
B Supplementary Material for “Climate Change, Directed

Innovation, and Energy Transition: The Long-run Conse-

quences of the Shale Gas Boom”

B.1 Additional Proofs for the Baseline Model

B.1.1 Proofs of Propositions A.1 and A.2

To prove these results, we start by defining the function I (s)≡ (ϵ − 1) (1− s)1−ψ+s1−ψ−ϵ ηB
η

and characterize its zeros in the following two Lemmas.

Lemma B.1 Assume that ϵ ≥ 21−ψ. Over the interval
�

�

ηB
η

�
1

1−ψ
, 1
�

, the function I (s) has:

1. no zero if ηB
η <

1
ϵ ;

2. one zero with 1
ϵ <

ηB
η <

1
21−ψ and this zero satisfies I ′ (s∗)< 0;

3. no zero if ηB
η >

1
21−ψ and i) ϵ ≥ 2 or ii) ηB

η >
1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

;

4. two zeros if 1
21−ψ <

ηB
η <

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

and ϵ < 2, the first zero satisfies I ′
�

s∗1
�

> 0 and the

second zero satisfies I ′
�

s∗2
�

< 0.

Proof. Differentiating I (s), we obtain

I ′ (s) =
�

s−ψ − (ϵ − 1) (1− s)−ψ
�

(1−ψ) , (B-1)

I ′′ (s) = −ψ
�

s−ψ−1 + (ϵ − 1) (1− s)−ψ−1
�

(1−ψ)< 0.

Therefore the function I is concave in s and always decreasing in s for s large enough (since
I ′ (1) = −∞).
Further, at the boundaries of the interval, one gets:

I

�

�

ηB

η

�
1

1−ψ
�

= (ϵ − 1)





�

1−
�

ηB

η

�
1

1−ψ
�1−ψ

−
ηB

η



 ,

and we get that I
�

�

ηB
η

�
1

1−ψ
�

> 0 if and only if ηB
η <

1
21−ψ . In addition I (1) = 1− ϵ ηB

η , and
we obtain that I (1) > 0 if and only if ηB

η <
1
ϵ . Since ϵ > 21−ψ, we get that I (1) > 0 ⇒
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I
�

�

ηB
η

�
1

1−ψ
�

> 0. As I is concave, it has no zeros for ϵ < 1/21−ψ. This establishes part 1 of
Lemma B.1.
Assume now that 1

ϵ <
ηB
η <

1
21−ψ , then I

�

�

ηB
η

�
1

1−ψ
�

> 0 but I (1) < 0, since I is concave,

then I has only 1 zero over the interval
�

�

ηB
η

�
1

1−ψ
, 1
�

and this zero features I ′ (s∗)< 0. This
establishes part 2 of Lemma B.1.
Consider now the case where ηB

η >
1

21−ψ , so that I (1) < 0 and I
�

�

ηB
η

�
1

1−ψ
�

< 0. Then
either I has 2 zeros (one for I increasing and one for I decreasing) or I has no zero. First,
note that I is decreasing on

�

�

ηB
η

�
1

1−ψ
, 1
�

if I ′
�

�

ηB
η

�
1

1−ψ
�

< 0. In that case, we have

I ′
�

�

ηB

η

�
1

1−ψ
�

< 0⇐⇒
�

ηB

η

�
−ψ
1−ψ

− (ϵ − 1)

�

1−
�

ηB

η

�
1

1−ψ
�−ψ

< 0

⇐⇒
ηB

η
>
�

1+ (ϵ − 1)
1
ψ

�ψ−1
.

If ϵ ≥ 2, then 1
21−ψ ≥

�

1+ (ϵ − 1)
1
ψ

�ψ−1
so that ηB

η >
1

21−ψ ⇒
ηB
η >

�

1+ (ϵ − 1)
1
ψ

�ψ−1
. Then,

I has no zero over the interval
�

�

ηB
η

�
1

1−ψ
, 1
�

. This establishes part 3i) of Lemma B.1.

We now consider the case where ϵ < 2, and ηB
η <

�

1+ (ϵ − 1)
1
ψ

�ψ−1
, then I has a

maximum, which is reached at s = es, where es solves I ′ (es) = 0. Using (B-1), we get
es =

�

1+ (ϵ − 1)
1
ψ

�−1
and

I (es) =
�

1+ (ϵ − 1)
1
ψ

�ψ

− ϵ
ηB

η
.

Therefore,
I (es)> 0⇐⇒

ηB

η
<

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

.

Wenote that when ϵ < 2, 1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

<
�

1+ (ϵ − 1)
1
ψ

�ψ−1
, so that ηB

η <
1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

immediately implies ηB
η <

�

1+ (ϵ − 1)
1
ψ

�ψ−1
. Therefore, if I (es) > 0, then I will have two

zeros, the first one when I is increasing and the second one when I is decreasing. This
establishes part 4) of Lemma B.1. Finally, if instead, I (es)< 0, then I (s) will have no zeros,
establishing part 3ii) of Lemma B.1. Note that 1

21−ψ ≤ 1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

for all ϵ with strict
inequality unless ϵ = 2, therefore the interval

�

1
21−ψ , 1

ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ�

is non-empty for
ϵ ̸= 2.
We establish a similar Lemma for the case ϵ < 21−ψ.
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Lemma B.2 Assume that ϵ < 21−ψ. Over the interval
�

�

ηB
η

�
1

1−ψ
, 1
�

, the function I (s) has:

1. no zeros if ηB
η <

1
21−ψ ;

2. one zero with 1
21−ψ <

ηB
η <

1
ϵ and this zero satisfies I ′ (s∗)> 0;

3. two zeros if 1
ϵ <

ηB
η <

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

, the first zero satisfies I ′
�

s∗1
�

> 0 and the second zero

satisfies I ′
�

s∗2
�

< 0.

4. no zero if ηB
η >

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

;

Proof. The proof is similar to the previous case. With ϵ < 21−ψ, I
�

�

ηB
η

�
1

1−ψ
�

> 0 ⇒

I (1)> 0. Since I is concave, it has no zeros for ηB
η <

1
21−ψ , which establishes part 1.

Assume now that 1
21−ψ <

ηB
η <

1
ϵ , then I

�

�

ηB
η

�
1

1−ψ
�

< 0 but I (1) > 0, since I is concave,

then I has only 1 zero over the interval
�

�

ηB
η

�
1

1−ψ
, 1
�

and this zero features I ′ (s∗)> 0. This
establishes part 2.
Consider now the case where ηB

η > 1
ϵ . As in the previous proof, I (1) < 0 and

I
�

�

ηB
η

�
1

1−ψ
�

< 0, so I has either 2 zeros (one for I increasing and one for I decreas-

ing) or I no zero. I is decreasing on
�

�

ηB
η

�
1

1−ψ
, 1
�

if I ′
�

�

ηB
η

�
1

1−ψ
�

< 0, which is equiv-

alent to ηB
η >

�

1+ (ϵ − 1)
1
ψ

�ψ−1
. Otherwise, I has a maximum es =

�

1+ (ϵ − 1)
1
ψ

�−1

and we still get that I (es) > 0 ⇐⇒ ηB
η <

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

. With ϵ < 21−ψ, then we al-
ways have that 1

ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

<
�

1+ (ϵ − 1)
1
ψ

�ψ−1
. We can then consider two cases:

1
ϵ <

ηB
η <

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

and ηB
η >

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

. In the former case, I has 2 zeros, in
the latter I has no zero (since either I decreases or its maximum is negative). This establishes
parts 3) and 4).
We now establish Propositions A.1 and A.2. To do that, we derive the respective

conditions under which each type of asymptotic equilibrium exists. Using (21), the allocation
of innovation follows:

�

sg t

s f t

�ψ

=
κϵgAϵ−1

g t

1
Ac t
κϵc

�

1
Ac t
+ 1

Bc t

�−ϵ
+ 1

Ast
κϵd

�

1
Ast
+ 1

Bst

�−ϵ . (B-2)

Corner Asymptotic Steady State with Clean Innovation. In an asymptotic steady state
where sg t → 1, the (B-2) grows without bonds, which in turn confirms the corner allocation
for innovation. Therefore such a steady state is always possible and occurs whenever Ag0 is
sufficiently large relative to the fossil-fuel technologies.
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Corner Asymptotic Steady State with Fossil-Fuel Innovation. Alternatively, consider a
steady state where s f t → 1. Then (B-2) implies that:

�

sg t

s f t

�ψ

= O

�

Aϵ−1
g t

1
Ac t
κϵc Bϵc t +

1
Ast
κϵd Bϵst

�

.

The LHS tends toward 0 and the RHS tends toward 0 only if Bϵc t/Ac t grows without bound
(knowing that Bϵst/Ast behaves similarly). This occurs if ϵηB > η. Therefore, we get that
for ηB/η < 1/ϵ, an asymptotic steady state where all innovation occurs in the fossil-fuel
technologies cannot exist. In contrast, such an asymptotic steady state occurs for ηB/η > 1/ϵ

provided that Ag0 is sufficiently small.

