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1 Introduction

In this paper, we show that climate policy can unlock large environmental gains from trade

by inducing countries to specialize according to their environmental comparative advantage.

The main idea is that global greenhouse gas emissions fall when countries specialize in

industries where they have relatively low emissions, just like global real incomes rise when

countries specialize in industries where they have relatively high productivity. While our

notion of environmental comparative advantage therefore builds directly on the classic idea

of economic comparative advantage, it has so far been largely absent from the trade and

climate change debate.

This matters, since our results provide a strong counterpoint to the widespread view

that international trade is an obstacle in the fight against climate change. While it is

true that international trade causes transport emissions, our analysis shows that it can also

be a powerful tool to reduce production emissions, which account for the lion’s share of

total emissions associated with traded goods. More broadly, it also offers a more inclusive

perspective on sustainable development by highlighting that countries do not need to sacrifice

the economic gains from trade in the name of climate stewardship but can pursue both

objectives concurrently.

We make this point by exploring the effects of a carbon tax in a multi-country, multi-

industry quantitative trade model with input-output linkages, calibrated to 64 regions and

45 industries spanning the world economy. Our benchmark scenario is a uniform carbon tax

of $100/tCO2eq on all goods in all countries, but our main result holds for a wide range

of carbon tax rates and coverages. In this paper, we do not model how greenhouse gas

emissions cause climate change, or how climate change affects economic activity. While

these are important considerations, they are not essential for measuring the environmental

gains from trade.1

1Well-known examples of integrated assessment models capturing these considerations include Nordhaus
(1993), Nordhaus (2018), Golosov et al. (2014), and Boyce (2018).
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Our main result is that the environmental gains from trade account for more than one-

third of the greenhouse gas emissions reductions brought about by the carbon tax. This

result holds for a wide range of carbon tax rates and coverages thus suggesting that trade is

a strong force multiplier for climate policy. Moreover, we find that increases in carbon tax

rates – even extreme ones up to $1,000/tCO2e - leave the volume of world trade relative to

world gross production largely unchanged. This further corroborates the point that trade is

part of the solution no matter how ambitious climate action becomes.

To isolate the environmental gains from trade, we decompose the greenhouse gas emis-

sions reductions brought about by the carbon tax into three effects: (i) a reduction in the

scale of global production (scale effect), (ii) a shift in economic activity towards greener

sectors (composition effect), and (iii) a shift in economic activity towards greener countries

(green sourcing effect). While the scale and composition effects also operate in a closed

economy, the green sourcing effect exploits a margin that is only available with international

trade and thus captures the environmental gains from trade. We hold emissions intensities

fixed in our analysis so there is no technique effect.2

To the best of our knowledge, we provide the first estimate of the environmental gains

from trade driven by environmental comparative advantage. We make this contribution

leveraging well-known methods at the intersection of international and environmental eco-

nomics. In particular, we use a standard quantitative trade model in the spirit of Caliendo

and Parro (2015) and employ a variation of the familiar decomposition of greenhouse gas

emissions changes into scale, composition, and technique effects dating back to Grossman

and Krueger (1991). Hence, the novelty of our paper does not lie in the tools we develop but

in the perspective we provide on the relationship between international trade and climate

change.

Our paper follows in the footsteps of the pioneering work by Shapiro (2016), who spear-

2We are measuring the static environmental gains from trade. There may be additional dynamic envi-
ronmental gains from trade, for example, if market size effects accelerate the green innovation spurred by
carbon taxes.
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headed the use of modern quantitative trade models in environmental economics. His main

result is that international trade brings economic gains and emissions costs relative to au-

tarky, with the economic gains far exceeding the emissions costs. We are approaching the

issue from a different angle, essentially simulating the first-best pattern of trade, once envi-

ronmental externalities are internalized by a carbon tax.

