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KEY FINDINGS

n	 The article addresses a variety of tracking-error problems that are relevant to portfolio 
managers, such as the passive problem of tracking (or mimicking) a benchmark in which 
the benchmark weights may be known or unknown and the problem of implementing 
active tilts without deviating from a benchmark too much.

n	 The use of sophisticated shrinkage estimators of the covariance matrix, especially 
in conjunction with multivariate GARCH models, significantly improves tracking-error 
management compared to the commonly used sample covariance matrix and to naïve 
approaches that abstain entirely from estimating the covariance matrix.

n	 It is in the interest of portfolio managers who are tied to a benchmark to upgrade to 
sophisticated estimators of the covariance matrix in their fiduciary duty to adhere to 
best practice for their investors.

ABSTRACT

Tracking-error management is largely absent from the academic literature but ubiquitous 
in real life: Most portfolio managers are tied to a benchmark. Some of them aim to track 
a benchmark (such as the S&P 500), which is not necessarily a trivial task because the 
benchmark often contains assets that are difficult or expensive to trade. In this case, the 
objective is to minimize tracking error. Other managers aim to take on an active tilt without 
deviating too much from a benchmark. In this case, the objective is to control tracking 
error. In both cases, managers need an estimator of the covariance matrix of many (excess) 
returns for their objective. This article demonstrates the benefit of sophisticated shrinkage 
estimators (in conjunction with multivariate GARCH models) to this end, relative to the 
commonly used sample covariance matrix.

Markowitz (1952) established quantitative methods in portfolio management by 
bringing to light the trade-off between risk (variance, volatility) and expected 
returns. Mathematics solves it by optimizing the amount of capital invested 

in each one of the various stocks in the universe under consideration. This, by itself, 
was a profound and long-overdue insight.

Markowitz’s student, Sharpe (1964), took it one step further by arguing that the 
variance must be measured not against the zero-return level or the risk-free rate 
but against a passive value-weighted benchmark proxying for the so-called market 
portfolio. If financial markets are efficient, then the benchmark is unbeatable, so 
it is up to self-proclaimed active investment managers to prove that they can beat 
it through special skills in selecting and timing stocks and then assembling them 
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judiciously into outperforming portfolios. Thus, the focus shifts from a Markowitz 
mean–variance trade-off to a Sharpe mean-tracking-error trade-off, relative to some 
benchmark index representing the investment universe of interest for the target 
investor or investor class.

Such is the real-world impact of these ideas that nowadays nearly all prospec-
tuses of managed funds that seek to raise capital from investors must declare 
the specific index benchmark (among the many available) they are trying to beat or 
track. As Pastor, Stambaugh, and Taylor (2024, Section 5.4) point out, “the market 
share of indexing, relative to active management, has been steadily growing,” making 
tracking-error (TE) management more important than ever. Indeed, the funds that do 
not abide are labeled absolute return, which effectively banishes them to the alter-
native investment fringe, alongside hedge funds, cryptocurrencies, precious metals, 
and so on. This typically limits them to small-percentage allocations of the overall 
wealth pie because of obvious risk concerns, tight regulatory oversight, and the natural 
inclination of financial-advisory platforms to err on the side of caution.

The present article contributes to the TE literature, whose place in academia 
is smaller than in the real world, by drawing from and adapting some cutting-edge 
research in the mean–variance literature, specifically in terms of estimating a key ingre-
dient: the covariance matrix of many (excess) stock returns, whether unconditionally or 
conditionally. Because the investment universes involved are typically large (hundreds 
of stocks at least), shrinkage estimation will need to be applied, whether linearly or 
nonlinearly, in order to enhance accuracy and avoid the curse of dimensionality.

We study a wide and representative variety of TE problems of practical interest:

	 1.	 tracking a benchmark whose weights are known using a restricted (smaller, 
or different) investment universe;

	 2.	 tracking a benchmark whose weights are unknown (where only its returns are 
observed);

	 3.	 taking on an active tilt without deviating too much from a benchmark.

In turn, these different TE problems are crisscrossed with realistic design choices:

	 a.	 implementing the preceding with or without a constraint outlawing short sales;
	 b.	 incorporating the TE either as a penalty term in the objective function or as 

a constraint imposed upon the optimizer;
	 c.	 experimenting across a range of different universe sizes, up to 1,000.

The overall contribution of this article, based on real-data backtest simulations, 
is that the more advanced covariance matrix technologies make a strongly valuable 
impact in the field of TE. We can safely single out the Dynamic Conditional Correla-
tion-Nonlinear (DCC-NL) model of Engle, Ledoit, and Wolf (2019), which combines 
multivariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) with 
nonlinear shrinkage, as the most convincing all-around performer. In certain circum-
stances, however, detected and highlighted in the empirical part of the article, qua-
dratic inverse shrinkage (QIS; Ledoit and Wolf (2022b)), which is simpler because 
it is an unconditional model, can perform slightly better, and sometimes an even 
simpler model, the linear shrinkage formula of De Nard (2022), can be the laureate. 
But what is clearly established here is that continuing to use the textbook sample 
covariance matrix in order to manage TE1 is suboptimal and outdated for all strategies 
that are benchmarked against a passive index. Quantitative portfolio managers who 

1 Depending on the objective, managing tracking error can mean either minimizing tracking error 
or controlling tracking error.
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persevere in using the sample covariance matrix for TE minimization in large universes 
may eventually face questions on whether they have been legally derelict in their 
fiduciary duty to adhere to best practice for their investors.

Given that the main focus here is on the development of feasible investment 
strategies, we look at other considerations beyond just minimizing TE. One of them 
is ex ante optimism: The notion that ex post realized TE may be excessive because 
of in-sample overfitting. Here again, we find that shrinkage, especially of the DCC-NL 
type, mitigates the problem greatly, to the point that it becomes almost negligible in 
certain important backtest configurations. In terms of portfolio turnover and (when 
applicable) leverage, the same hierarchy between covariance matrix estimation tech-
niques is reaffirmed overall.

LITERATURE REVIEW

Zenti and Pallotta (2002) highlight the importance of some themes that are key 
to the problem at hand:

	 1.	 the potential gap between ex ante and ex post TEs (which we carefully mea-
sure in this article);

	 2.	 the need to take into account time-varying variances and correlations (as we 
do in the DCC-NL model described in the following and that is the one that 
we champion);

	 3.	 the need to recalibrate and rebalance on a regular basis (we do 21 trading 
days, which is near the middle of the span of frequencies that they deem 
worthy of consideration).

The two main limitations of their early paper are that: (i) They have a modest num-
ber of stocks in the universe (50, whereas we can easily go all the way up to 1,000), 
and (ii) they treat portfolio selection as essentially an exogenous process, whereas, 
in fact, it typically involves a kind of mean–variance or mean-TE optimization that 
uses as input a somewhat erroneous covariance matrix estimator derived from the 
same historical dataset as the Exponential Generalized Autoregressive Conditional 
Heteroskedasticity (EGARCH) model used for TE control, so the exogeneity hypothesis 
is hardly valid.