Interior Asymptotic Steady State. We now analyze whether an interior asymptotic steady
state is possible. There are three possible cases: Ac t grows faster, at the same rate or less fast
than Bc t .
Assume first that Ac t grows less fast than Bc t (that is, η

�

s∗f t

�1−ψ
< ηB where s∗f t is the

limit of s f t). Then (B-2) implies that

�

s∗g
s∗f

�ψ

∼
κϵgAϵ−1

g t

Aϵ−1
c t κ

ϵ
c + Aϵ−1

st κ
ϵ
d

. (B-3)

The RHS can only converge asymptotically to a constant if Ag t and Ac t grow at the same
rate in the long-run. This is possible only if s∗f = s∗g = 1/2, which combined with condition
η
�

s∗f t

�1−ψ
< ηB, requires that ηB/η > 2ψ−1. In addition, if Ag(t−1) is shocked in such a

way that the RHS in (B-3) increases, then sg t should increase as well: so that the interior
asymptotic state can only exist in a knife-edge case and it is unstable.
The case where Ac t and Bc t grow at the same rate follows the same logic since in that case

(B-3) still holds up to a constant. We must then have s∗f = 1/2 and η
�

s∗f t

�1−ψ
= ηB, which

can only occur for ηB = η2ψ−1. Again this interior steady state will always be unstable.
Consider now the case where Ac t grows faster than Bc t (that is η

�

s∗f t

�1−ψ
> ηB). Then

(B-2) implies that
�

s∗g t

s∗f t

�ψ

∼
κϵgAϵ−1

g t

1
Ac t
κϵc Bϵc t +

1
Ast
κϵd Bϵst

,

which is possible only if the RHS tends toward a constant. This implies that s∗f t must also
satisfy I

�

s∗f t

�

= ϵηB/η. An interior steady state will therefore exist if I
�

s∗f t

�

= 0 has a
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solution in the interval
�

�

ηB
η

�
1

1−ψ
, 1
�

. That steady state will be unstable if I ′
�

s∗f t

�

< 0 since
then a shock leading to a temporarily higher s f t is associated with permanently higher s f t .
The steady state will be stable if I ′

�

s∗f t

�

> 0.
Lemma B.1 immediately characterizes the conditions under which this case occurs for

ϵ ≥ 21−ψ and we get that:
1) There is no interior asymptotic steady state if ηB

η <
1
ϵ ;

2) There is one unstable interior asymptotic steady state if 1
ϵ <

ηB
η and i) ϵ ≥ 2 or ii)

ϵ < 2 and ηB
η ̸∈

�

1
21−ψ , 1

ϵ

�

1+ (ϵ − 1)
1
ψ

��

;
3) There are two unstable interior asymptotic steady states and one stable interior

asymptotic steady state if 1
ϵ <

ηB
η , ϵ < 2 and ηB

η ∈
�

1
21−ψ , 1

ϵ

�

1+ (ϵ − 1)
1
ψ

��

.
Similarly, Lemma B.2 characterizes the conditions under which I

�

s∗f t

�

= 0 has a solution

in
�

�

ηB
η

�
1

1−ψ
, 1
�

for ϵ < 21−ψ and we get that:
1) There is no interior asymptotic steady state if ηB

η <
1

21−ψ ;
2) There is one unstable interior asymptotic steady state if 1

21−ψ <
ηB
η <

1
ϵ and a stable

interior asymptotic steady state;
3) There are two unstable interior asymptotic steady states if 1

ϵ <
ηB
η <

1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

and a stable asymptotic steady state;
4) There is one unstable interior asymptotic steady state if ηB

η >
1
ϵ

�

1+ (ϵ − 1)
1
ψ

�ψ

.

Conclusion. Bringing together the three cases establishes Propositions A.1 and A.2.

B.1.2 Complement to Proposition 5

In this Appendix, we complement Proposition 5 by showing that under the same conditions
but when Ag0 > Ag0, the natural gas boom decreases welfare provided that γ

η(1−ϑ)

1+ρ is sufficiently
large, that ϕL is small and that ϕD is large as mentioned in the text.

Proof. In that case, the economy is on a green path whether the boom occurred or not.
From Proposition 4, however, we get that emissions are lower without the boom for t large
enough. Therefore, if the stock of carbon depends mostly on current emissions (which is
the case when ϕL is sufficiently small and ϕ is sufficiently large enough), then St is lower
without the boom for t large enough (though in both cases, St tends toward a constant). In
addition, since innovation is reallocated away from clean technologies, Ag t is lower with the
boom than without. Therefore, for t sufficiently large, we obtain that CEt is also lower with
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the boom than without. As a result, for t large enough output is lower with the boom than
without.
For T large but finite, Yt grows approximately at the rate γη − 1. Using (A-4), we can then
write the change in welfare following (a small) boom as:

dU

≈
T−1
∑

τ=0

1
(1+ρ)τ

d (Yτ)
1−ϑ

1− ϑ
+
∞
∑

τ=T

Y 1−ϑ
T

(1+ρ)T

�

γη(1−ϑ)

1+ρ

�(τ−T )�
νλeAλ−1

Eτ Cλ−1
Eτ d ln CEτ

(1− ν)λ Aλ−1
Pτ + νλeA

λ−1
Eτ Cλ−1

Eτ

− ζdSτ

�

.

As argued above, for T large dSτ > 0. Furthermore, d ln CEτ ≈ d ln Agτ =
∑τ

u=0η (1−ψ) s
−ψ
gu dsgu

where all dsgu < 0, so that d ln CEτ is negative and bounded away from 0. Therefore, the
second sum becomes arbitrarily large if γη(1−ϑ)1+ρ is sufficiently close to 1. The latter condition
is met when ρ is sufficiently small and ϑ ≤ 1 for instance.

B.1.3 Proof of Proposition 6

Anticipating that the social planner allocates labor symmetrically within intermediates
and that she maintains the equality Ei t =Q i t , we can write the social planner problem as
maximizing

U0 =
∞
∑

t=0

1

(1+ρ)t
Y 1−ϑ

t

1− ϑ
, (B-4)

subject to the final good equation (2) with Lagrange parameter λt , the energy equation (3)
with Lagrange parameter λEt ,

λi t : Ei t = Ci t Li t ,

where for this equation and the following ones the term before the : is the associated
Lagrange parameter,

λP t : YP t = AP t LP t

λLt : Lc t + Lst + Lg t + LP t = L

µc t : Ac t = γ
ηs1−ψ

f t Ac(t−1), µst : Ast = γ
ηs1−ψ

f t As(t−1) and µg t : Ag t = γ
ηs1−ψ

g t Ag(t−1),

χt : s f t + sg t = 1,

ωP t : ξc Ec t + ξsEst = Pt ,
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ωSt : St = S +
t+T
∑

s=0

(ϕL + (1−ϕL)ϕ0 (1−ϕd)
s) Pt−s.

The first order condition with respect to Yt imposes that λt be equal to the marginal
value of consumption at time t,

λt =
Y −ϑt

(1+ρ)t
.

The first order condition with respect to YP t ensures that ∂ Yt
∂ YP t
= λP t

λt
≡ pP t , where the ratio

λP t/λt is the shadow price of the production input. Similarly, the first order condition with
respect to Et implies ∂ Yt

∂ YEt
= λEt

λt
≡ pEt . The first order condition with respect to Eg t implies

λEt
∂ Et
∂ Eg t
= λg t , so that ∂ Et

∂ Eg t
=

λg t

λt
= pg t . The first order condition with respect to Yc t gives

λEt
∂ Et

∂ Ec t
= λc t + ξcωP t =⇒

∂ Et

∂ Ec t
= pc t + ξcτt ,

with pc t ≡ λc t/λt being the shadow producer price of coal-based energy and τt =ωP t/λt

being the shadow price of emissions. Similarly, we have

∂ Et

∂ Est
= pst + ξsτt .

First order conditions with respect to Li t for i = c, s, g yield pi t∂ Ei t/∂ Li t = λLt/λt ≡ wt

which is the shadow wage and similarly, pP t∂ YP t/∂ LP t = wt . Therefore, and unsurprisingly,
the static optimal allocation is identical to the decentralized allocation provided that there is
a carbon tax given by τt . Note that there is no monopoly distortion to be addressed because
all sectors are equally affected and there is no roundabout production (yet the shadow wage
differs from the decentralized wage by a constant).
The first order condition with respect to St yields

ωSt = λtζYt , (B-5)

whereas the first order condition with respect to Pt implies:

ωP t =
∞
∑

s=0

(ϕL + (1−ϕL)ϕ0 (1−ϕd)
s)ωSt+s.
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We can rewrite this as

τt = Y ϑt

∞
∑

s=0

(ϕL + (1−ϕL)ϕ0 (1−ϕd)
s)

(1+ρ)s
ζY 1−ϑ

t+s . (B-6)

If ϑ = 1, we obtain the closed form solution of Golosov et al. (2014), namely τt =

Ytγ (1+ρ)
�

ϕL
ρ +

(1−ϕL)ϕ0
ρ+ϕd

�

.

The first order conditions with respect to Ai t for i = c, s yield

µi t = λi t

�

Ci t

Ai t

�2

Li t + γ
η f s1−ψ

f (t+1)µi(t+1).

Multiply by Ai t and iterate forward to get

µi tAi t = λi t
Ci t

Ai t
Ei t + Ai t+1µi(t+1) =

∞
∑

s=0

λi t+s
Ci t+s

Ai t+s
Ei t+s.

The first order condition with respect to Ag t gives

µg t = λg t Lg t + γ
ηs1−ψ

g(t+1)µg(t+1),

which similarly leads to
µg tAg t =

∞
∑

s=0

λg t+sEg t+s.

The first order conditions with respect to s f t and sg t imply

(1−ψ) ln (γ) s−ψf t (µc tAc t +µstAst) = χt = (1−ψ) ln (γ) s−ψg t µg tAg t .