Our paper also has points of contact with the recent work by Farrokhi and Lashkaripour

(2021), who explore to what extent trade policy can help solve the free-rider problem in

international climate agreements. Their main finding is that a climate club could be highly

effective, whereas border carbon adjustments have minimal impact. As part of this exercise,

the authors also characterize optimal carbon taxes under various assumptions about inter-

national cooperation. In contrast, we do not derive optimal policy but simply examine the

implications of a range of exogenous carbon tax regimes on greenhouse gas emissions and

trade.

A closely related theme that has received much attention in the literature is carbon

leakage3. The concern is that unilateral carbon measures in relatively green countries can

lead to the relocation of emissions-intensive industries to relatively brown countries. The

green sourcing effect identified in this paper essentially reverses this type of carbon leakage.

However, it is important to keep in mind that a carbon tax induces specialization according to

environmental comparative advantage, meaning that the adjustments extend beyond simple

green sourcing in general equilibrium. One implication is that even the brownest country is

contributing to reducing greenhouse gas emissions by moving resources to its relatively low

emissions sectors.

The remainder of the paper is structured as follows. Section 2 sketches the model and

decomposition, Section 3 turns to the data and calibration, and Section 4 presents the results.

3See, for example, Felder and Rutherford (1993); Larch and Wanner (2017); Kortum and Weisbach (2021).
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2 Model

2.1 Setup

We work with a multi-country, multi-industry Armington (1969) model with input-output

linkages. It is now well understood that such a model has the same aggregate predictions as

the model of Caliendo and Parro (2015), which is based on the Ricardian model of Eaton

and Kortum (2002).

There are N countries indexed by i (for origin) and j (for destination) and S industries

indexed by s′ (for upstream) and s (for downstream). Each country produces a unique variety

within each industry and trade is subject to iceberg trade costs τis′j ≥ 1 with τis′i = 1 for

all i. Countries are endowed with an inelastic supply of workers Li who are internationally

immobile.

In our benchmark scenario, a uniform carbon tax is imposed on all goods in all countries.

It is levied in the country of (final or intermediate) consumption and redistributed lump-

sum to households in that country.4 For our calculations, we convert it into an ad valorem

tax teis′ using emissions intensities. In particular, we calculate teis′ = t ∗ eis′ , where t is the

uniform carbon tax imposed on a ton of emissions and eis′ are the emissions generated by

the production of $1 worth of industry s′ output in country i. To avoid double counting,

eis′ captures only the emissions directly caused by the production process (e.g. the chemical

reaction resulting in cement) but not the emissions caused indirectly by the use of inputs

(e.g. the electricity used to power the cement factory).

4Given that the carbon tax is imposed on all goods in all countries, it is largely irrelevant whether it
is imposed on consumers or producers. There are some differences in the cross-country allocation of tax
revenues but they have negligible effects on our results. We find it easier to illustrate the relative price
effects of the carbon tax with a consumption-based approach.
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2.2 Equilibrium

Consumption choices are made by representative households with Cobb-Douglas-CES pref-

erences

Uj =
∏
s′

(Us′j)
βs′j (1)

Us′j =

[∑
i

(ais′)
1/σs′ (qis′j)

(σs′−1)/σs′

]σs′/(σs′−1)

, (2)

where βs′j are expenditure shares, ais′ are demand shifters, σs′ are substitution elasticities,

and qis′j are the final consumption quantities of varieties differentiated by country of origin.

As a result, household final demand is given by

qis′j = ais′

[
pis′j

(
1 + teis′j

)]−σs′(
P c
s′j

)1−σs′
βs′jIj (3)

Ij = wjLj +Rj +Dj, (4)

where pis′j are delivered prices, P c
s′j are consumer price indices, wjLj is labor income, Rj

is tax revenue, and Dj is an exogenous transfer used to match aggregate trade deficits in

the data, which we keep constant in our counterfactuals. Notice that the carbon tax makes

browner varieties more expensive thus inducing households to make greener consumption

choices.