Jorion (2003) documents the advantages of taking into account overall portfolio 
variance, even in a TE framework. This is exactly what we do in the sections on active 
portfolios. His article, however, is theoretical in nature, as evidenced by his sentence 
on page 72: “Expected returns are arbitrary and were chosen so as to satisfy the 
efficient-set parameter.” By contrast, we buttress our theoretical developments with 
realistic backtests run on historical return data. Also, with only five assets in the 
investable universe, his dimensionality is too limited for practical purposes.

Ledoit and Wolf (2004) were the first to use (linear) shrinkage estimation of the 
large-dimensional covariance matrix for the purpose of minimizing TE. They focused 
only on the active part of the problem, whereas we also address the passive part, 
in two different ways. Also, their active component hinged on a forecast of expected 
returns that was somewhat manufactured because it involved a deliberately controlled 
amount of look-ahead; by contrast, our active component uses the Jorion (2003) 
concept of a global-minimum-variance tilt (or constraint) that is fully backtestable and 
tradable point-in-time. Finally, shrinkage technology for large-dimensional covariance 
matrixes has matured considerably over the last two decades, particularly in the 
directions of (i) a better-suited linear-shrinkage target (De Nard 2022), (ii) nonlinear 
shrinkage (Ledoit and Wolf 2022b), and (iii) conditional heteroskedasticity (Engle, 
Ledoit, and Wolf 2019), so we incorporate these three upgrades here.
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Belhaj, Maillard, and Portait (2005) have a narrower focus, the gap between  
ex ante estimated and ex post realized TEs, which can be called for brevity in-sample 
optimism. These authors explore the question largely from a theoretical point of view, 
but one of their great merits is that they highlight that the TE problem differs between 
active and passive portfolio managers, a subtle yet essential distinction that we have 
incorporated into the very structure of our article, both in the theoretical and in the 
empirical parts.

Basak, Jagannathan, and Ma (2009) have the same narrow focus as described 
earlier, but they escalate to more of a hands-on numerical solution: They use the 
jackknife to put a damper on in-sample optimism. In our article, excessive optimism 
is a concern that we strenuously monitor and address. The preeminent objective of 
any benchmarked portfolio manager, however, should be to find the covariance matrix 
estimator that most reduces ex post realized TE. One substantive contribution of ours 
is going beyond the standard factor models of Basak, Jagannathan, and Ma (2009) to 
shrinkage techniques that not only reduce in-sample optimism but also at the same 
time have the virtue of reducing ex post TE.

TE IN PORTFOLIO OPTIMIZATION

Passive: Minimum-TE Portfolios

We start with the most common problem considered in this strand of literature. 
The goal is to track a known portfolio, also called the benchmark, made up from 
a given universe of stocks, which is typically large. Therefore, at any given point in 
time, one knows both the constituents of the portfolio and the corresponding vector 
of portfolio weights. Clearly, this is a passive investment strategy.

Denote the vector of stock returns at time t by rt := (rt,1, …, rt,N)′, where N expresses 
the size of the benchmark investment universe. Furthermore, denote the (known) vector 
of benchmark portfolio weights at time t by wBM,t. Depending on index management, 
N could in theory change as a function of t, but the notation Nt is too unwieldy, so 
with this caveat in mind we keep the notation N for the sake of simplicity.

Known Benchmark Weights

Often the benchmark (portfolio) contains some small and illiquid stocks that are 
difficult or expensive to trade in practice. As a result, even if one knows the con-
stituents and the corresponding (portfolio) weights of the benchmark, it becomes 
demanding and costly to exactly trade it. Therefore, it is often desirable to use only 
a subset of !N < N stocks that are sufficiently easy and inexpensive to trade, which 
are called the eligible stocks or the eligible universe. As an example consider the 
problem of tracking the Russell 2000 index (N = 2,000) using only the !N = 500 or 
!N = 1,000, say, most liquid stocks in the Russell 2000 universe. The goal is to track 
the benchmark as well as possible using the subset of eligible stocks only, where as 
well as possible is measured by the variance of the TE (that is, the difference between 
the feasible portfolio and the benchmark). If we denote the (conditional) covariance 
matrix of rt by Σr,t the portfolio-selection problem thus becomes

	
min
w

(w − wBM,t ′) Σr,t (w − wBM,t ) 	
(1)

	 s.t. ′w = 1 	 (2)

	 wi = 0 ∀i ∈ineligible 	 (3)
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	 (wi ≥ 0) 	 (4)

Here, the symbol   in Equation 2 denotes a conformable vector of ones and the 
constraint signifies that the feasible portfolio must be fully invested. The constraint 
(Equation 3) signifies that one can only invest in the subset of !N  eligible stocks. 
Clearly, this subset needs to be exogenously determined before the portfolio selec-
tion can take place. Finally, the optional constraint (Equation 4) signifies that the 
feasible portfolio must be long only; such a constraint would be typically in place but 
not necessarily always.

There might be a reduced-information setting where the portfolio managers only 
have access to the benchmark returns without knowing the portfolio weights of the 
benchmark. This can be considered a special case of having access to benchmark 
returns without even knowing the portfolio constituents necessarily, which is dealt 
with in the next section. Intuitively, in absence of the corresponding weights, knowing 
the portfolio constituents actually has limited benefit.

Unknown Benchmark Weights

At time t, one observes !xt := !rt − rBM,t, where !rt ⊆ rt is the vector of returns that 
corresponds to the eligible universe and rBM,t is the return on the benchmark whose 
portfolio weights are unknown (and where it does not really matter whether its con-
stituents are known or unknown). The problem formulation then becomes

	
min
w

′w Σ !x,t w 	
(5)

	 s.t. ′w = 1 	 (6)

	 (wi ≥ 0) 	 (7)

The resulting portfolios are sometimes referred to as benchmark-following or 
fund-mimicking portfolios, where the convention seems to be that the former term is 
generally used when the portfolio constituents are known whereas the latter is gen-
erally used when they are unknown, but, as stated before, knowledge of the portfolio 
constituents is actually irrelevant when their portfolio weights in the benchmark are 
unknown. In an extreme case, the benchmark might even belong (partly) to differ-
ent asset classes, such as when one uses an eligible universe of stocks to mimic 
a multiasset portfolio that contains, apart from stocks, also bonds, commodities, 
hedge funds, and cash, say. Obviously, the more distant the investment universe of 
the benchmark is from the eligible universe of stocks, the more difficult the problem 
of mimicking the benchmark becomes.

Active: Strategies with Tracking-Error Considerations

We now turn attention to active investment strategies that are tied to a given 
benchmark comprised of N stocks. For simplicity, we will here assume that all  
N stock are investable or eligible for the fund manager so that !N = N.2 The goal of 
the manager is to design an investment strategy that performs well in an absolute 
sense but does not deviate too much from the benchmark.

2 This is not a necessary assumption because one could also introduce in this context an eligible 
and an ineligible universe for the active manager.
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Strategies with TE as part of the objective function. One possible problem formu-
lation includes the TE in the objective function:

	
max

w
δ ⋅active − (1 − δ) ⋅ (w − wBM,t ′) Σr,t (w − wBM,t )

	
(8)

	 s.t. ′w = 1 	 (9)

	 (wi ≥ 0) 	 (10)

where δ ∈ [0, 1] is a constant chosen by the investment manager. Here, active 
denotes a measure for the active strategy that the manager would like to maxi-
mize. In other words, the manager wants to maximize a convex combination of the 
quality of the active portfolio and the negative of the variance of the TE relative to 
the benchmark. The parameter δ determines the weight/importance assigned to 
the active part and ranges from 0 (minimum-TE portfolio) to 1 (active portfolio only, 
without TE consideration).