Therefore the innovation allocation obeys

�

s f t

sg t

�ψ

=
µc tAc t +µstAst

µg tAg t
=

∑∞
s=0

1
1+rt,t+s

�

Cc(t+s)

Ac(t+s)
pc(t+s)Ec(t+s) +

Ccs(t+s)

As(t+s)
ps(t+s)Es(t+s)

�

∑∞
s=0

1
1+rt,t+s

pg(t+s)Eg(t+s)

,

where rt,t+s = λt/λt+s − 1 is the shadow interest rate between t and t + s. At the optimum,
the allocation of innovation depends on the ratio of the social values of innovation in each
sector. These social values are equal to the discounted sum of the marginal benefit of
innovation in all future periods. This contrasts with the decentralized economy where the
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allocation of innovation is given by:

�

s f t

sg t

�ψ

=
Cc t
Ac t

pc t Ec t +
Cst
Ast

pst Est

pg t Eg t
,

including in the presence of the carbon tax (since pc t and pst are pre-tax producer prices of
energy). The optimal scientist allocation can be decentralized through research subsidies.
In the quantitative analysis, we add an exogenous path of emissions from the rest of the

world PROW
t and direct disutility costs from carbon concentration on utility (to capture the

effect of climate change on the rest of the world), see (25). The former does not affect our
analysis, whereas the latter simply turns (B-5) into ωSt = λt

D′(St )
1−D(St )

Yt −
ν′(St )
(1+ρ)t , so that we get

τt = Y ϑt
∑∞

s=0
(ϕL+(1−ϕL)ϕ0(1−ϕd )

s)
(1+ρ)s

�

ζY 1−ϑ
t+s − ν

′ (St+s)
�

instead of (B-6).

B.1.4 Proof of Proposition 7

We prove Proposition 7 and also establish that the shale gas boom decreases welfare provided
that γη(1−ϑ)1+ρ is sufficiently large, that ϕL is sufficiently small and that ϕD is sufficiently large.

Proof of Part 1). With ϵ ≥ 2, Proposition A.1 applies and establishes that for ηB < η/ϵ, the
economy converges toward a green path, so that sg t → 1 and tswitch must be finite. We then
show that from tswitch onward, green innovation increases over time. Using the notation ft

introduced in Appendix A.4, we get:

ft+1

�

sg t

�

=

γ
−2ηs1−ψf t

Ac(t−1)
κϵc

�

γ
−2ηs1−ψf t

Ac(t−1)
+ γ−ηB

Bc t

�−ϵ

+ γ
−2ηs1−ψf t

As(t−1)
κϵs

�

γ
−2ηs1−ψf t

As(t−1)
+ γ−ηB

Bst

�−ϵ

κϵg Cϵ−1
g(t−1)γ

2ηs1−ψ
g t (ϵ−1)

�

sg t

s f t

�ψ

.

Assume that sg t ≥ 1/2 and that ηs1−ψ
f t > ηB then

ft+1

�

sg t

�

= γ(ϵ−1)η
�

s1−ψ
f t −s1−ψ

g t

�

γ
−ηs1−ψf t

Ac(t−1)
κϵc

�

γ
−ηs1−ψf t

Ac(t−1)
+ γ

ηs1−ψf t −ηB

Bc t

�−ϵ

+ γ
−ηs1−ψf t

As(t−1)
κϵs

�

γ
−ηs1−ψf t

As(t−1)
+ γ

ηs1−ψf t −ηB

Bst

�−ϵ

κϵg Cϵ−1
g(t−1)γ

ηs1−ψ
g t (ϵ−1)

�

sg t

s f t

�ψ

< ft

�

sg t

�

= 1,

therefore sg(t+1) > sg t .
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Assume now that sg t ≥ 1/2 but that ηs1−ψ
f t ≤ ηB, then:

ft+1

�

sg t

�

= γϵηB

γ
−2ηs1−ψf t

Ac(t−1)
κϵc

�

γ
ηB−2ηs1−ψf t

Ac(t−1)
+ 1

Bc t

�−ϵ

+ γ
−2ηs1−ψf t

As(t−1)
κϵs

�

γ
ηB−2ηs1−ψf t

As(t−1)
+ 1

Bst

�−ϵ

κϵg Cϵ−1
g(t−1)γ

2ηs1−ψ
g t (ϵ−1)

�

sg t

s f t

�ψ

≤ γϵηB−ηs1−ψ
f t −η(ϵ−1)s1−ψ

g t

γ
−ηs1−ψf t

Ac(t−1)
κϵc

�

γ
−ηs1−ψf t

Ac(t−1)
+ 1

Bc t

�−ϵ

+ γ
−ηs1−ψf t

As(t−1)
κϵs

�

γ
−ηs1−ψf t

As(t−1)
+ 1

Bst

�−ϵ

κϵg Cϵ−1
g(t−1)γ

ηs1−ψ
g t (ϵ−1)

�

sg t

s f t

�ψ

.

We wish to establish that ϵηB − ηs1−ψ
f t − η (ϵ − 1) s1−ψ

g t < 0. To do so, we define h (s) ≡

ϵηB −ηs1−ψ −η (ϵ − 1) (1− s)1−ψ. Twice differentiating h, one gets h′′ (s)> 0, so that h is
convex. Furthermore h (0) = ϵηB − η (ϵ − 1). Since ϵ ≥ 2, ϵ−1

ϵ ≥
1
ϵ , so that

ηB
η <

1
ϵ ≤

ϵ−1
ϵ ,

which ensures that h (0)< 0. In addition, h
�

1
2

�

= ϵ
�

ηB −η2ψ−1
�

< 0 since ηB/η < 1/ϵ and
ϵ ≥ 2 > 21−ψ. Therefore, ϵηB − ηs1−ψ

f t − η (ϵ − 1) s1−ψ
g t < 0 when sg t ≥ 1/2. This ensures

that ft+1

�

sg t

�

< ft

�

sg t

�

so that sg(t+1) > sg t . This establishes Part 1).

Proof of Part 2). To prove Part 2, it suffices to show that an increase in Bs0 leads to an
increase in sg t as long as t ≤ tswitch. We define

bft

�

sg t , sg(t−1), ..., sg1, Bs0

�

≡
sψg t

κϵg Cϵ−1
g0 sψf tγ

η(ϵ−1)
t
∑

τ=1
s1−ψ

gτ

















κϵcγ
−η

t
∑

τ=1
s1−ψf τ

Ac0





γ

−η
t
∑

τ=1
s1−ψf τ

Ac0
+ 1

Bc t





−ϵ

+κ
ϵ
s γ

−η
t
∑

τ=1
s1−ψf τ

As0





γ

−η
t
∑

τ=1
s1−ψf τ

As0
+ 1

Bst





−ϵ

















,

so that the equilibrium innovation allocation is still defined by bft

�

sg t , sg(t−1), ..., sg1, Bs0

�

= 1

with bft increasing in sg t and in Bs0. We obtain for eτ ∈ [1, t − 1)

∂ ln bft

∂ ln sgeτ
=





















κϵc
Ac t

�

1
Ac t
+ 1

Bc0

�−ϵ
�

1− ϵ
1

Act
1

Act
+ 1

Bct

�

+ κ
ϵ
s

Ast

�

1
Ast
+ 1

Bs0

�−ϵ
�

1− ϵ
1

Ast
1

Ast
+ 1

Bst

�

κϵc
Ac t

�

1
Ac t
+ 1

Bc0

�−ϵ
+ κϵs

Ast

�

1
Ast
+ 1

Bs0

�−ϵ s−ψf eτ − (ϵ − 1) s−ψgeτ





















sgeτη (1−ψ) lnγ.
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Yet, if t ≤ tswitch, then s f eτ ≥ sgeτ, so that

∂ ln bft

∂ ln sgeτ
≤ −



ϵ − 2+ ϵ

κϵc
A2

c t

�

1
Ac t
+ 1

Bc t

�−ϵ−1
+ κϵs

A2
st

�

1
Ast
+ 1

Bst

�−ϵ−1

κϵc
Ac t

�

1
Ac t
+ 1

Bc t

�−ϵ
+ κϵs

Ast

�

1
Ast
+ 1

Bst

�−ϵ



 s−ψf eτ sgeτη (1−ψ) lnγ.

Therefore ∂ ln bft
∂ ln sgeτ

< 0 if ϵ ≥ 2.
Therefore, the natural gas boom reduces bf1 leading to a lower value for sg1. It then

reduces bf2 both directly and because of its negative effect on sg1, leading to a lower value for
sg2. By iteration, the natural gas boom will reduce all sg t at least until the switch toward
green innovation occurs.

Three Useful Lemmas. We establish three lemmas which are useful to prove part 3.

Lemma B.3 Consider a small increase in Bs. Denote by tA the smallest t such that d ln AstA
< 0

and assume that tA <∞. Then d ln Ag tA
> d ln AstA

.

Proof. Noting that

ln Ac t = ln Ac0 +η (lnγ)
t
∑

τ=1

s1−ψ
f τ and ln Ast = ln As0 +η (lnγ)

t
∑

τ=1

s1−ψ
f τ ,

we obtain
d ln Ac t = d ln Ast = η (1−ψ) (lnγ)

t
∑

τ=1

s−ψf τ ds f τ. (B-7)

By definition of tA, d ln Ac(tA−1) > 0 and d ln Ac tA
< 0, so that we must have ds f tA

< 0. Since
ds f t > 0 for t ≤ tswitch, it must be that tA > tswitch. We can similarly write

d ln Ag t = −η (1−ψ) (lnγ)
t
∑

τ=1

s−ψgτ ds f τ. (B-8)

Using (B-7) and (B-8), we get

d ln AstA
− d ln Ag tA

= η (1−ψ) (lnγ)

� tA
∑

τ=1

�

s−ψf τ − s−ψgτ

�

ds f τ

�

.