Firms produce these varieties under perfect competition from labor and intermediate

goods using Cobb-Douglas-CES technologies

qjs = Ajs

(
Ljs

γj,Ls

)γj,Ls ∏
s′

(
ms′js

γs′js

)γs′js

(5)

ms′js =

[∑
i

(bis′)
1/ηs′ (mis′js)

(ηs′−1)/ηs′

]ηs′/(ηs′−1)

, (6)

where Ajs are total factor productivities, γs′js are cost shares, bis′ are demand shifters, ηs′
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are substitution elasticities, and ms′js are the intermediate consumption quantities of the

same varieties also demanded by households. As a result, firm intermediate demand is given

by

mis′js = bis′s

[
pis′j

(
1 + teis′j

)]−ηs′(
P p
s′j

)1−ηs′
γs′jsEjs, (7)

where P p
s′j are producer price indices. Notice that the carbon tax makes browner varieties

more expensive thus inducing firms to make greener production choices.

We close the model by imposing labor and goods market clearing

∑
s

Ljs = Lj (8)

∑
s′

∑
j

pis′j

(
qis′j +

∑
s

mis′js

)
︸ ︷︷ ︸

exports of i

+Di =
∑
s′

∑
j

pjs′i

(
qjs′i +

∑
s

mjs′is

)
︸ ︷︷ ︸

imports of i

. (9)

To be clear, exports flow from upstream industries s′ in country i to final consumers and

downstream industries s in country j. Analogously, imports flow from upstream industries

s′ in countries j to final consumers and downstream industries s in country i. Di is therefore

equal to the trade deficit (or trade surplus if negative).

2.3 Decomposition

To help us understand the effect of carbon taxes on greenhouse gas (GHG) emissions, we de-

velop a simple decomposition in the spirit of the scale-composition-technique effect decompo-

sition familiar from the environmental economics literature. To this end, we define total trade

flows xis′j ≡ pis′j (qis′j +
∑

s mis′js) and write total emissions as GHG =
∑

i

∑
j

∑
s′ xis′jeis′ .

Totally differentiating this expression holding emissions intensities constant, we decompose
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the overall change in emissions into a scale, composition, and green sourcing effect:

d lnGHG = d lnx︸ ︷︷ ︸
scale effect

+
∑
s

ϵsd lnαs︸ ︷︷ ︸
composition effect

+
∑
i

∑
s

ϵisd lnαis︸ ︷︷ ︸
green sourcing effect

, (10)

where x is world expenditure, the α’s are expenditure shares and the ϵ’s are emissions shares.

Specifically, αs is the share of world expenditure flowing to industry s and αjs is the share

of world expenditure on industry s flowing to country j. ϵs is the contribution of industry s

to world emissions and ϵjs is the contribution of industry s in country j to world emissions.5

Applied to our model, equation (10) captures that carbon taxes reduce emissions for

three reasons. First, carbon taxes reduce aggregate expenditure by making all goods more

expensive - this is the “scale effect”.6 Second, carbon taxes reallocate aggregate expenditure

towards greener industries by making browner industries relatively more expensive - this

is the “composition effect”. Third, carbon taxes reallocate industry expenditure towards

greener countries by making goods produced in browner countries relatively more expensive

- this is the “green sourcing effect”. While the scale effect and the composition effect also

occur in a closed economy, the green sourcing effect is specific to international trade and

thus captures the environmental gains from trade.

Before we discuss why there is no technique effect in this decomposition, it is worth

recalling the intuition of a basic 2 × 2 Ricardian trade model to see how the environmen-

tal comparative advantage logic plays out. Imagine thus a simplified version of our model

with two countries, Green and Brown, and two industries, Green-Clean and Brown-Clean.

Suppose that Green has lower emissions intensities in both Green-Clean and Brown-Clean,

5This decomposition is only exact for infinitesimally small changes. In our application, we therefore break
any carbon tax change into a series of small changes, updating the expenditure and emissions shares in every
iteration.