For concreteness and to abstain from having to estimate/forecast expected asset 
returns, in our empirical application in the following, we will focus on the global 
minimum variance (GMV) portfolio for the active portfolio that then results in active 
:= −w′Σr,tw. In this application then, the manager seeks to minimize a convex com-
bination of the variance of the portfolio and the variance of the TE, subject to being 
fully invested and (if desired) being long only.

Strategies with TE constraint. Another possible formulation includes the TE in the 
list of constraints rather than in the objective function:

	
max

w
active

	
(11)

	 s.t. ′w = 1 	 (12)

	 (w − wBM,t ′) Σr,t (w − wBM,t ) ≤ τ 	 (13)

	 (wi ≥ 0) 	 (14)

where τ > 0 is a constant chosen by the investment manager. In other words, the 
manager wants to maximize the criterion of the active strategy, subject to being fully 
invested, (if desired) being long only, and to imposing an upper bound on the standard 
deviation of the TE relative to the benchmark. For concreteness, and to abstain from 
having to estimate/forecast expected asset returns, in our empirical application in 
the following, we will again focus on the GMV portfolio for the active portfolio that 
then results in active := −w′Σr,tw.

TE Estimation

For any vector of portfolio weights w, the variance of the TE at time t is given 
by (w − wBM,t)′Σr,t(w − wBM,t) for known benchmark weights, respectively by ′w Σ !x,t w for 
unknown benchmark weights. Estimation of the TE variance is reduced to estimation 
of a covariance matrix Σr,t, respectively Σ !x,t, which can be based on a history of past 
stock returns {rt}, respectively TE returns { !xt }.
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Covariance Matrix Estimation

When N is small, such as N = 30 for the Dow Jones 30 index, the sample covari-
ance matrix would be a satisfactory choice. But when N is large, such as N = 500 for 
the S&P 500 index, N = 2,000 for the Russell 2000 index, or even N > 2,000 for the 
MSCI ACWI index, the sample covariance matrix no longer works well. The problem 
of estimating a covariance matrix of asset returns when the size of the investment 
universe is large has been studied extensively in the literature. In this article, we 
will make use of (non)linear shrinkage estimators that have been proposed by the 
authors over the last 20+ years and refer the reader not already familiar with these 
estimators to the overview paper of Ledoit and Wolf (2022a).

EMPIRICAL ANALYSIS

Data and General Portfolio-Construction Rules

We download daily stock return data from the Center for Research in Security 
Prices (CRSP) starting on January 1, 1978, and ending on December 31, 2022. We 
restrict attention to stocks from the NYSE, AMEX, and NASDAQ stock exchanges.

For simplicity, and in line with much of the literature, we adopt the common 
convention that 21 consecutive trading days constitute one (trading) month. The 
out-of-sample period ranges from February 7, 1983, through December 30, 2022, 
resulting in a total of 479 months (or 10,059 days). All portfolios are updated month-
ly.3 We denote the investment dates by k = 1, …, 479. At any investment date k, an 
N × N, respectively, an !N × !N, covariance matrix is estimated based on the most 
recent 1,260 daily (raw) returns, rt, respectively daily eligible excess returns, !xt, which 
roughly corresponds to using five years of past data.

We consider investment universes up to N = 1,000. For a given combination (k, N), 
the investment universe is obtained as follows. We find the set of stocks that have 
an almost complete return history over the most recent T = 1,260 days as well as a 
complete return future over the next 21 days.4

From the remaining set of stocks, we then pick the largest N, respectively largest 
!N, stocks (as measured by their market capitalization on investment date k) as our 
investment universe, respectively eligible investment universe. The ineligible invest-
ment universe consists of the M smallest stocks where M ∈{0,1,…,N − !N}. In this 
way, the (entire, eligible and ineligible) investment universe changes relatively slowly 
from one investment date to the next.

There is a great advantage in having a well-defined rule that does not involve 
drawing stocks at random because such a scheme would have to be replicated many 
times and averaged over to give stable results. As far as rules go, the one we have 
chosen seems the most reasonable because it avoids so-called penny stocks whose 
behavior is often erratic. Also, high-market-cap stocks tend to have the lowest bid–ask 
spreads and the highest depth in the order book, which allows large investment funds 
to invest in them without breaching standard safety guidelines. Finally, the benchmark 
indexes are often market-cap weighted, stressing the importance of large caps while 
reducing the impact of small caps for TE management.

3 Monthly updating is common practice to avoid an unreasonable amount of turnover and thus 
transaction costs. During a month, from one day to the next, we hold the number of shares fixed rather 
than portfolio weights; in this way, there are no transactions during a month.

4 The first restriction allows for up to 2.5% of missing returns over the most recent 1,260 days, 
and replaces missing values by zero. The latter, forward-looking restriction is not feasible in practice 
but is commonly used in the literature. Although it might affect (in a minor way) absolute performance 
due to survivorship bias, it does not systematically affect relative performance of various methods.
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Competing Covariance Matrix Estimators

To compute the ex ante TE, by which we mean the TE implied by a given estimator 
of the covariance matrix, the following estimators are included in our analysis:

§	S: the sample covariance matrix.
§	L: the linear shrinkage estimator of De Nard (2022); that is, we use the 

constant-variance-covariance shrinkage target with a constant variance on 
the diagonal and a constant covariance on the off-diagonal.

§	NL: the nonlinear shrinkage estimator of Ledoit and Wolf (2022b), that is, we 
use the QIS estimator.

§	DCC-NL: the multivariate GARCH model of Engle, Ledoit, and Wolf (2019) 
where the unconditional correlation matrix is estimated via nonlinear shrink-
age (QIS). We use an averaged-forecasting approach as proposed by De Nard, 
Ledoit, and Wolf (2021) and De Nard et al. (2022).

We also include the following naïve investment strategies that abstain from any 
estimation of the TE (and thus from any estimation of the covariance matrix):

§	VW-E: the value-weighted portfolio of the eligible universe, based on market cap.
§	EW-E: the equally weighted portfolio of the eligible universe.

Benchmarks

In any application we need to select a benchmark relative to which we want to 
manage TE. We include the following three benchmarks in our analysis.

§	VW: the long-only value-weighted portfolio.
§	EW: the long-only equally weighted portfolio.
§	Markowitz: the 130/30 long–short Markowitz portfolio with momentum signal: 

for a detailed description, see Appendix A.

For the applications with known benchmark weights, in each case the constituents 
of the benchmark are all N = 1,000 stocks in the investment universe (at any given 
investment date k). On the other hand, for the applications with unknown benchmark 
weights, in each case the constituents of the benchmark are the M = 200 smallest 
stocks in terms of market capitalization (at any given investment date k).