We know that ds f t > 0 for t ≤ tswitch and that ds f tA
< 0, therefore ds f t must change sign as t

increases at least once. We index the times where ds f t switches signs by t2p and t2p+1, such
that ds f t becomes negative at t2p+1 and positive at t2p and p is a weakly positive integer in
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the integer set {0, ..., P − 1} with P ≥ 1. We denote by t0 = tswitch and t2P = tA+ 1. We get:

d ln AstA
− d ln Ag tA

(B-9)

= η (1−ψ) (lnγ)









tswitch−1
∑

τ=1

�

s−ψf τ − s−ψgτ

�

ds f τ

+
P−1
∑

p=0

�

t2p+1−1
∑

τ=t2p

�

s−ψf τ − s−ψgτ

�

ds f τ +
t2p+2−1
∑

τ=t2p+1

�

s−ψf τ − s−ψgτ

�

ds f τ

�









= η (1−ψ) (lnγ)









tswitch−2
∑

τ=1

�

s−ψf τ − s−ψgτ

�

ds f τ

+
P−1
∑

p=0

�

t2p+1−1
∑

τ=t2p

�

1−
sψf τ

sψgτ

�

s−ψf τ ds f τ +
t2p+2−1
∑

τ=t2p+1

�

1−
sψf τ

sψgτ

�

s−ψf τ ds f τ

�









.

Using that s−ψf τ − s−ψgτ < 0 for τ < tswitch, that
sψf τ

sψgτ
is decreasing for τ≥ tswitch (as established

in the Proof of Part 1), that ds f τ > 0 only on intervals
�

t2p, t2p+1 − 1
�

, we get

d ln AstA
− d ln Ag tA

< η (1−ψ) (lnγ)
P−1
∑

p=0

 

1−
sψf t2p+1

sψg t2p+1

!

t2p+2−1
∑

τ=t2p

s−ψf τ ds f τ.

By definition tA is the smallest t such that
tA
∑

τ=1
s−ψf τ ds f τ < 0, therefore for any tX < tA, we

have
tX
∑

τ=1
s−ψf τ ds f τ > 0 and

tA
∑

τ=tX+1
s−ψf τ ds f τ < 0. Therefore, we get that

P−1
∑

p=P−2

 

1−
sψf t2p+1

sψg t2p+1

!

t2p+2−1
∑

τ=t2p

s−ψf τ ds f τ

=

 

1−
sψf t2P−3

sψg t2P−3

!

t2P−2−1
∑

τ=t2P−4

s−ψf τ ds f τ +

 

1−
sψf t2P−1

sψg t2P−1

!

tA
∑

τ=t2P−2

s−ψf τ ds f τ

<

 

1−
sψf t2P−3

sψg t2P−3

!

tA
∑

τ=t2P−4

s−ψf τ ds f τ.

Iterating, we get

d ln AstA
− d ln Ag tA

< η (1−ψ) (lnγ)

 

1−
sψf t1

sψg t1

!

tA
∑

τ=tswitch

s−ψf τ ds f τ ≤ 0.

Therefore d ln Ag tA
> d ln AstA

.
We establish a symmetric lemma:
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Lemma B.4 Consider a small increase in Bs. Denote by tA the smallest t such that d ln Ag tA
> 0

and assume that tA <∞. Then d ln Ag tA
> d ln AstA

.

Proof. The proof starts as for the previous lemma: d ln Ag tA
> 0 requires that ds f tA

< 0,
which implies tA ≥ tswitch and that ds f t switches sign an odd number of times. We use (B-9)
to write:

d ln AstA
− d ln Ag tA

= η (1−ψ) (lnγ)









tswitch−1
∑

τ=1

�

s−ψf τ − s−ψgτ

�

ds f τ

+
P−1
∑

p=0

�

t2p+1−1
∑

τ=t2p

�

sψgτ

sψf τ
− 1

�

s−ψgτ ds f τ +
t2p+2−1
∑

τ=t2p+1

�

sψgτ

sψf τ
− 1

�

s−ψgτ ds f τ

�









< η (1−ψ) (lnγ)
P−1
∑

p=0

 

sψg t2p+1

sψf t2p+1

− 1

!

t2p+2−1
∑

τ=t2p

s−ψgτ ds f τ,

following the same logic as before. By definition tA is the smallest t such that
tA
∑

τ=1
s−ψgτ dsgτ > 0,

then for any tX < tA, we have
tX
∑

τ=1
s−ψgτ dsgτ < 0 and

tA
∑

τ=tX+1
s−ψgτ dsgτ > 0. As dsgτ = −ds f τ, then

tA
∑

τ=tX+1
s−ψgτ dsgτ < 0. Using the same reasoning as before, we get d ln AstA

− d ln Ag tA
< 0.

We can then derive:

Lemma B.5 For lnγ small, the shale gas boom increases Ac t , Ast and decreases Ag t .

Proof. We prove this result by contradiction. Assume that Ag t does not decrease for
all t following the shale gas boom. Denote by tA the first time that d ln Ag t > 0, then if
lnγ is small enough, it must be that d ln Ag tA

≈ d ln Ag tA−1 ≈ 0. According to Lemma B.4,
d ln Ag tA

> d ln AstA
, therefore either d ln AstA

≈ 0 or d ln AstA
< 0. Log differentiating ftA

, one
obtains:

d ln ftA
= − (ϵ − 1) d ln Ag(tA−1) +

1
AstA
κϵs CϵstA

1
Ac tA
κϵc Cϵc tA

+ 1
AstA
κϵs CϵstA

CstA

BstA

ϵd ln BstA

+

1
Ac tA
κϵc Cϵc tA

�

ϵ
Cc tA
Ac tA
− 1

�

+ 1
AstA
κϵs CϵstA

�

ϵ
CstA
AstA
− 1

�

1
Ac tA
κϵc Cϵc tA

+ 1
AstA
κϵs CϵstA

d ln As(tA−1).

Assume that d ln AstA
≈ 0, then for lnγ small d ln As(tA−1) ≈ 0, and we get d ln ftA

≈
1

AstA
κϵs CϵstA

1
ActA

κϵc Cϵc tA
+ 1

AstA
κϵs CϵstA

CstA
BstA
ϵd ln BstA

. Following the shale gas boom d ln Bs > 0, in order for Ag tA
to
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increase, it must be that d ln s f t has been negative for a number of periods before tA, which
requires that ϵ Cc t

Ac t
< 1 for a number of periods. This ensures that CstA

BstA
is bounded above, so

that
1

AstA
κϵs CϵstA

1
ActA

κϵc Cϵc tA
+ 1

AstA
κϵs CϵstA

CstA
BstA
ϵ is not too small. As a result, d ln ftA

> 0 so that d ln s f tA
> 0 which

contradicts the fact that d ln Ag tA
> 0> d ln Ag tA−1.

Similarly, assume now that Ast decreases at some point. We denote by tB the first time
at which d ln Ac tB

< 0 (tB could be equal to tA). Since d ln Ac tB−1
> 0 > d ln Ac tB

, then for
lnγ small, we have d ln Ac tB−1

≈ d ln Ac tB
≈ 0. Using Lemma B.3, we get d ln Ag(tB−1) < 0

or d ln Ag tB
≈ 0. Following the same reasoning as above, we get that d ln s f tB

> 0, which
contradicts d ln Ac tB−1

> 0> d ln Ac tB
.

Therefore, it must be that Ac t , Ast increase for all t and Ag t decreases for all t.

Proof that Emissions Increase Asymptotically. We now show that emissions increase
asymptotically. Log-differentiating (A-3), we get:

d ln Pt (B-10)

= ϵ

�

ξcκ
ϵ
c Cϵc t

ξcκϵc Cϵc t + ξsκϵs Cϵst
d ln Cc t +

ξsκ
ϵ
s Cϵst

ξcκϵc Cϵc t + ξsκϵs Cϵst
d ln Cst

�

+

�

1− ϵ +
(λ− 1) (1− ν)λ−1 Aλ−1

P

νλeAλ−1
E Cλ−1

E + (1− ν)λ−1 Aλ−1
P

��

κϵc Cϵ−1
c t d ln Cc t + κϵs Cϵ−1

st d ln Cst + κϵgAϵ−1
g t d ln Ag t

κϵc Cϵ−1
c t +κϵs Cϵ−1

st +κϵgAϵ−1
g t

�

.

As sg t → 1, we get:

d ln Pt ∼ ϵ

�

ξcκ
ϵ
c Cϵc t

ξcκϵc Cϵc t + ξsκϵs Cϵst
d ln Cc t +

ξsκ
ϵ
s Cϵst

ξcκϵc Cϵc t + ξsκϵs Cϵst
d ln Cst

�

(B-11)

−

�

ϵ − 1+
(1−λ) (1− ν)λ−1 Aλ−1

P t

νλeAλ−1
E Cλ−1

Et + (1− ν)
λ−1 Aλ−1

P t

�

d ln Ag t .

We can rewrite this expression as:

d ln Pt → −



ϵ − 1+
(1−λ) (1− ν)λ Aλ−1

P t

νλeAλ−1
E κ

ϵ(λ−1)
ϵ−1

g Aλ−1
g t + (1− ν)

λ Aλ−1
P t



 d ln Ag t

+ϵ
ξcκ

ϵ
c Cϵc t

Cc t
Ac t
+ ξsκ

ϵ
s Cϵst

Cst
Ast

ξcκϵc Cϵc t + ξsκϵs Cϵst
d ln Ac t + ϵ

ξsκ
ϵ
s Cϵst

ξcκϵc Cϵc t + ξsκϵs Cϵst

Cst

Bst
d ln Bst .

Since Ag t decreases and Ac t and Ast increase, emissions increase asymptotically following the
natural gas boom.
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Proof that Gross Output Decreases Asymptotically. Using (A-4), we can write output
gross of climate damages eYt ≡ Yt/ (1− D (St)) as:

eYt =
�

(1− ν)λ Aλ−1
P t + ν

λ
eAλ−1

Et Cλ−1
Et

�
1
λ−1 L.

