absence of renewable generation. In 2011, combined
cycle accounted for 82% of utility scale net generation from natural gas, with combustion
and steam turbines accounting for the remaining 18%.°

Applying these assumptions to our base period data (2006-10) and using E,, = E%, E! ¢

gb0™~'sb0

to compute the initial E,, (equal to 0.3343 tril. KWh) enables us to back out the k’s in (B-36)

'For consistency we utilize levelized cost estimates based on the same year assumptions to calibrate a.

*U.S. Energy Information Administration, “Today in Energy,” Dec. 18, 2017. URL (accessed September
2021): https://www.eia.gov/todayinenergy/detail.php?id=34172#tabl.

3EIA “Electricity Power Monthly” Table 1.7.C., Utility Scale Facility Net Generation from Natural Gas by
Technology: Total (All Sectors), 2011-October 2021. URL (accessed Septembre 2021): https://www.eia.
gov/electricity/monthly/epm_table_grapher.php?t=table_1_07_c.
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via the standard profit-maximization conditions,

1

1 =
-3 e -3
Poo  KcE Pgo KeEeio  Peo _ k.Eg,
£e0 & — £ -

_E
bo

Dso KSEs_a(%) " Pro KbEb_O% " Pyo K, E
and the condition that 1 = x, + k; + k}, + k,. We note that, in order to ensure time period
consistency, we back out the price of the hybrid bundle relevant for the base period (2006-10)
based on (B-40) instead of using the aforementioned EPIC estimates. We also note that we
now assume the within-fossil nest elasticity of substitution value from the extended model
o = 2 as value for ¢ since intermittency concerns that were motivating driving the lower
benchmark value of € =1.8561 in the benchmark are now explicitly accounted for. However,
the results below are completely robust to using ¢ = 1.8561 here as well. Solving these four
equations in four unknowns yields x. = 0.25, k; = 0.30, k, = 0.14, and x, = 0.31.

In order to evaluate (B-39), it remains to solve for initial technology levels consistent with
equilibrium in the modified model. We do so by solving a modified version of benchmark
system of equations (A-16), with equation (B-37) for C;, added and with (B-38) replacing the
benchmark condition for Cg,. As inputs to this computation, we also calculate the modified
model’s E, from (B-36), pgo based on the equilibrium condition that p,, = KCE;% p EtEE , and

AEO = 2.06e+05 from (A-15) which remains valid. The results are similar to the benchmark:

A Ao Ao Beo  Bsp  Cho Cip Apg Wo Lgo

8,0

100.3 46I.7 449.7 337.1 1I9.4 153.0 32.7 4.79e4+03 6.8764+03 1.258%

Finally, we evaluate the innovation inequality (B-39), yielding:
594.7 >>> 2.9.

These results imply that condition (B-39) holds easily, suggesting that the impact of the
shale gas boom is to increase incentives for fossil innovation even after accounting for the

possibility of complementarity between renewables and natural gas.
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