Performance Measures

§	TE: We measure the overall ex post TE by computing the standard deviation 
of the 10,059 out-of-sample portfolio returns in excess of the benchmark; 
similarly, we measure the ex post TE for month k by computing the same 
measure of the 21 out-of-sample returns during the month only. In each case, 
we then multiply by 252 to annualize. We compute the ex ante TE for month 

k as (ŵk − wBM,k ′) Σ̂r,k (ŵk − wBM,k ), respectively !w! ′k Σ̂ !x,k !w! k, where we use the 

same estimator of the covariance matrix that was used for constructing the 
portfolio (that is, for constructing ŵk, respectively !̂wk) in the first place, and 
then multiply by 252 to annualize. The portfolio ŵk corresponds to known 
benchmark weights, and !̂wk to unknown ones.
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§	MR: We compute the mean ratio (MR) of the monthly ex ante to the ex post 

TE as 
1

479
∑k=1

479 ex ante TEk /ex post TEk.

§	MD: We compute the mean difference (MD) between the monthly ex ante and 

ex post TEs as 
1

479
∑k=1

479(ex ante TEk –ex post TEk ) and then multiply by 252 
to annualize.

§	MAD: We compute the mean absolute difference (MAD) of the monthly  

ex ante versus the ex post TE as 
1

479
∑k=1

479 |ex ante TEk –ex post TEk|, and then 
multiply by 252 to annualize.

§	SD: We compute the standard deviation of the 10,059 out-of-sample returns, 
and then multiply by 252  to annualize.

§	SD*: We compute the standard deviation of the out-of-sample returns for all 
days where the constraint (Equation 13) is fulfilled for all competitors, and 
then multiply by 252 to annualize.

§	Success: We compute the success rate of the one-month ex post TE versus its 

constraint (Equation 13): 
1

479
∑k=1

479
{ex post TEk≤τ}

, where {⋅} denotes the indicator 
function.

§	Obj: We compute the realized objective of (Equation 8) as δ⋅SD2 + (1 − δ) ⋅ TE2 .

§	TO: We compute average (monthly) turnover as 
1

478
∑k=1

478 ||ŵk+1 − ŵk
hold ||1, where 

||⋅||1 denotes the L1 norm and ŵk
hold denotes the vector of the hold portfolio 

weights at the end of month k.5

§	GL: We compute average (monthly) excess gross leverage as 
1

479
∑k=1

479 ||ŵk||1 −1.

PASSIVE MINIMUM-TE PORTFOLIOS

Known Benchmark Weights

The problem formulation of passive minimum-TE portfolios with known benchmark 
weights is described in Equations 1–4. Exhibit 1 presents the results on ex post TE, 
which can be summarized as follows:

§	For any scenario, as expected, TE decreases as the size of the eligible uni-
verse, !N, increases: A larger universe of eligible stocks makes it easier to 
track the benchmark.

§	Being able to short stocks is often (weakly) beneficial: The differences range 
from zero to substantial, where the most substantial differences are observed 
for the Markowitz benchmark.

§	TE is generally best (that is, lowest) for the value-weighted benchmark, fol-
lowed by the equally weighted benchmark, followed by the Markowitz bench-
mark.

§	The overall ranking, from best to worst, is DCC-NL, NL, L, S, and naïve, where 
naïve corresponds to VW-E for the VW benchmark and to EW-E for the EW and 
Markowitz benchmark. Therefore, taking into account the covariance matrix 
is crucial for minimum-TE portfolios.

§	With the single exception of !N = 100 for the value-weighted benchmark, all 
shrinkage estimators outperform the sample covariance matrix.

5 The vector ŵk
hold is determined by the initial vector of portfolio weights, ŵk

, together with the evo-
lution of the various prices of the N stocks in the portfolio during month k.
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§	In particular, DCC-NL gives the uniformly lowest TEs across all scenarios, 
which is also always lower than the corresponding TE based on S with statis-
tical significance.

We also study whether one estimator delivers a lower ex post TE than another 
estimator with statistical significance. To reduce a multiple testing problem and 
because a major goal of this article is to show that using sophisticated shrinkage 
estimators (in conjunction with multivariate GARCH models) improves minimum-TE 
portfolios, we restrict attention to three comparisons: (i) S with L, (ii) S with NL, and 
(iii) S with DCC-NL. For a given scenario, a two-sided P-value for the null hypothesis 
of equal TE is obtained by the Prewhitened Heteroskedasticity and Autocorrelation 
Consistent (HACPW) method described in Ledoit and Wolf (2011, Section 3.1).6 With 
the exception of some smaller L and NL minimum-TE portfolios ( !N = 100), the outper-
formance of the shrinkage estimators over S is always statistically significant and, 
arguably, economically meaningful as well. In sum, upgrading from the sample cova-
riance matrix to a shrinkage estimator of the covariance matrix is clearly beneficial 
in terms of reducing ex post TE, with the best choice being DCC-NL.

Exhibit 1 presents ex post TEs over the entire out-of-sample period. As a robust-
ness check, we can in addition study monthly ex post TEs. To this end, we restrict 
attention to long–short portfolios based on !N = 800 stocks tracking the value-weighted 
benchmark. Exhibit 2, Panel A plots the time series of monthly ex post TEs for S and 
DCC-NL.7 It can be seen that DCC-NL series lies uniformly below the S series so that 
the outperformance of DCC-NL over S is not restricted to certain periods but holds 
throughout. Exhibit 2, Panel B compares the distributions of the monthly ex post 

6 Because the out-of-sample size is very large at 10,059, there is no need to use the computationally 
more involved bootstrap method described in Ledoit and Wolf (2011, Section 3.2), which is preferred 
for small sample sizes.

7 We only include two covariance matrix estimators in this plot to keep the plot visually digestible.

EXHIBIT 1
Annualized Ex Post TE Numbers of Minimum-TE Portfolios, in Percentage

NOTES: All numbers are based on the 10,059 daily out-of-sample excess returns from February 7, 1983, until December 30, 2022.  
For any row, the lowest (and thus best) number appears in boldface, and significant outperformance over S is denoted by asterisks. 
*** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, and * denotes significance at the 0.1 level.

Long–Short

S

1.92
0.37
0.23

5.57
2.21
1.02

10.00
6.51
4.77

L

1.90**
0.33***
0.13***

5.49***
2.03***
0.89***

9.78***
5.80***
3.53***

NL

1.92
0.32***
0.10***

5.51***
1.98***
0.84***

9.74***
5.62***
3.29***

DCC-NL

1.88***
0.31***
0.10***

5.43***
1.93***
0.81***

9.36***
5.54***
3.20***

Long-Only

Ex Post TEs

Naïve

2.82
0.73
0.22

6.61
2.95
1.22

14.61
14.18
14.31

S

1.92
0.34
0.19

5.52
2.04
0.87

10.30
7.12
5.91

L

1.90**
0.32***
0.17***

5.49*
1.99***
0.85***

10.28
7.06***
5.84***

NL

1.92
0.31***
0.17***

5.52
1.98***
0.84***

10.28
7.06***
5.84***

DCC-NL

1.88***
0.31***
0.17***

5.43***
1.93***
0.81***

9.87***
6.76***
5.63***

Value-Weighted Benchmark

Equally Weighted Benchmark

Markowitz Benchmark

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800
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TEs by lining up the corresponding violin plots.8 The benefit of L, NL, and DCC-NL 
relative to S can clearly be seen because their distributions lie below that of S.  
The overall winners are NL and DCC-NL. In passing, it is also noteworthy that the 
naïve VW-E portfolio (that is, the value-weighted portfolio of the eligible universe) 
actually performs better according this metric than the tracking portfolio based on 
the sample covariance matrix.