Log-differentiating, one gets

d ln eYt =
νλeAλ−1

Et Cλ−1
Et

(1− ν)λ Aλ−1
P t + νλeA

λ−1
Et Cλ−1

Et

d ln CEt . (B-12)

In return, log-differentiating CEt yields:

d ln CEt =
κϵc

Cϵc t
Ac t

d ln Ac t +κϵs
Cϵc t
Ac t

d ln Ast + κϵs
Cϵst
Bst

d ln Bst +κϵg Cϵ−1
g t d ln Ag t

Cϵ−1
Et

. (B-13)

Plugging (B-7) and (B-8) in (B-13) and using that Ag t grows exponentially but Cst and Cc t

do not, we get for t large enough:

d ln CEt

∼ η (1−ψ) (lnγ)





t
∑

τ=1

 

κϵc
Cϵc t
Ac t
+κϵs

Cϵc t
Ac t

κϵg Cϵ−1
g t

sψgτs
−ψ
f τ − 1

!

s−ψgτ ds f τ



 .

Further, use (21) to get:

d ln CEt (B-14)

∼ η (1−ψ) (lnγ)





t
∑

τ=1





Cϵ−1
gτ

�

κϵc
Cϵc t
Ac t
+ κϵs

Cϵc t
Ac t

�

Cϵ−1
g t

�

κϵc
Cϵcτ
Acτ
+ κϵs

Cϵcτ
Acτ

� − 1



 s−ψgτ ds f τ



 .

We want to establish that d ln CEt < 0, but since ds f τ may not be positive for all τ, we
cannot show that directly. As above, we index the times where ds f τ switches signs by t2p

and t2p+1, such that ds f τ becomes negative at t2p+1 and positive at t2p. The first sign switch
occurs after tswitch and we also define t0 = tswitch. We assume that at t, ds f t is negative and
denote t = t2P − 1 (the reasoning extends easily to the case where ds f t > 0). We can then
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decompose:

d ln CEt

η (1−ψ) (lnγ)

∼
tswitch−1
∑

τ=1

�

�

sgτ

s f τ

s f t

sg t

�ψ

− 1

�

ds f τ

sψgτ
+

P−1
∑

p=0











t2p+1−1
∑

τ=t2p

�
�

sgτ

s f τ

s f t

sg t

�ψ

− 1
�

ds f τ

sψgτ

+
t2p+2−1
∑

τ=t2p+1

�
�

sgτ

s f τ

s f t

sg t

�ψ

− 1
�

ds f τ

sψgτ











.

Using that ds f t < 0 on [t2P−1, t2P − 1] and that sgτ

s f τ
is increasing after tswitch, we can write:

d ln CEt

η (1−ψ) (lnγ)

<

tswitch−1
∑

τ=1

�

�

sgτ

s f τ

s f t

sg t

�ψ

−
�

sg t2P−1

s f t2P−1

s f t

sg t

�ψ
�

s−ψgτ ds f τ

+
P−2
∑

p=0

 

t2p+1−1
∑

τ=t2p

�

�

sgτ

s f τ

s f t

sg t

�ψ

−
�

sg t2P−1

s f t2P−1

s f t

sg t

�ψ
�

ds f τ

sψgτ
+

t2p+2−1
∑

τ=t2p+1

�

�

sgτ

s f τ

s f t

sg t

�ψ

−
�

sg t2P−1

s f t2P−1

s f t

sg t

�ψ
�

ds f τ

sψgτ

!

+
t2P−1−1
∑

τ=t2P−2

�

�

sgτ

s f τ

s f t

sg t

�ψ

−
�

sg t2P−1

s f t2P−1

s f t

sg t

�ψ
�

s−ψgτ ds f τ +

�

1−
�

sg t2P−1

s f t2P−1

s f t

sg t

�ψ
�

d ln Ag t

η (1−ψ) (lnγ)
.

where we use (B-8). Reiterating the same procedure, one gets:

d ln CEt

η (1−ψ) (lnγ)

<

�

s f t

sg t

�ψ tswitch−1
∑

τ=1

�

�

sgτ

s f τ

�ψ

−
�

sg t1

s f t1

�ψ
�

s−ψgτ ds f τ

+
P−2
∑

p=0

sψf t

sψg t







t2p+1−1
∑

τ=t2p

 

�

sgτ

s f τ

�ψ

−

�

sg t2p+1

s f t2p+1

�ψ
!

ds f τ

sψgτ
+

�

�

sg t2p+3

s f t2p+3

�ψ

−
�

sg t2p+1

s f t2p+1

�ψ
�

d ln Ag t2p+2−1

η (1−ψ) (lnγ)







+

�

s f t

sg t

�ψ t2P−1−1
∑

τ=t2P−2

�

�

sgτ

s f τ

�ψ

−
�

sg t2P−1

s f t2P−1

�ψ
�

s−ψgτ ds f τ +

�

1−
�

sg t2P−1

s f t2P−1

s f t

sg t

�ψ
�

d ln Ag t

η (1−ψ) (lnγ)
.

The first term is negative because t1 > tswitch, so sg t1
> s f t1

while for τ < tswitch, sgτ < s f τ

and ds f τ > 0. The terms in
t2p+1−1
∑

τ=t2p

�

�

sgτ

s f τ

�ψ

−
�

sg t2p+1

s f t2p+1

�ψ
�

s−ψgτ ds f τ are negative because over

such intervals ds f τ > 0 and since t > tswitch, sg t is increasing so
�

sgτ

s f τ

�ψ

−
�

sg t2p+1

s f t2p+1

�ψ

< 0. In
addition, we have established in Lemma B.5 that d ln Ag t < 0 for all t ′s. Therefore we get
that for t large enough d ln CEt < 0. This ensures that gross output decreases asymptotically.
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B.2 Proofs for the model with endogenous innovation in extraction

Proof of Proposition A.3. Assume first that we have asymptotically positive growth in
fossil-fuel power plant technologies Ast and Ac t . We first establish that there must be growth
at the same rate in either Bst or Bc t . Assume instead that both extraction technologies grow
more slowly than Ast and Ac t . Then using (A-5), we get

�

sBct

sAf t

�ψ

∼
κϵc Bϵ−1

c t
Bc t
Ac t
κϵc Bϵ−1

c t +κϵs
Bst
Ast

Bϵ−1
st

and
�

sBst

sAf t

�ψ

−→
κϵs Bϵ−1

st
Bc t
Ac t
κϵc Bϵ−1

c t +κϵs
Bst
Ast

Bϵ−1
st

.

Assume without loss of generality that Bc t
Ac t

Bϵ−1
c t grows at least as fast as

Bst
Ast

Bϵ−1
st , then we get

�

sBc

sAf t

�ψ

= O
�

Ac t

Bc t

�

,

so that sAf t → 0. This leads to a contradiction as it implies that Bc t cannot grow more slowly
than A f t . Hence at least one of the two extraction technologies must grow at least as fast as
Ac t .
Assume now that Bc t grows faster than Ac t , then (A-5) implies

�

sBct

sAf t

�ψ

∼
Ac t

Bc t

κϵcA
ϵ−1
c t

κϵcA
ϵ−1
c t +κϵs

Cst
Ast

Cϵ−1
st

≤
Ac t

Bc t
.

As a result, sBct tends to 0, which is, again, a contradiction. Therefore, extraction technologies
cannot grow faster than Ac t on a fossil-fuel path, and at least one extraction technology must
grow at the same rate as Ac t .

Without loss of generality, assume that Bc t grows at the same rate as Ac t (while Bst grows
weakly less fast), using (A-6) we get:

�

sAf t

sg t

�ψ

= O

�

Ac t

Ag t

�ϵ−1

.

Then, if Ac t grows faster than Ag t , sg t → 0. In contrast, if Ac t grows more slowly than
Ag t then s f t → 0, which contradicts the assumption of positive growth in the fossil-fuel
sector. Therefore, there is path dependence in innovation and (except for a knifed-edge case)
innovation is asymptotically entirely either in the fossil-fuel or in the green sector.
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Proof of Proposition A.4. Log-differentiate (A-5) for the natural gas sector (assuming that
one can ignore the dependence of the right-hand side on the allocation of innovation) to get:

ψd ln sBst
−ψd ln sAf t =

 

ϵ
Cst

Bst

Cc t
Ac t
κϵc Cϵ−1

c t

Cc t
Ac t
κϵc Cϵ−1

c t +
Cst
Ast
κϵs Cϵ−1

st

− 1

!

d ln Bst . (B-15)

Log-differentiating the ratio of the two equations in (A-5) gives:

ψd ln sBst
−ψd ln sBc t

=
�

ϵ
Cst

Bst
− 1

�

d ln Bst . (B-16)

Log-differentiate the ratio of (A-5) for natural gas and (A-6) to get:

ψd ln sBs
−ψd ln sg t =

�

ϵ
Cst

Bst
− 1

�

d ln Bst . (B-17)

Log-differentiating the scientists market clearing condition gives:

sBst d ln sBst + sAf t d ln sAf t + sBct d ln sBct + sg t d ln sg t = 0. (B-18)

Take the difference between (B-15) and (B-17) to get:

d ln

 

s1−ψ
gst

s1−ψ
Af t

!

= −
ϵ (1−ψ)
ψ

Cst

Bst

Cst
Ast
κϵs Cϵ−1

st

Cc t
Ac t
κϵc t C

ϵ−1
c t +

Cst
Ast
κϵs Cϵ−1

st

d ln Bst , (B-19)

which establishes that a natural gas boom redirects innovation away from green technologies
relative to fossil-fuel power plant technologies.
Plugging (B-15), (B-16), and (B-17) in (B-18) implies:

d ln sBst =
1
ψ



sAf t

 

ϵ
Cst

Bst

Cc t
Ac t
κϵc Cϵ−1

c t

Cc t
Ac t
κϵc Cϵ−1

c t +
Cst
Ast
κϵs Cϵ−1

st

− 1

!

+
�

sBct + sg t

�

�

ϵ
Cst

Bst
− 1

�



 d ln Bst .