6To be more precise, carbon taxes reduce aggregate economic activity by moving the world economy
away from the laissez-faire equilibrium. In a neoclassical trade model like ours, the laissez-faire equilibrium
maximizes aggregate output. This would differ in a trade model with climate damages, where the laissez-
faire equilibrium would be distorted. However, we will see that the scale effect is negligibly small in our
application, making such considerations unlikely to affect our main result.
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thus having an environmental absolute advantage. Additionally, suppose that Green’s emis-

sions intensity advantage is particularly pronounced in Green-Clean, thereby giving it an

environmental comparative advantage in this Green-Clean.

Consider now the effects of imposing a uniform carbon tax. Given that Green has an

environmental absolute advantage, the carbon tax makes Green more competitive in Green-

Clean and Brown-Clean relative to Brown. Moreover, given that Green has an environmental

comparative advantage in Green-Clean, this competitiveness gain is particularly pronounced

in Green-Clean. To restore Brown’s competitiveness in Brown-Clean and ensure labor market

clearing, Green’s wage rises relative to Brown’s thus neutralizing Green’s environmental

absolute advantage. The end result is specialization according to environmental comparative

advantage: Green in Green-Clean and Brown in Brown-Clean.

Our decomposition (10) does not include a technique effect because we hold emissions

intensities constant. This reflects our focus on measuring the static environmental gains

from trade and does not imply that dynamic environmental gains from trade are impossible.

For example, international trade might accelerate green innovation induced by carbon taxes

by allowing firms to leverage their innovations in larger markets. Additionally, in a static

model with firm heterogeneity, a technique effect could occur if international trade leads to

a reallocation of resources across firms with different emissions intensities. We leave these

potentially important extensions for future work.

3 Calibration

3.1 Methodology

To take the model to the data, we use the Dekle et al. (2007) “exact hat algebra”, which

has become standard in the literature. By expressing the equilibrium conditions in changes

relative to the baseline, we eliminate the need to estimate the preference shifters ais′ and bis′s,

the productivity shifters Ajs, and the iceberg trade costs τis′j. This approach also ensures
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that the model perfectly matches the global pattern of production and international trade

in the baseline scenario.

To solve for a counterfactual equilibrium given a schedule of carbon taxes, we reduce

the model to a parsimonious N × S system and solve it numerically using a nested fixed

point routine. To calibrate the model, we need the N ×N × S matrix of trade flows in final

goods, the N ×N × S × S matrix of trade flows in intermediate goods, the N × S vector of

greenhouse gas emissions, and estimates of the elasticities ηs′ and σs′ .
7

3.2 Data

Data on trade flows for both intermediate and final goods are sourced from the OECD Inter-

Country Input-Output (ICIO) tables (OECD, 2023). These tables cover the entire world

economy, broken down into 45 industries and 67 countries, including an aggregate Rest of

the World, from 1995 to 2018. We calibrate the model using the 2018 data, but we utilize

the entire dataset when estimating the key elasticities of the model, as explained below.

Data on greenhouse gas emissions in CO2 equivalents are constructed by combining three

different datasets: the OECD Carbon Dioxide Emissions Embodied in International Trade

dataset (TECO2) (OECD, 2021), the FAOSTAT Emissions Totals dataset (FAO, 2023), and

the European Commission’s Emissions Database for Global Atmospheric Research (EDGAR)

(European Commission, 2023). The TECO2 dataset provides CO2 emissions from fuel com-

bustion across the 45 industries and 67 countries included in the OECD ICIO tables.

To extend emissions coverage and include non-energy-related emissions, we incorporate

CO2, CH4, and N2O emissions from the remaining two datasets. Specifically, we use FAO-

STAT data for emissions from agriculture, forestry, and land use, and the EDGAR database

for emissions from industrial processes, product use, and fugitive emissions. Together, these

datasets cover approximately 93% of worldwide greenhouse gas emissions. More details on

how we combine these datasets are provided in Appendix A.