We next compare monthly ex ante with ex post TEs by looking at the MR, MD, 
and MAD for each scenario in Exhibit 3. First, the MR should ideally be equal to one, 
with values less than one indicating that the ex ante estimator tends to be optimistic 
regarding the ex post realization. It can be seen that all methods are generally opti-
mistic and that optimism increases with !N; overall, S performs the worst whereas 
NL and DCC-NL perform the best. Second, the MD should ideally be equal to zero, 
with values less than zero indicating that the ex ante estimator tends to be optimistic 
regarding the ex post realization. It can be seen that all methods are generally opti-
mistic and that optimism increases with !N; overall, S performs the worst whereas NL 
and DCC-NL perform the best. Third, the MAD should be small; overall, S performs 
the worst whereas DCC-NL performs the best.

Exhibit 4 provides a graphical illustration for long–short portfolios based on 
!N = 800 eligible stocks tracking the value-weighted benchmark. Panel A shows violin 
plots for the monthly differences between ex ante and ex post TEs whereas Panel 
B shows violin plots for the corresponding absolute differences. Again, the benefit 
of upgrading from the sample covariance matrix to shrinkage estimators is visually 
apparent, with NL and DCC-NL performing the best.

So far, the comparisons of ex ante and ex post TEs have been carried out within 
methods. This means that after a method has been used to construct a portfolio, the 
same method has been used to compute the corresponding ex ante TE. Naturally, 
doing so generally yields optimistic results, especially for large !N.9

8 A violin plot visually summarizes the distribution of a data set by combining the corresponding box 
plot with a (rotated) kernel density estimator; note that within the box of the box plot the sample median 
is indicated by a horizontal line whereas the sample average is indicated by a diamond.

9 The situation is akin to asking someone to pick a team he/she thinks will win a sports champi-
onship, say the Premier League, and then asking the same person to predict the number of points this 
team will have by the end of the season.

EXHIBIT 2
Long–Short Minimum-TE Portfolios ( !N == 800) Tracking the Value-Weighted Benchmark, in Percentage

Panel B: Distribution of Monthly Ex Post TEs

VW-E Sample L NL DCC-NL
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Alternatively, one can look at the ability of a given method to evaluate (or estimate) 
the ex post TE of an arbitrary portfolio.10 This question is addressed in Exhibit 5 where 
in Panels A and C we use the sample covariance matrix to compute ex ante TEs  
(for the five portfolios considered) and in Panels B and D we use DCC-NL to compute  
ex ante TEs. Panels A and B show that whereas S is most optimistic for its own 
portfolio (as expected) it is also optimistic for the shrinkage-based portfolios, although 
to a lesser extent, and pessimistic for the VW-E portfolio. On the other hand, DCC-NL 
tends to be quite realistic for all five portfolios, though of course somewhat optimistic 
for its own portfolio. In addition, Panels C and D demonstrate that the absolute mean 
difference is lower in distribution for all five portfolios when upgrading from the S to 
DCC-NL. This exercise clearly demonstrates that there is a benefit in using a more 

10 The situation is akin to asking someone to pick a team he/she thinks will win a sports champi-
onship, say the Premier League, and then asking another person to predict the number of points this 
team will have by the end of the season.

EXHIBIT 3
Monthly Ex Ante vs. Ex Post TEs of Long–Short Minimum-TE Portfolios, in Percentage

NOTES: All numbers are based on 10,059 daily out-of-sample excess returns from February 7, 1983, until December 30, 2022.  
For any row, the best performer appears in boldface.

Value-Weighted Benchmark

Equally Weighted Benchmark

Markowitz Benchmark

MR

S

1.01
0.63
0.39

1.00
0.63
0.44

0.94
0.59
0.35

L

1.08
0.81
0.67

1.04
0.79
0.64

1.03
0.83
0.70

NL

1.13
0.91
0.82

1.08
0.88
0.78

1.14
1.00
0.95

DCC-NL

0.96
0.84
0.82

0.95
0.82
0.82

0.93
0.87
0.90

S

–0.15
–0.14
–0.13

–0.50
–0.87
–0.57

–1.33
–2.75
–2.99

L

–0.04
–0.08
–0.04

–0.30
–0.53
–0.34

–0.59
–1.28
–1.13

NL

0.04
–0.05
–0.02

–0.18
–0.37
–0.22

0.28
–0.28
–0.35

DCC-NL

–0.18
–0.06
–0.02

–0.62
–0.43
–0.18

–1.20
–0.96
–0.47

MD

Monthly Ex Ante vs. Ex Post TEs of Long-Short Portfolios

MAD

S

0.47
0.15
0.13

1.38
0.88
0.57

2.37
2.75
2.99

L

0.47
0.09
0.05

1.38
0.57
0.34

2.35
1.50
1.18

NL

0.49
0.07
0.03

1.43
0.48
0.24

2.55
1.29
0.78

DCC-NL

0.36
0.07
0.03

1.10
0.46
0.20

1.91
1.19
0.68

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

EXHIBIT 4
Violin Plots for Long–Short Minimum-TE Portfolios ( !N == 800) Tracking the Value-Weighted Benchmark, in Percentage
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accurate estimator of the covariance matrix not only for portfolio construction but 
also for portfolio evaluation.

We next turn to the additional performance measures of turnover and gross 
leverage. The results for long–short portfolios are presented in Exhibit 6 and can be 
summarized as follows:

§	On balance, NL generates the least turnover and S generates the highest 
turnover. The comparison between L and DCC-NL is not so clear, but at least 
for large !N it holds that DCC-NL generates less turnover than L despite being 
a dynamic model.

§	On balance, NL generates the least gross leverage and S generates the high-
est gross leverage. The comparison between L and DCC-NL is not so clear, 
but at least for large !N it holds that DCC-NL generates less gross leverage 
than L.

EXHIBIT 5
Violin Plots of Monthly Ex Ante vs. Ex Post TEs of Long–Short Minimum-TE Portfolios ( !N =

=
800)  

Tracking the Value-Weighted Benchmark, in Percentage
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As a final robustness check we rerun the numbers of Exhibit 1, which are the 
ones of most interest, for the long–short portfolios but with a shorter estimation 
window: Instead of using the past T = 1,260 days to estimate a covariance matrix, 
we now use the past T = 504, respectively T = 252 days only; in other words, instead 
of using (roughly) five years of past data, we now use (roughly) two, respectively one 
year, of past data only. Intuitively, a shorter estimation window should favor the static 
shrinkage estimators L and NL relative to the dynamic shrinkage estimator DCC-NL. 
As shown in Exhibit 7, however, DCC-NL continues to yield the best results across all 
scenarios and also for shorter estimation windows. Again, all shrinkage estimators 
consistently outperform the sample covariance matrix and the naïve strategies.

Unknown Benchmark Weights

The problem formulation of passive minimum-TE portfolios with unknown bench-
mark weights is described in Equations 5–7. Arguably, this formulation is less relevant 
in practice compared to the case of known benchmark weights. Therefore, we relegate 
the corresponding results to Appendix B to save space.