Then (B-17) gives:

d ln sg t = −
1
ψ



sBst

�

ϵ
Cst

Bst
− 1

�

+ sAf tϵ
Cst

Bst

Cst
Ast
κϵs Cϵ−1

st

Cc t
Ac t
κϵc Cϵ−1

c t +
Cst
Ast
κϵs Cϵ−1

st



 d ln Bst .

Therefore a natural gas boom decreases green innovation if ϵ Cst
Bst
− 1≥ 0.
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B.3 Additional Proofs for the Extended Model

B.3.1 Proof of Proposition A.5

We can decompose the change in the emission rate as:

∂ lnξE

∂ ln Bst
= ϵ

∂ ln
�

C f t/CEt

�

∂ ln Bst
︸ ︷︷ ︸

Subg : substitution effect away from green

+
∂ ln

�

ξcκ
σ
c

�

Cc t
(1+eτc)C f t

�σ

+ ξsκ
σ
s

�

Cst
(1+eτs)C f t

�σ�

∂ ln (Bst)
︸ ︷︷ ︸

.

Sub f : substitution within fossil fuels

The substitution effect away from green electricity is naturally positive:

Subg = ϵ
κϵg

Cϵ−1
Et

�

Ag t

1+ eτg

�ϵ−1
κσs

Cσ−1
f t

�

Cst

1+ eτs

�σ−1 Cst

Bst
, (B-20)

where we use the fact that

∂ ln C f t

∂ ln Bst
=
κσs

Cσ−1
f t

�

Cst

1+ eτs

�σ−1 Cst

Bst
and ∂ ln CEt

∂ ln Bst
=

Cϵ−1
f t

Cϵ−1
Et

Cst

Bst
. (B-21)

Combining (A-20) and (A-19), we get that the tax-inclusive expenditure share of gas
electricity in fossil-fuel electricity obeys:

θs f t =
(1+τst) pst Est

p f t E f t
=
κσs

Cσ−1
f t

�

Cst

1+ eτs

�σ−1

. (B-22)

The tax-inclusive expenditure share on clean energy, using (A-21) is given by:

Θg t =

�

1+τg t

�

pg t Eg t

pEt Et
=
κϵg

Cϵ−1
Et

�

Ag t

1+ eτg

�ϵ−1

.

Then, we can rewrite (B-20) as

Subg = ϵΘg tθs f t
Cst

Bst
. (B-23)
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Further, we have

Sub f = −σ
C1−σ

f t κ
σ
c κ

σ
s

�

Cst
1+eτs

�σ−1 � Cc t
1+eτc

�σ−1

�

ξcκσc

�

Cc t
(1+eτc)

�σ

+ ξsκσs

�

Cst
(1+eτs)

�σ�

�

ξc
Cc t

1+ eτc
− ξs

Cst

1+ eτs

�

Cst

Bst
(B-24)

= −σθs f t

Pc,t

Pt

�

1−
ξs

ξc

Cst

1+ eτs

1+ eτc

Cc t

�

Cst

Bst
,

where
Pc t

Pt
=

ξcκ
σ
c

�

Cc t
(1+eτc)C f t

�σ

ξcκσc

�

Cc t
(1+eτc)C f t

�σ

+ ξsκσs

�

Cst
(1+eτs)C f t

�σ (B-25)

is the pollution share of coal based electricity. Therefore the substitution effect within
fossil-fuel is negative as long as ξc

Cc t
1+eτc

> ξs
Cst

1+eτs
holds. Combining (B-23) and (B-24), and

using (B-22) and (B-25), we obtain equation (A-26).
To compute the scale effect, we log differentiate (A-25) and get:

d ln Et = d ln eCEt + d ln LEt . (B-26)

Log-differentiating (A-10), we get:

d ln LEt =
LP t

L

�

λd ln CEt − d ln eCEt

�

. (B-27)

As long as d ln eCEt ≈ d ln CEt , then an increase in Bst is associated with a decline in labor in
the energy sector LEt .
From (B-26), we then obtain the change in total energy production:

d ln Et =
LP t

L
λd ln CEt +

LEt

L
d ln eCEt , (B-28)

which is positive (as long as d ln eCEt is not largely negative).
Using the definition of eCEt in (A-24), we get:

d ln eC f t =

�

σθs f t −
(σ− 1)κσs (1+ eτs)

−σ Cσ−1
st

κσc (1+ eτc)
−σ Cσ−1

c t +κσs (1+ eτs)
−σ Cσ−1

st

�

d ln Cst .

Using the definition of eCEt in (A-25) and plugging in the previous expression, we can express
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the change in the productivity variable eCEt as:

d ln eCEt =



ϵΘst +
Cϵf t

eC−1
f t

�

(σ− ϵ)θs f t −
(σ−1)κσs (1+eτs)

−σCσ−1
st

κσc (1+eτc)
−σCσ−1

c t +κσs (1+eτs)
−σCσ−1

st

�

Cϵf t
eC−1

f t + κϵg
�

1+ eτg

�−ϵ
Aϵ−1

g t



 d ln Cst . (B-29)

For eτg , eτc and eτs small, we get

d ln eCEt |eτg ,eτc ,eτs≈0 ≈ d ln eCEt = Θst d ln Cst , (B-30)

which, using (B-28), leads to the same scale effect as in the baseline:

∂ ln Et

∂ ln Bst
|
eτg ,eτc ,eτs≈0 ≈

LEt +λLP t

L
Θst

Cst

Bst
. (B-31)

The overall effect on emissions is then given by the sum of (A-26) and (B-31), which we
can rewrite as

∂ ln Pt

∂ ln Bst
|
eτg ,eτc ,eτs≈0 ≈ −

Cst

Bst

�

(σ− ϵ)θs f t + (ϵ − 1)Θst +
(1−λ) LP t

L
Θst −σ

Pst

Pt

�

.

For ξs/ξc small, the term Pst
Pt
is small, given that σ ≥ ϵ and λ≤ 1, then emissions decrease

following the natural gas boom.

B.3.2 Proof of Uniqueness and Maximal Growth Rate

We show that the equilibrium is unique for lnγ small enough. Using (A-32) and defining
s f t = sc t + sst , we can write:

sc t =
(1− qs)

1
ψ

�

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
χκσs (1+Λs)Cσst

(1+eτs)
σAst

�

1
ψ

s f t

(1− qc)
1
ψ

�

χκσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

�

1
ψ

+ (1− qs)
1
ψ

�

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
χκσs (1+Λs)Cσst

(1+eτs)
σAst

�

1
ψ

,(B-32)

sst =
(1− qc)

1
ψ

�

χκσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

�

1
ψ

s f t

(1− qc)
1
ψ

�

χκσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

�

1
ψ

+ (1− qs)
1
ψ

�

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
χκσs (1+Λs)Cσst

(1+eτs)
σAst

�

1
ψ

.

For lnγ small enough, we can ignore the dependence of the RHS on sc t and sst , so that the
previous equations define sc t and sst as increasing (and nearly linear) functions of s f t . We
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then get that the numerator in the LHS (A-33) is decreasing in s f t (as for lnγ small, we can
ignore the dependence of Ci t and Ai t on innovation). The denominator is increasing in s f t

as sg t = 1− s f t (and again ignoring the dependence of Cg t on the innovation allocation).
Therefore the LHS decreases from infinity to 0 in s f t , and the equation defines a unique
solution.
We show that the maximal growth rate that can be achieved on a fossil-fuel path

corresponds to the growth rate γη f

�

1+χ
1
ψ

�ψ

− 1. The growth rate of CEt is maximized if the
growth rate of C f t is maximized which occurs if the growth rates of either Cst or Cc t are
maximized. Without loss of generality, assume that Ac t grows faster than Ast . Then, the
growth rates of Cc t and that of Ac t are maximized when s1−ψ

c t +χs1−ψ
st is maximized, which

occurs if sc t = s f t/
�

1+χ
1
ψ

�

. In that case, Bc t and Bst grow faster than Ast , and (B-32) gives
sc t → s f t/

�

1+χ
1
ψ

�

for qc = qs, so that this optimal growth rate can be achieved. We then

get that CEt and eCEt grow asymptotically at the rate γ
η f

�

1+χ
1
ψ

�ψ

− 1.

B.3.3 Proof of Proposition A.6

Log differentiating (B-32), and assuming that lnγ is sufficiently small that we can ignore the
dependence of Ai t on si t , we can write:

d ln sc t ≈ d ln s f t −
σ

ψ

sst

s f t

�

1−χ2
� κσc (1+Λc)Cσc t

(1+eτc)
σAc t

κσs (1+Λs)Cσst

(1+eτs)
σAst

Cst
Bst

d ln Bst
�

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+χ
κσs (1+Λs)Cσst

(1+eτs)
σAst

��

χ
κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

� , (B-33)

d ln sst ≈ d ln s f t +
σ

ψ

sc t

s f t

�

1−χ2
� κσc (1+Λc)Cσc t

(1+eτc)
σAc t

κσs (1+Λs)Cσst

(1+eτs)
σAst

Cst
Bst

d ln Bst
�

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+χ
κσs (1+Λs)Cσst

(1+eτs)
σAst

��

χ
κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

� . (B-34)

This directly implies that the ratio sst/sc t increases with Bst . Log-differentiating (A-33) and
using (A-32) and (B-21) (and lnγ small) leads to









�

(χ2+1) κσc
(1+eτc )σ

(1+Λc)Cσc t
Act

+2χ
κσs

(1+eτs)σ
(1+Λs)Cσst

Ast

�

κσs (1+Λs)Cσst
(1+eτs)σAst

σ
Cst
Bst

d ln Bst

2
�

χ
κσc (1+Λc)Cσc t
(1+eτc )σAct

+
κσs (1+Λs)Cσst
(1+eτs)σAst

��

κσc (1+Λc)Cσc t
(1+eτc )σAct

+χ
κσs (1+Λs)Cσst
(1+eτs)σAst

�

+(ϵ −σ) κσs
Cσ−1

f t

�

Cst
1+eτs

�σ−1 Cst
Bst

d ln Bst −
ψ

2 d ln sst −
ψ

2 d ln sc t +ψd ln sg t









≈ 0.
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Noting that d ln sg t = −
s f t

sg t
d ln s f t and plugging in (B-33) and (B-34), we get:

d ln s f t (B-35)

≈
sg t

ψ





(ϵ −σ)κσs Cσ−1
st

Cσ−1
f t (1+ eτs)

σ−1 +σ

κσs (1+Λs)Cσst

(1+eτs)
σAst

�
�

sst
s f t
+χ2 sc t

s f t

�

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+χ
κσs (1+Λs)Cσst

(1+eτs)
σAst

�

�

χ
κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

��

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+χ
κσs (1+Λs)Cσst

(1+eτs)
σAst

�





Cst d ln Bst

Bst
.