7Appendix B and C provide a full characterization of the equilibrium in changes and of our solving
algorithm.
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While our data thus provides a comprehensive coverage of world production, trade, and

trade-related emissions, it comes with two notable limitations. First, we can only calculate

emissions intensities based on trade values, even though a more realistic approach would

involve trade volumes. This limitation arises because the OECD’s ICIO tables only provide

trade values, and reliable price deflators at this level of aggregation are unavailable. Conse-

quently, in our counterfactual scenarios, changes in emissions reflect not only shifts in trade

volumes but also fluctuations in prices.

Second, we cannot differentiate emissions intensities by destination. For example, we are

limited to assuming that a ton of German steel has the same emissions intensity in Germany

as it has in the US. Notice that this is actually consistent with the iceberg formulation of

transport emissions implicit in our model. One ton of German steel has higher embodied

emissions in the US than in Germany since, say, 20% “melts away” in transit. However, this

also makes German steel 20% more expensive in the US so that the emissions intensity is

the same.

3.3 Estimation

Table 1: Elasticities Summary Statistics

N Mean SD Min Max

42 3.61 0.86 1.78 5.86

We estimate the elasticities of substitution using the standard methodology of Caliendo

and Parro (2015), assuming for simplicity that σs′ = ηs′s = ηs′ . This approach involves

using a fixed-effects model to identify the elasticities from the impact of import tariffs on

trade flows, utilizing all available years in our dataset. Elasticities that are negatively signed,

statistically insignificant, or unestimable due to insufficient tariff data (notably in the service

sectors) are replaced with the mean value. Table 1 provides the summary statistics, showing
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Figure 1: Aggregate effects of carbon taxes
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Note: The left panel shows the proportional reduction in global greenhouse gas emissions for varying levels

of carbon taxes. The right panel shows world trade as a share of gross production.

that our estimates fall within the usual range.8

4 Results

4.1 Aggregate effects of carbon taxes

Figure 1 summarizes the aggregate effects of carbon taxes, relative to a no-carbon-tax bench-

mark in 2018. The left panel shows the proportional reduction in global greenhouse gas

emissions for varying levels of carbon taxes. As one would expect, greenhouse gas emissions

are strongly decreasing in the carbon tax, with the global emissions reduction reaching 28%

for our benchmark carbon tax of $100/tCO2e. The right panel depicts world trade as a share

of gross production for varying levels of carbon taxes. Strikingly, the trade share does not

change much with carbon taxes, suggesting that trade is part of a sustainable economy no

matter how ambitious climate policies become.

8We have also experimented using the alternative methodology of Fontagné et al. (2022) and found that
our main results remain unchanged.
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Figure 2: Decomposition of emissions reductions
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Note: The left panel shows the proportional reduction in greenhouse gas emissions for varying levels of

carbon taxes decomposed into three effects. The right panel shows the contributions of each effect to the

overall emissions reduction for varying levels of carbon taxes.

4.2 Environmental gains from trade

Figure 2 decomposes the aggregate effects of carbon taxes into a scale effect, a composition

effect, and a green sourcing effect following decomposition (10). The left panel shows the

proportional reduction in greenhouse gas emissions for varying levels of carbon taxes de-

composed into these three effects. The right panel shows the contributions of each effect

to the overall emissions reduction for varying levels of carbon taxes. Recall that the green

sourcing effect captures the environmental gains from trade brought about by specialization

according to environmental comparative advantage.

The green sourcing effect accounts for more than one-third of the emissions reductions

brought about by the carbon tax. This is the main result of the paper, suggesting that

climate policies can unlock substantial environmental gains from trade. Specifically, the

scale effect accounts for 2.1%, the composition effect for 57.5%, and the green sourcing effect

for 40.4% of the overall emissions reduction on average. These shares remain relatively stable
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across the considered range of carbon tax rates.

4.3 Environmental comparative advantage

Figure 3 illustrates how the carbon tax reduces emissions by reallocating production across

countries in two selected sectors. The left circles indicate where output grows (in green) and

falls (in red), with the number in the blue circle representing the share of output being real-

located. The right circles display the associated emissions reductions (in red) and emissions

increases (in green), with the number in the blue circle showing the overall emissions reduc-

tion. To be clear, the output growth rates in the left circles are expressed in percentages of

baseline world output in the sector and sum to zero. The emissions growth rates in the right

circles are expressed in percentages of baseline world emissions in the sector and sum to the

negative number shown in blue.