ACTIVE PORTFOLIOS

Remember that for the active portfolio strategies, we assume that every stock is 
investable so that !N = N always, and that the TE is only a component of the investor’s 
objective now.

TE As Part of the Objective Function

The problem formulation is described in Equations 8–10 with active standing 
for the negative of the variance of the active portfolio. As stated before, in this 
application then, the manager seeks to minimize a convex combination of the vari-
ance of the portfolio and the variance of the TE, subject to being fully invested and 
(if desired) to being long only. Therefore, to make the results easier to digest and 
to put them on the same scale as the TE results shown earlier, Exhibit 8 reports 

EXHIBIT 6
Additional Performance Measures of Long–Short Minimum-TE Portfolio, in Percentage

NOTES: All numbers are based on 479 monthly weight vectors from February 7, 1983, until December 30, 2022. For any row,  
the lowest (and thus best) number appears in boldface.

Value-Weighted Benchmark

Equally Weighted Benchmark

Markowitz Benchmark

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

S

16.13
13.29
12.78

34.57
57.97
49.74

68.05
217
330

Turnover

Characteristics of Long–Short Portfolios

L

12.64
9.89
8.32

25.05
37.16
31.77

48.86
130
168

NL

10.36
7.96
6.91

19.24
24.06
20.10

39.06
93.93
124

DCC-NL

20.97
9.74
7.56

53.81
38.07
21.96

116
146
137

Gross Leverage

S

0.90
0.71
1.73

44.66
50.27
10.97

148
324
364

L

0.06
0.06
0.07

21.41
20.80

1.89

94.12
193
178

NL

0.03
0.00
0.00

10.28
6.46
0.07

77.32
137
124

0.23
0.01
0.02

25.24
14.86
0.52

84.17
133
116

DCC-NL
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EXHIBIT 7
Annualized Ex Post TEs of Minimum-TE Portfolios with Two and One Years of Estimation-Window Length,  
in Percentage

NOTES: All numbers are based on 10,059 daily out-of-sample excess returns from February 7, 1983, until December 30, 2022.  
For any row, the lowest (and thus best) number appears in boldface, and significant outperformance over S is denoted by asterisks. 
*** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, and * denotes significance at the 0.1 level.

Value-Weighted Benchmark

Equally Weighted Benchmark

Markowitz Benchmark

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

T = 504

S

1.99
0.67
1.08

5.75
3.35
1.11

10.53
7.50
6.06

L

1.91***
0.34***
0.13***

5.50***
2.10***
0.91***

10.07***
6.21***
3.73***

NL

1.92***
0.32***
0.10***

5.50***
2.00***
0.84***

10.03***
5.88***
3.43***

DCC-NL

Ex Post TEs of Long–Short Portfolios

1.90***
0.31***
0.10***

5.48***
1.95***
0.82***

9.91***
5.86***
3.38***

T = 252

S

2.21
1.22
1.71

6.45
2.59
0.96

12.21
8.77
6.70

L

1.92***
0.34***
0.12***

5.54***
2.14***
0.90***

10.70***
6.79***
3.96***

NL

1.92***
0.33***
0.10***

5.53***
2.07***
0.86***

10.65***
6.54***
3.77***

DCC-NL

1.92***
0.33***
0.11***

5.53***
2.03***
0.85***

10.56***
6.44***
3.72***

EXHIBIT 8
Realizations of Objective Function (Equation 15)

NOTES: All numbers are based on 10,059 daily out-of-sample returns from February 7, 1983, until December 30, 2022. For any row, 
the lowest (and thus best) number appears in boldface. For δ = 100%, significant outperformance over S is denoted by asterisks.

δ = 100%

δ = 75%

δ = 50%

Long–Short

Ex Post TEs

S

12.93
10.47
12.94

12.93
11.00
12.37

7.08
10.33
10.98

3.84
8.15
8.34

L

12.90
9.69***
8.59***

12.90
10.59
10.02

6.56
10.14
9.85

3.54
8.09
7.98

NL

12.78***
9.53***
8.40***

12.78
10.51
9.92

6.94
10.10
9.81

3.29
8.08
7.96

DCC-NL

12.66***
9.11***
7.26***

12.66
10.30

9.41

6.65
10.00

9.58

3.47
8.05
7.89

δ = 25%

N = 100
N = 500
N = 1000

N = 100
N = 500
N = 1000

N = 100
N = 500
N = 1000

N = 100
N = 500
N = 1000

Long-Only

S

13.54
11.53
10.51

12.65
11.21
10.63

11.18
10.30

9.99

8.52
8.12
8.00

L

13.62
11.50***
10.52

12.71
11.20
10.63

11.20
10.30
9.99

8.52
8.11
8.00

NL

13.52**
11.50***
10.61

12.64
11.20
10.67

11.16
10.30
10.02

8.51
8.11
8.00

DCC-NL

13.18***
9.84***
7.89***

12.44
10.41

9.40

11.09
10.00

9.54

8.49
8.04
7.89
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the square root of the ex post convex combination of 
the two variances, which corresponds to taking the 
square root of the negative of the objective function 
(Equation 8):

	 δ ⋅ ′w Σr,t w + (1 − δ) ⋅ (w − wBM,t ′) Σr,t (w− wBM,t ) 	 (15)

In this way, smaller numbers are now also better.
It can be seen that the best results are uniformly 

achieved by DCC-NL. The overall ranking, from best 
to worst, is DCC-NL, NL, L, and S. All shrinkage esti-
mators benefit from the ability to go short (that is, 
long–short versus long only), whereas going short 
is mostly harmful for the sample covariance matrix 
because of its larger estimation error, especially in 
larger dimensions. Note that for long–short portfolios 
the outperformance of shrinkage estimators over 
the sample covariance matrix is remarkable. For 
long-only, however, only shrinkage estimators in 
conjunction with DCC can consistently and markedly 
outperform S.

For δ = 100%, which corresponds to the GMV portfolio without any TE consider-
ation, the out-of-sample standard deviation is statistically significant lower for shrink-
age estimators, at least consistently for long–short GMV portfolios.11

Exhibit 9 presents violin plots of monthly realizations of the objective function 
for δ ∈ {0.75, 0.5, 0.25}. It can be seen that for any value of δ using DCC-NL yields 
a distribution that lies below the corresponding distribution when using the sample 
covariance matrix. Therefore, updating from the S to a sophisticated shrinkage esti-
mator holds also remarkable overall improvement for active managers that control 
for benchmark deviations.

TE Constraint

The problem formulation is described in Equations 11–14 with active standing for 
the negative of the variance of the active portfolio. As stated before, in this application 
then, the manager seeks to minimize the variance of the portfolio, subject to an 
upper bound τ of the standard deviation/variance of the TE, as well as being fully 
invested and (if desired) to being long only. In this section, we show empirical results 
for GMVs without, with 10%, with 5%, and with 1% (annualized standard deviation of 
the) TE constraints.

Note that this problem formulation, which is important in practice, is more difficult 
to evaluate because we cannot just look at the out-of-sample objective number, 
being SD. We need also to take into account if, or how many times, the TE constraint 
(Equation 13) is actually fulfilled out-of-sample. For fair comparison, we report in 
Exhibit 10 not only the out-of-sample SD numbers but also the SD for all days where 
the constraint is fulfilled across all competitors (SD*), the ex post TE, the MAD 
between the monthly ex ante versus ex post TEs (MAD), and the success rate of the 
one-month ex post TE versus its constraint; all being defined earlier.