The second term in the brackets is positive whereas the first term is weakly negative since
ϵ ≤ σ. Therefore if ϵ ≈ σ, then the first term is small and the shale gas boom increases the
mass of scientists in fossil-fuel innovations and decreases green innovation. When σ > ϵ,
then green energy is more complementary to natural gas than coal is, this creates a force
that pushes toward more green innovation following the shale gas boom.
Combining (B-34) with (B-35), it is also immediate that for ϵ ≈ σ, an increase in Bst

leads to an increase in natural gas innovation. Combining (B-33) with (B-35), we get:

d ln sc t

≈





sg t (ϵ −σ)κσs Cσ−1
st

Cσ−1
f t (1+ eτs)

σ−1 +
σ
κσs (1+Λs)Cσst

(1+eτs)
σAst

�

�

−sst +χ2
�

sg t + sst

�� κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+ sg tχ
κσs (1+Λs)Cσst

(1+eτs)
σAst

�

�

χ
κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

��

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+χ
κσs (1+Λs)Cσst

(1+eτs)
σAst

�





Cst d ln Bst

ψBst
.

The effect of an increase in Bst on sc t is ambiguous even for ϵ = σ: the second term in
brackets is positive if χ is close to 1 but negative for χ close to 0. This establishes Part i).
Assume now that χ = 1, then (B-35) gives:

d ln s f t |χ=1 ≈
sg t

ψ



(ϵ −σ)
κσs

�

Cst
1+eτs

�σ−1

κσc

�

Cc t
1+eτc

�σ−1
+ κσs

�

Cst
1+eτs

�σ−1 +σ

κσs (1+Λs)Cσst

(1+eτs)
σAst

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst





Cst

Bst
d ln Bst

≈
sg t

ψ

�

ϵ +
(σ− ϵ)κσc Cσ−1

c t

(1+ eτc)
σ−1 Cσ−1

f t

�

1−
(1+ eτs)

�

1+Λc

�

Ast Cc t

(1+ eτc)
�

1+Λs

�

Ac t Cst

�� κσs (1+Λs)Cσst

(1+eτs)
σAst

Cst
Bst

d ln Bst

κσc (1+Λc)Cσc t

(1+eτc)
σAc t

+
κσs (1+Λs)Cσst

(1+eτs)
σAst

.

s f t increases following the shale gas boom when χ = 1 provided that (1+Λs)Cst

(1+eτs)Ast
≥ (1+Λc)Cc t

(1+eτc)Ac t
(or

more generally as long as (σ− ϵ)
�

1− (1+eτs)(1+Λc)Ast Cc t

(1+eτc)(1+Λs)Ac t Cst

�

is not too negative).
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B.4 Complementarity between Natural Gas and Renewables

In this Appendix, we present and solve the model sketched in Section 5.3. To capture the
notion of greater complementarity between natural gas and renewables, we now assume
that energy is produced according to:

Et =
�

κc E
ϵ−1
ϵ

c t +κsE
ϵ−1
ϵ

sat + κg E
ϵ−1
ϵ

gat +κbE
ϵ−1
ϵ

bt

�
ϵ
ϵ−1

. (B-36)

Ebt is a hybrid energy which uses gas (sb) and green (g b) as inputs according to the
Cobb-Douglas technology Ebt = E1−α

sbt Eαg bt . Esat and Egat represent natural gas and green
technologies which are used “alone” (e.g., nuclear power).
In the following, we solve for the competitive equilibrium and derive the effect of the

natural gas boom on emissions. Then, we solve for the dynamic equilibrium and derive the
effect of the boom on innovation. The effect is theoretically ambiguous, but we quantify the
model and show that for reasonable parameter values, the shale gas boom still decreases
green innovation.

B.4.1 Competitive Equilibrium

To solve for the competitive equilibrium, we follow the same strategy as for the baseline
model. The Cobb-Douglas structure within the bridge technology implies that the effective
productivity of the bridge technology is given by

Cbt ≡
C1−α

st Cαg t

(1−α)1−ααα
, (B-37)

so that the price of the bridge technology is given by pbt =
γw
Cbt
. Total energy production is

still given by Et = CEt LEt and the price of energy is pEt = γw/CEt with CEt now given by

CEt ≡
�

κϵc Cϵ−1
c t + κ

ϵ
s Cϵ−1

st + κ
ϵ
g Cϵ−1

g t +κ
ϵ
bCϵ−1

bt

�
1
ϵ−1

. (B-38)

Similarly to (13), we get

Ec,t = κϵc

�

Cc t

CEt

�ϵ

Et ; Esa,t = κ
ϵ
s

�

Cst

CEt

�ϵ

Et ,

Ega,t = κϵg

�Cg t

CEt

�ϵ

Et ; Eb,t = κ
ϵ
b

�

Cbt

CEt

�ϵ

Et .
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Using that the bridge technology is produced in a Cobb-Douglas way, we have pst Esbt =

(1−α) pbt Ebt and pg t Eg bt = αpbt Ebt so that

Eg b,t =
αCg t

Cbt
Ebt and Esb,t =

(1−α)Cst

Cbt
Ebt .

The aggregate clean and natural gas energy productions are then respectively equal to:

Eg t =

�

κϵg

�Cg t

CEt

�ϵ

+
αCg t

Cbt
κϵb

�

Cbt

CEt

�ϵ
�

Et

and Es,t =
�

κϵs

�

Cst

CEt

�ϵ

+
(1−α)Cst

Cbt
κϵb

�

Cbt

CEt

�ϵ�

Et .

Total emissions are given by Pt = ξEt Et , where the emission rate is now:

ξEt = ξcκ
ϵ
c

�

Cc t

CEt

�ϵ

+ ξst

�

κϵs

�

Cst

CEt

�ϵ

+
(1−α)Cst

Cbt
κϵb

�

Cbt

CEt

�ϵ�

.

Labor allocation is still given by (15).

B.4.2 Emission Effects of a Natural Gas Boom

As before we derive the effect of a natural gas boom on emissions (at a constant level of
extraction technologies). We get that:

∂ ln P
∂ ln Bs

=
∂ lnξE

∂ ln Cs

∂ ln Cs

∂ ln Bs
+
∂ ln E
∂ ln Cs

∂ ln Cs

∂ ln Bs
.

∂ lnξE
∂ ln Cs

represents the substitution effect and is given by:

∂ lnξE

∂ ln Cs
= −ϵ

Pc

P
∂ ln CEt

∂ ln Cs
+ ϵ

Psa

P

�

1−
∂ ln CE

∂ ln Cs

�

+
Psb

P

�

∂ ln
�

CsC
ϵ−1
b

�

∂ ln Cs
− ϵ
∂ ln CE

∂ ln Cs

�

= ϵ
Psa

P
+ (1+ (1−α) (ϵ − 1))

Psb

P
− ϵ
∂ ln CE

∂ ln Cs
;

where

∂ ln CE

∂ ln Cs
=
κϵs Cϵ−1

s

Cϵ−1
E

+ (1−α)
κϵbCϵ−1

b

Cϵ−1
E

=
pst Esat

pEt Et
+
(1−α) pbt Ebt

pEt Et
=

pst Est

pEt Et
≡ Θs,
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where as before Θs denotes the revenue share of natural gas in the energy sector. We then
get that the substitution effect is determined by:

∂ lnξE

∂ ln Cs
=
�

ϵ
Psa

P
+ (1+ (1−α) (ϵ − 1))

Psb

P
− ϵΘs

�

,

which, for given revenue share and pollution share of natural gas, is lower than in the no
bridge technology case. Since ∂ ln CE

∂ ln Cs
= Θs, the scale effect is still determined by:

∂ ln Et

∂ ln Cst
=
∂ ln CEt LEt

∂ ln Cst
= Θs (λ+ (1−λ)ΩE) .

Therefore, one gets:

∂ ln P
∂ ln Bs

=
Cs

Bs

�

ϵ

�

Psa +
(1+(1−α)(ϵ−1))

ϵ Psb

P
−Θs

�

+Θs (λ+ (1−λ)ΩE)

�

,

which is lower than in the baseline case for given observables (Θs, ΩE and Ps/P). We get:

Proposition B.1 When there is some degree of complementarity between natural gas and the

green technology, a natural gas boom leads to a larger reduction in emissions.

Intuitively, an improvement in the natural gas technology improves the bridge technology
which is less polluting than natural gas alone, this tends to make the substitution effect more
negative than without the bridge technology.