The top two circles show the adjustment in the energy sector, highlighting that a cross-

country reallocation of 9.1% of sectoral output results in a 16.8% reduction in sectoral

emissions. The bottom two circles illustrate the adjustment in the agricultural sector,

demonstrating that a cross-country reallocation of 8.0% of sectoral output results in a 23.3%

reduction in sectoral emissions. This works because the output elasticity of emissions is

systematically larger in countries that lose market shares. For example, China’s loss of 2.5%

of world energy output leads to a 7.0% reduction in world energy emissions so that the

elasticity is 7.0/2.5 = 2.8. Conversely, France gains 0.67% of world energy output, leading

to a 0.08% increase in emissions, with an elasticity of 0.08/0.67 = 0.1. This is the essence of

specialization according to environmental comparative advantage.

4.4 Incomplete tax coverage

Figure 4 illustrates the emissions reductions resulting from a $100/tCO2e carbon tax rate

applied only in a subset of industries or countries. The left panel examines carbon taxation

schemes applying to all countries but only some industries, starting with the energy sector
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Figure 3: Environmental comparative advantage in selected sectors
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Note: This figure illustrates how the carbon tax reduces emissions by reallocating production across countries

in two selected sectors. The left circles indicate where output grows (in green) and falls (in red), with the

number in the blue circle representing the share of output being reallocated. The right circles display the

associated emissions reductions (in red) and emissions increases (in green), with the number in the blue

circle showing the overall emissions reduction.
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Figure 4: Incomplete tax coverage
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Note: This figure illustrates the emissions reductions resulting from a $100/tCO2e carbon tax rate applied

only in a subset of industries (left) or countries (right). Industries and countries are added cumulatively

from bottom to top.

only and then adding other industries cumulatively. The right panel explores carbon taxation

schemes applying to all industries but only some countries, starting with the EU and then

adding other countries cumulatively.

International trade remains a strong force multiplier for carbon taxes even with incom-

plete carbon tax coverage. Since the environmental gains from trade are brought about by

a reallocation of market shares from relatively brown countries to relatively green countries,

it is not surprising that a critical mass of countries is needed for the green sourcing effect

to account for a meaningful share of the overall emissions reductions. In contrast, a critical

mass of industries is not necessary for trade to play an important role.
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5 Conclusion

In this paper, we demonstrate that climate policy can unlock substantial environmental

gains from trade by encouraging countries to specialize according to their environmental

comparative advantage. We illustrate this point by examining the effects of a carbon tax

within a quantitative trade model. Our main finding is that the environmental gains from

trade account for over one-third of the total reduction in greenhouse gas emissions brought

about by the carbon tax. This result holds across a wide range of carbon tax rates and

coverages.

We identify two particularly promising avenues for future research. First, it would be

valuable to explore a version of the model with heterogeneous firms. We hypothesize that this

would reveal additional static environmental gains from trade, resulting from the reallocation

of resources from browner firms to lower-emission greener firms. Second, it would be inter-

esting to allow emissions intensities to respond endogenously to carbon taxes. We conjecture

that this would uncover additional dynamic environmental gains from trade, driven by the

diffusion of green technology or scale effects that make green innovation more profitable.
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A Data treatment

Aggregations

To avoid sparseness of the input-output table and zero gross outputs, we aggregate the

following countries:

• Luxembourg and Belgium: subsequently labeled BEL in all data
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• Hong-Kong and China: subsequently labeled CHN

• Malaysia and Singapore: subsequently labeled SGP

as well as the following sectors:

• ’Mining and quarrying, energy producing products’ [D05T06] with ’Mining support

service activities’ [D09]: subsequently labeled as [D05T06] (Mining, energy)

• ’Motor vehicles, trailers and semi-trailers’ [D29] with ’Other transport equipment’

[D30]: subsequently labeled [D29T30] (Transport equipment)

These aggregations leave us with a sample of 64 countries (incl. ROW aggregate) and 42

sectors from 1995 to 2018.