11 Arguably, portfolios without TE consideration are not of leading interest in this article, but the 
result is certainly noteworthy in passing.

EXHIBIT 9
Monthly Realizations of Objective Function 
(equation 15) for Long–Short Portfolios, in Percentage

NOTE: The number after the name Sample or DCC-NL indicates 
the value of the δ parameter in the objective function.
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Exhibit 10 presents the results for the long–short portfolios, which can be sum-
marized as follows.

§	In the absence of a TE constraint, all shrinkage estimators consistently and 
markedly outperform the S estimation in terms of SD and TE. With the single 
exception of N = 100, DCC-NL has the lowest SD and TE numbers.

§	Across all TE constraints and performance measures, with the single excep-
tion of SD, DCC-NL is the clear winner.

§	In terms of SD, L performs the best. This comes as no surprise, however, 
because the success rate of L is also among the lowest.

§	On the contrary, DCC-NL has the highest success rates ranging from 73.7% 
to 80.3%. If we control for the fulfilment of the TE constraint, DCC-NL has the 
lowest out-of-sample SD.

§	Additionally, DCC-NL has the lowest ex post TE numbers and smallest differ-
ences of ex ante versus ex post TE numbers. Finally, only DCC-NL has uni-
formly lower TE numbers compared to its TE constraint across all scenarios.

To visualize the results, Exhibit 11, Panels A–C plot the time series of monthly  
ex post TEs for S and DCC-NL. It can be seen that the DCC-NL series is consistently 
closer to, and also more frequently below, the TE constraint threshold. Noteworthy 
is also the robustness and accuracy of the DCC-NL ex post TE series by not over-
shooting too much during periods of financial turmoil but also not undershooting too 

EXHIBIT 10
Performance Measures for Various Estimators of the Long–Short GMV Portfolio with 10% TE constraint, in Percentage

NOTES: All numbers are based on 10,059 daily out-of-sample returns from February 7, 1983, until December 30, 2022.  
For any row, the best performer appears in boldface.

N = 100 N = 500 N = 1,000

GMV

GMV with 10% TE Constraint

GMV with 5% TE Constraint

GMV with 1% TE Constraint

SD
TE

SD
SD*
TE
MAD
Success

SD
SD*
TE
MAD
Success

SD
SD*
TE
MAD
Success

S

12.93
14.13

13.41
9.96
9.88
3.71

71.74

15.15
10.72
5.06
1.88

70.11

17.52
12.02
1.02
0.38

70.09

L

12.90
13.09

13.42
9.93
9.89
3.71

70.97

15.03
10.64

5.27
1.85

66.86

17.49
12.00

1.06
0.37

66.77

NL

12.78
13.83

13.35
9.91
9.78
3.76

73.16

15.17
10.71

5.01
1.89

70.69

17.52
12.02

1.01
0.38

70.84

DCC-NL

12.66
13.26

13.85
9.70
9.07
2.50

76.12

15.50
10.45

4.63
1.22

74.75

17.60
11.94

0.93
0.25

73.71

S

10.47
16.16

11.34
8.31
9.70
3.81

74.45

14.19
9.74
4.92
1.89

73.06

17.03
10.67

1.03
0.36

70.36

L

9.69
15.06

11.15
8.23

10.29
3.77

71.14

13.91
9.61
5.25
1.87

69.00

16.98
10.63

1.06
0.37

68.56

NL

Long–Short GMV Portfolio with TE Constraint

9.53
14.94

11.35
8.33
9.75
3.85

74.75

14.11
9.71
5.00
1.91

72.86

17.02
10.66

0.99
0.39

73.33

DCC-NL

9.11
13.75

12.39
8.15
8.69
2.85

80.29

14.60
9.55
4.58
1.43

76.90

17.11
10.58

0.91
0.29

77.11

S

12.94
19.13

11.01
7.30
9.56
3.85

75.18

13.86
9.51
5.23
1.86

67.94

16.89
10.96

1.17
0.35

58.01

L

8.59
15.58

10.84
7.96
9.98
3.73

72.32

13.75
9.29
5.18
1.85

69.03

16.85
10.91

1.06
0.37

68.39

NL

8.40
15.05

10.95
8.07
9.64
3.84

75.43

13.87
9.37
4.97
1.88

72.45

16.91
10.95

0.99
0.39

73.24

DCC-NL

7.26
14.13

12.03
7.85
8.77
2.98

79.40

14.16
9.20
4.68
1.49

75.24

16.94
10.84

0.95
0.30

74.14
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much during calmer periods. Therefore, the outperformance of DCC-NL over S is not 
restricted to certain periods but holds throughout. Exhibit 11, Panels D–F compare 
the distributions of the deviations of the monthly ex post TEs (TE constraint) by lining 
up the corresponding violin plots. The benefit of DCC-NL relative to S can clearly be 
seen because its distributions are more concentrated around zero, as well as the 
larger mass lies below zero, as that of S.

The long-only results are qualitatively similar and therefore not reported here 
to save space, but they are available upon request. In certain scenarios QIS 
(Ledoit and Wolf 2022b) or the linear shrinkage formula of De Nard (2022), which 
are both static estimators, can be the winners for some performance measures (by 
only a small margin though).

In sum, upgrading from the sample covariance matrix to a shrinkage estimator 
of the covariance matrix is clearly beneficial also in the case of benchmark-following 
or fund-mimicking portfolios with unknown benchmark weights. As expected, the 
TE numbers are (much) larger for unknown benchmark weights compared to known 

EXHIBIT 11
N = 500 Long–Short Minimum Variance Portfolio with Various Ex Ante TE Constraints, in Percentage
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benchmark weights because the benchmarks are now based on the M = 200 smallest 
(as well as ineligible) stocks only, so that in each scenario the eligible universe and 
the benchmark universe are disjoint.

Consequently, DCC-NL consistently and markedly outperforms the sample covari-
ance matrix, which allows active managers to implement their strategies more effec-
tively while controlling TE. For example, benchmarked managers often introduce a 
buffer on their ex ante TE estimation to control for in-sample optimism and prediction 
errors, especially when the TE constraints have to be fullfilled or are (legally) binding. 
Thanks to the improved accuracy of DCC-NL, potential buffers on TE constraints can 
be reduced or even removed: Reductions, or even removals, of such buffers allow 
active managers to be closer to their investment strategies of interest.

CONCLUSION

In this article, we have studied the benefit of using improved estimators of the 
covariance matrix in the context of TE management by putting ourselves in the shoes 
of a portfolio manager who is tied to a benchmark. Whereas such managers are 
all-too-often neglected in the academic literature, they form the majority in real life.

The passive managers among them face the seemingly trivial task of tracking 
an index, such as the S&P 500, Russell 2000, or MSCI ACWI. In practice, the task 
is not trivial because an index typically contains many stocks and some of them are 
difficult or expensive to trade; therefore, the task is to track the index as closely as 
possible using a subset of its constituents only. A more challenging case is to mimic 
a benchmark or fund with unknown weights, or even unknown or ineligible constit-
uents. The active managers among them develop their own strategies designed to 
have attractive risk–return properties but are not allowed/willing to deviate too much 
from a specified benchmark.