B.4.3 Innovation Effects of a Natural Gas Boom

We keep the same structure for innovation as in the baseline model, so that again the direction
of innovation depends on relative profits from innovating in the various technologies. We
now have that expected profits from clean innovations obey:

Πg t = ηs−ψg t

�

1−
1
γ

�

�

pg t Egat + pg t Eg bt

�

,

and expected profits from fossil-fuel innovations obey:

Π f t = ηs−ψf t

�

1−
1
γ

��

Cc

Ac
pc t Ec t +

Cst

Ast
(pst Esat + pst Esbt)

�

.
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The revenue share of green technologies alone is given by:

pg t Egat

pEt Et
=
κϵg Cϵ−1

g t

Cϵ−1
Et

and the revenue share of green technologies within the bridge technology is given by:

pg t Eg bt

pEt Et
=
αpbt Ebt

pEt Et
=
ακϵbCϵ−1

bt

Cϵ−1
Et

=
ακϵb

�

C1−α
st Cαg t

(1−α)1−ααα

�ϵ−1

Cϵ−1
Et

.

With similar expressions for the revenue shares associated with natural gas, and using that
Πg t = Π f t in equilibrium, one gets:

�

s f t

sg t

�ψ

=

Cc
Ac
κϵc Cϵ−1

c t +
Cst
Ast

�

κϵs Cϵ−1
st + (1−α)κ

ϵ
b

�

C1−α
st Cαg t

(1−α)1−ααα

�ϵ−1�

κϵg Cϵ−1
g t +ακϵb

�

C1−α
st Cαg t

(1−α)1−ααα

�ϵ−1 .

To look at the effect of the natural gas boom on the innovation allocation at t = 1, we
log differentiate the right-hand side of this expression with respect to Bs. If that derivative is
positive (and lnγ is sufficiently small that the innovation allocation is unique), then a natural
gas boom leads to an increase in fossil-fuel innovations and a decline in green innovations.
We get:

∂ ln
�

s f t

sg t

�ψ

∂ ln Bst
=








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st ϵ+(1−α)κϵb
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C1−α
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(1−α)1−ααα

�ϵ−1

((ϵ−1)(1−α)+1)

�

Cc
Ac
κϵc Cϵ−1

c t +
Cst
Ast

�

κϵs Cϵ−1
st +(1−α)κ

ϵ
b

�

C1−α
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(1−α)1−ααα

�ϵ−1�

−
(ϵ−1)(1−α)ακϵb

�

C1−α
st Cαg t

(1−α)1−ααα

�ϵ−1

κϵg Cϵ−1
g t +ακ

ϵ
b

�

C1−α
st Cαg t

(1−α)1−ααα

�ϵ−1

















∂ ln Cst

∂ ln Bst
.

This expression is not necessarily positive, so that the natural gas boom could lead to
an increase in green innovation. Intuitively, the natural gas boom leads to an increase in
the hybrid share, which can in return boost innovation. This effect may dominate when the
coal technology is very advanced relative to the natural gas and hybrid technologies (Cc t is
large so that the first term is arbitrarily small): in that case, since most of the revenues of
the fossil-fuel power plant sector come from coal, the natural gas boom has a small effect on
the incentive to introduce fossil-fuel innovations.
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Therefore, one gets

d ln
d ln Bs

s f t

sg t
≈

1
ψ





Cst
Ast

�

ϵ
Esa
Es
+ ((ϵ − 1) (1−α) + 1) Esb

Es

�

Θs

Cc
Ac
Θc +

Cst
Ast
Θs

−
(ϵ − 1) (1−α) Ega

Eg





∂ ln Cst

∂ ln Bst
,

where the approximation comes from the fact that we ignore the dependence of the A′s on the
current innovation allocation. In contrast, without the hybrid technology, the corresponding
expression is

d ln
d ln Bs

s f t

sg t
|κb=0 ≈

1
ψ

Cst
Ast
Θst

Cc
Ac
Θc t +

Cst
Ast
Θst

∂ ln Cst

∂ ln Bst
,

which is larger for given observables (the revenue shares). However, rearranging terms, we
get that the natural gas boom still increases fossil-fuel innovation provided that:

ϵ
κϵsκ

ϵ
g Cϵ−1

st Cϵ−1
g t

κϵbCϵ−1
bt

+ ((ϵ − 1) (1−α) + 1) (1−α)κϵg Cϵ−1
g t (B-39)

+[ϵ − (ϵ − 1) (1−α)]ακϵs Cϵ−1
st +α (1−α)κ

ϵ
bCϵ−1

bt

> (ϵ − 1) (1−α)α
Ast

Cst

Cc

Ac
κϵc Cϵ−1

c t .

We then obtain:

Proposition B.2 When there is a hybrid technology, the increase in fossil-fuel innovation

following the natural gas boom is smaller, though it is still positive when (B-39) is satisfied.

Intuitively, a drop in the price of natural gas may incentivize clean innovation through
its effect on the hybrid technology. This counteracting force may dominate if the natural
gas and the hybrid shares are small compared to the coal share. In that case, the natural
gas boom has little impact on the returns to fossil-fuel innovation (which are dominated
by coal), but some positive effect on the returns to clean innovation (through the hybrid
technology). For this effect to dominate, however, the coal share needs to be very large (as
stipulated in (B-39)) and we now show that for reasonable parameter values, this does not
occur so that the natural gas boom still reduces green innovation.

B.4.4 Quantification

This section presents a quantification of the model with complementarity in order to
investigate whether condition (B-39) holds in the data. To map (B-36) to the data, we
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assume that all solar and wind generation is in the hybrid nest Eg bt , whereas all other green
base period generation (e.g., nuclear, biomass) is in the stand-alone green category Egat .

To begin, we solve for the Cobb-Douglas exponent α based on the equilibrium price of the
renewable-gas bundle:

pbt =
p1−α

st pαg t

(1−α)1−ααα
. (B-40)

The University of Chicago Energy Policy Institute (EPIC) has produced recent estimates of
the levelized costs of renewables backed up by natural gas for both (onshore) wind (pbt =

$54/MWh) and solar photovoltaic energy (pbt = $61/MWh) (Greenstone and Nath 2021).
The corresponding EIA’s Annual Energy Report posits levelized costs without backup for
onshore wind (pg t =$34/MWh), and for solar (pg t =$33/MWh).1 Combined with EPIC’s
estimate for the levelized cost of natural gas generation (pst = $42/MWh), we can use
(B-40) to back out the implied value of α for wind generation (bα = 0.8457) and solar
(bα= 0.7561). We take the generation-weighted average between wind and solar for 2011,
yielding α= 0.8446.

Next, in order to calibrate the distribution parameters in (B-36), we must specify
the remaining base year quantities. For natural gas, we proxy stand-alone generation
Esat through combined-cycle plant output, and treat all combustion or steam engine gas
generation as in the nest with renewables (Esbt). This distinction is motivated by the EIA’s
observation that combined-cycle plants are “often used as baseload generation” whereas
combustion and steam turbines are “generally only run during hours when electricity demand
is high.”2Importantly, this approach almost surely overstates the amount of natural gas that
is complementary to renewables since many areas may rely on gas peaker plants to deal
with demand fluctuations even in the absence of renewable generation. In 2011, combined
cycle accounted for 82% of utility scale net generation from natural gas, with combustion
and steam turbines accounting for the remaining 18%.3

Applying these assumptions to our base period data (2006-10) and using Eb0 = Eαg b0E1−α
sb0

to compute the initial Eb0 (equal to 0.3343 tril. KWh) enables us to back out the κ′s in (B-36)
1For consistency we utilize levelized cost estimates based on the same year assumptions to calibrate α.
2U.S. Energy Information Administration, “Today in Energy,” Dec. 18, 2017. URL (accessed September

2021): https://www.eia.gov/todayinenergy/detail.php?id=34172#tab1.
3EIA “Electricity Power Monthly” Table 1.7.C., Utility Scale Facility Net Generation from Natural Gas by

Technology: Total (All Sectors), 2011-October 2021. URL (accessed Septembre 2021): https://www.eia.
gov/electricity/monthly/epm_table_grapher.php?t=table_1_07_c.
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via the standard profit-maximization conditions,

pc0

ps0
=
κc E
− 1
ϵ

c0

κsE
− 1
ϵ

sa0

,
pg0

pb0
=
κg E−

1
ϵ

ga0

κbE−
1
ϵ

b0

,
pc0

pb0
=
κc E
− 1
ϵ

c0

κbE−
1
ϵ

b0

,

and the condition that 1= κc +κs +κb +κg .We note that, in order to ensure time period
consistency, we back out the price of the hybrid bundle relevant for the base period (2006-10)
based on (B-40) instead of using the aforementioned EPIC estimates. We also note that we
now assume the within-fossil nest elasticity of substitution value from the extended model
σ = 2 as value for ϵ since intermittency concerns that were motivating driving the lower
benchmark value of ϵ =1.8561 in the benchmark are now explicitly accounted for. However,
the results below are completely robust to using ϵ = 1.8561 here as well. Solving these four
equations in four unknowns yields κc = 0.25, κs = 0.30, κb = 0.14, and κg = 0.31.

In order to evaluate (B-39), it remains to solve for initial technology levels consistent with
equilibrium in the modified model. We do so by solving a modified version of benchmark
system of equations (A-16), with equation (B-37) for Cb0 added and with (B-38) replacing the
benchmark condition for CE0. As inputs to this computation, we also calculate the modified
model’s E0 from (B-36), pE0 based on the equilibrium condition that pc t = κc E

− 1
ϵ

c t pEt E
1
ϵ
t , and

eAE0 = 2.06e+05 from (A-15) which remains valid. The results are similar to the benchmark:

Ag,0 Ac,0 As,0 Bc,0 Bs,0 Cb,0 CE,0 AP,0 w0 LE0

100.3 461.7 449.7 337.1 119.4 153.0 32.7 4.79e+03 6.876+03 1.258%

Finally, we evaluate the innovation inequality (B-39), yielding:

594.7>>> 2.9.

These results imply that condition (B-39) holds easily, suggesting that the impact of the
shale gas boom is to increase incentives for fossil innovation even after accounting for the
possibility of complementarity between renewables and natural gas.
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