ICIO

The raw ICIO tables records negative values for some accounts of final consumption or value

added. As the model cannot accommodate these negative values, we redistribute the negative

parts in the table while respecting the following constraints:

• the sum of the columns and the sum of the rows must remain equal,

• the technical coefficients within the IO table (intermediate input spending over gross

output ratio, corresponding to the parameters γ in the model) must remain constant

equal to the raw ratios.

FAO

We keep only FAO Tier 1 emissions by subcategories belonging to the category ’Agricultural

Land’ with the exception of ’On-farm Energy Use’, since these emissions are already con-

tained in the TECO2 emission data.9 The remaining observations are then aggregated into

9The category ’Agricultural Land’ includes the following subcategories: ’Fires in humid tropical forests’,
’Fires in organic soils’, ’Net Forest conversion’, ’Drained organic soils’, ’Synthetic Fertilizers’, ’Crop Residues’,
’Manure left on Pasture’, ’Manure applied to Soils’, ’Manure Management’, ’Enteric Fermentation’, ’Savanna
fires’, ’Burning - Crop residues’, ’Rice Cultivation’, ’On-farm Energy Use’
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the 64 countries with the ROW aggregate and are assigned to the ’Agriculture’ sector.

EDGAR

We first combine different time series extracts of the EDGAR database, namely the ’CH4’,

’CO2 excl short-cycle org C’ and ’N2O’ data sheet by converting the emissions into CO2

equivalents according to the respective AR4 100-year GWP value.10 We then aggregate the

data into our 63 sample countries and create the ROW aggregate with the remaining coun-

tries. To assign the IPCC emission categories to our various sample sectors, we rely on the

exact definition of the IPCC emission category compared to the ISIC rev.4 codes comprised

in our sample sector definition.

For IPPC category ’industrial process and product use emissions’ (chapter 2), we apply

the following conversion:

IPCC category Name Sample sector

2.A Mineral Industry Non-metallic minerals
2.B Chemical Industry Chemicals
2.C Metal Industry Basic metals
2.E Electronics Industry Electronic
2.F Product Uses As Substitutes For Ozone Depleting Substances Energy

For the IPCC categories “fugitive emissions” (chapter 1.B) we proceed in two steps.

Based on the categories definitions we have a direct mapping for the subcategory ’Oil and

Natural Gas’ (1.B.2) assigned to the sample sector ’Mining, energy’. The subcategory ’Solid

Fuels’ (1.B.1) however matches with different sample sectors: ’Mining, energy’, ’Mining,

non-energy’, ’Wood’, and ’Coke, petroleum’. We therefore disaggregate the IPCC aggregate

“Solid fuelds” into the respective sample sectors by using as a disaggregation weights the

share of emissions from fuel burning of each sample sector in the total.11

10The AR4 100-year GWP values are 25 for CH4 and 298 for N2O.
11Note that we did not include the IPCC categories 2.D ’Non-Energy Products From Fuels and Solvent

Use’ and 2.G ’Other Product Manufacture and Use’ since a clean mapping from the IPCC categories to the
corresponding sample sectors is not as easily separable.
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B Model - Equilibrium in Changes

This section describes the model equilibrium in changes using Dekle et al. (2007)’s “exact

hat algebra”. This involves re-writing variables as linear changes from the baseline. In what

follows, a baseline version of a variable x is denoted by xB. The proportional change is then

given by x̃ = x/xB.