All managers, therefore, need an estimator of the covariance matrix of many 
(excess) returns at the portfolio-selection stage. We have demonstrated the benefit 
of shrinkage estimators to this end and can safely single out the dynamic DCC-NL 
model of Engle, Ledoit, and Wolf (2019) as the most convincing all-around performer. 
At any rate, the obvious message is that portfolio managers who aim to minimize 
“respectively control” TE (that is, passive "respectively active" managers tied to a 
benchmark) need to abandon the sample covariance matrix to avoid eventually facing 
questions on whether they have been legally derelict in their fiduciary duty to adhere 
to best practice for their investors.

APPENDIX A

MARKOWITZ PORTFOLIO WITH MOMENTUM SIGNAL

We now turn attention to a full Markowitz portfolio with a signal. By now research-
ers have established a large number of variables that can be used to construct a 
return-predictive signal. For simplicity and reproducibility, we use the well-known momen-
tum factor (or just momentum for short) of Jegadeesh and Titman (1993). For a given 
investment period k and a given stock, the momentum is the geometric average of the pre-
vious 252 returns on the stock but excluding the most recent 21 returns. In other words, 
one uses the geometric average over the previous year but excluding the previous month. 
Collecting the individual momentums of all the N, respectively M, stocks contained in the 
entire, respectively ineligible, universe yields the return-predictive signal, denoted by mt.
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Given the estimator of the covariance matrix of stock returns ̂Σr,t and the gross-exposure 
parameter γ, the Markowitz mean–variance-efficient portfolio based on a return predictive 
signal mt is formulated as

	 min
w

′w Σr,t w 	 (A-1)

	 subject to ′w mt = bt 	 (A-2)

	 ′w = 1, and 	 (A-3)

	 |w ′| ≤ γ 	 (A-4)

where bt is a selected target expected return and | ⋅ | returns the absolute value of all 
vector elements.

To be consistent among the discussed competitors, we use always S for Σ̂r,t
 to com-

pute the benchmark portfolio but note that DCC-NL outperforms also in this setting; see 
De Nard et al. (2022).

For the empirical analysis in this article, we set the target expected return bt equal 
to the expected return of the equally weighted portfolio among the top-quintile stocks 
(according to their momentums) and the gross-exposure parameter γ equal to 1.6. There-
fore, we focus on the so-called 130/30 long–short portfolio.

For more details about mean–variance portfolios with leverage constraint and the risk 
reduction as well as efficiency increase in large portfolios due to shrinkage estimators, 
see Zhao, Ledoit, and Jiang (2023).

APPENDIX B

PASSIVE PORTFOLIOS: UNKNOWN BENCHMARK WEIGHTS

Exhibit B1 presents the results on ex post TE, which can be summarized as follows:

§	For any scenario, as expected, TE decreases as the size of the eligible universe, 
!N, increases: A larger universe of eligible stocks makes it easier to track the 
benchmark.

§	Being able to short stocks is not necessarily beneficial. In particular, the results 
for S are uniformly worse for long–short compared to long only and sometimes 
by a pronounced margin. This is because of the larger estimation error of S as 
well as worse turnover and leverage numbers compared to the shrinkage estima-
tors. On the other hand, the shrinkage estimators enjoy a robustness property 
in this regard because for any given scenario the difference is generally small. 
On balance, NL is best in the long–short case whereas DCC-NL is best in the 
long-only case.

§	TE is generally best (that is, lowest) for the value-weighted benchmark, followed 
by the equally weighted benchmark, followed by the Markowitz benchmark.

§	With the single exception of !N = 100, all shrinkage estimators outperform S. The 
outperformance is statistically significant and economically meaningful.

§	As expected, the results are worse for unknown benchmark weights compared to 
known benchmark weights, though it should be kept in mind that the benchmarks 
now are based on the M = 200 smallest stocks only so that in each scenario the 
eligible universe and the benchmark universe are disjoint.

In sum, upgrading from S to a shrinkage estimator of the covariance matrix is clearly 
beneficial in terms of reducing ex post TE also when the benchmark weights are unknown, 
with the best choice being NL in the long–short case and DCC-NL in the long-only case.
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The remainder of this appendix reruns the remaining previous analyses for known bench-
mark weights but now for the case of unknown benchmark weights. Because detailed results 
can be found in the exhibits, we restrict ourselves to a brief executive summary in words.

Exhibit B2, Panel A demonstrates (again) that DCC-NL yields monthly ex post TEs 
that are uniformly below those based on S over time; Panel B demonstrates (again) that 
all shrinkage estimators yield monthly ex post TEs whose distribution lies well below that 
of the monthly ex post TEs based on S. These results are (again) only for the long–short 
portfolios based on !N = 800 eligible stocks tracking the value-weighted benchmark.

Exhibit B3 shows the optimism and accuracy of monthly ex ante TEs by comparing 
them to ex post TEs. First, as the eligible universe and the benchmark universe are dis-
joint, not only are the TE numbers higher, but also the optimism problem is larger and 
the accuracy is lower for the unknown benchmark weights setting. Second, again it is 
seen that, on balance, using S leads to the most optimistic and least accurate results, 

EXHIBIT B1
Annualized Ex Post TE Numbers for Minimum-TE Portfolios, in Percentage

NOTES: All numbers are based on 10,059 daily out-of-sample excess returns from February 7, 1983, until December 30, 2022.  
For any row, the lowest (and thus best) number appears in boldface, and significant outperformance over S is denoted by asterisks. 
*** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, and * denotes significance at the 0.1 level.

Value-Weighted Benchmark

Equally Weighted Benchmark

Markowitz Benchmark

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

N = 100
N = 500
N = 800

Long–Short

Ex Post TEs

S

9.11
6.46
5.95

9.14
6.49
5.97

13.03
11.88
13.79

L

9.01***
5.77***
4.39***

9.05***
5.80***
4.41***

12.87***
10.73***
10.31***

NL

9.01***
5.62***
4.20***

9.05***
5.66***
4.22***

12.89***
10.42***

9.72***

DCC-NL

9.29
5.82***
4.33***

9.33
5.86***
4.35***

12.97
10.75***
10.03***

Long-Only

Naïve

11.61
9.98
9.53

10.56
7.60
6.09

15.49
14.56
14.37

S

9.00
5.71
4.29

9.03
5.74
4.32

12.93
10.57

9.86

L

9.00
5.67***
4.28**

9.03
5.71***
4.30***

12.91
10.52***

9.83***

NL

8.98***
5.65***
4.25***

9.01***
5.68***
4.27***

12.89***
10.51***

9.82***

DCC-NL

9.02
5.60***
4.18***

9.06
5.64***
4.21***

12.63***
10.45***

9.77***

EXHIBIT B2
Long–Short Portfolios ( !N == 800) Tracking the Value-Weighted Benchmark, in Percentage

Panel B: Monthly Ex Post TE Numbers Distribution
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although now it is L instead of DCC-NL that yields the overall best results (according 
to all metrics). Note that also the turnover and gross leverage numbers for long–short 
portfolios are qualitatively similar to those of Exhibit 6 for known benchmark weights. As 
in the case of known benchmark weights seen previously, all the results are robust to 
shorter estimation window lengths.
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