Following this procedure, changes in the demand for final goods, the demand for inputs,

price indexes, and ex-factory prices are given by:

q̃is′j = Ĩs′j[p̃is′(1 + teis′j)]
−σs′

c

P̃s′j

(σs′−1)

(11)

c

P̃s′j=

(∑
i

[p̃is′(1 + teis′j)]
(1−σs′ )

(
qBis′jp

B
is′j

IBs′j

)) 1
(1−σs′ )

(12)

m̃is′js = Ẽs′js[p̃is′(1 + teis′j)]
−ηs′s P̃s′js

(ηs′s−1)

(13)

P̃s′js=

(∑
i

[p̃is′j(1 + teis′j)]
(1−ηs′s)

(
mB

is′jp
B
is′js

EB
s′js

)) 1
(1−ηs′s)

(14)

p̃js = w̃
γj,Ls

j

∏
s′

P̃s′js

γs′js
(15)

Changes in the market clearing conditions are given by:

Ĩs′j =
∑
s

w̃jL̃js(w
B
j L

B
js) +

∑
i,s′,s

p̃is′m̃ijs′st
e
ijs′(p

B
is′jm

B
is′js) +DB

j (16)

Ẽjs =
∑
i

(
p̃jsq̃jsi(p

B
jsiq

B
jsi) +

∑
s′

p̃jsm̃jsis′(p
B
jsim

B
jsis′)

)
(17)

∑
s

Ẽjs

w̃j

LB
js = Lj (18)
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C Solving algorithm

In this section, we detail how we reduce the model in changes presented above to a N × S

system that we use to back out counterfactual results.

Equations (11) and (12) imply that :

q̃is′j = Ĩj q̃is′j° (19)

where q̃is′j° = [p̃is′(1 + teis′j)]
−σs′

c

P̃s′j

(σs′−1)

only depends on the change of prices and

the baseline. It is useful to note that this inverse is linear in any change of set of prices

: q̃is′j°(αp̃) = q̃is′j°(p̃)/α. This is the most general expression of the change of quantities

traded so that the condition of consumer spending is respected by construction because :∑
i,s′ p̃is′(1 + teis′j)q̃is′j°(pBis′jqBis′j) = IBj . The form of this expression represents that if the

income of the consumer increases (or decreases), he will proportionally increase his con-

sumption from every country/sector. q̃is′j° contains all the information of the reorganisation

of his consumption if his income didn’t change in the counterfactual world.

Similarly, for intermediates, equation (13) together with Ẽs′js = Ẽjs imply that :

m̃is′js = Ẽjsm̃is′js° (20)

where m̃is′js° = [p̃is′(1 + teis′j)]
−ηs′s P̃s′js

(ηs′s−1)

has the same properties as q̃is′j°. The con-

struction makes sure that the producer spending is respected.

Having the consumer and producer spending respected by construction, we need to com-

pute the consumer and producer revenue. We use equations (18) with Ẽjs = Ỹjs to compute

the wages change under a change of spending of the producer:
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w̃j =

∑
s ẼjsL

B
js

Lj

(21)

We have then made sure that the solution respects the labor market clearing condition

and the constitutive equation of production Ljs = γj,Ls
Yjs

wj
, and we can write the consumer

revenue and producer spending from the consumer and producer clearing equations :

ĨjI
B
j =

∑
s

ẼjsL
B
jsw

B
j +

∑
i,s′

Ĩj p̃is′t
e
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B
is′jq

B
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∑
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e
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B
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j

(22)
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B
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B
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We then use (22) in (23):
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B
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p̃js =
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Ẽjs′
LB
js′

Lj

)γj,Ls∏
s′

P̃s′js

γs′js
(25)

with the last equation expressing the cost of production from the solution of the cost mini-

mization of the production costs of the producer (15). We have thus reduced the equations

to a system of two non-linear equations (24) and (25) of the two fundamental hat quantities

(Ẽ, p̃). Since we have explicit expressions of the variables on the right hand side, we can

solve numerically this system with a nested fixed point routine.

The solution space of this system of equations is of dimension 1, any linear transformation
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α(Ẽsol, p̃sol) of a solution of the system is also solution. We need to add one numeraire

constraint to make the solution unique. Our benchmark results use the global average wage

as the numeraire.
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