
Improved Spatial Dependence-Robust Inference

via Pre-whitening

Timothy G. Conley, Morgan Kelly, and Damian Kozbur ∗

September 16, 2024

Preliminary

1. Introduction

There are many econometric applications in which observed variables exhibit

cross sectional dependence. Failure to account for this dependence when con-

ducting statistical inference may, and typically does, lead to misleading conclu-

sions. Econometric solutions to non-parametrically allow for general forms of

cross sectional dependence in either cross section or panel data using spatial

models have been around for decades.1 By non-parametric, we mean meth-

ods which allow the flexibility in modelling dependence to be informed by the

data. Operationally, non-parametric methods take as input some form of tuning

parameter choice which is a function of the data.

Early approaches like [Conley, 1999] use Heteroskedasticity and Autocovariance

(HAC) covariance estimators, analogous to those used in time series analysis

that involve a weighted average of sample covariances.2 To implement these

HAC estimators researchers must choose weights that determine which covari-

ances are included in the estimator. In applications where they can be applied,

sample splitting/large cluster methods like [Ibragimov and Müller, 2010] and

∗Conley gratefully acknowledges support from the Social Science and Humanities Research

Council of Canada. We thank Hans Martinez Torres for outstanding research assistance.
1At least since [Conley, 1996] and [Conley, 1999]
2See for time series [Bartlett, 1950], [Andrews, 1991].
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[Bester et al., 2011a] offer potential improvements upon HAC-based inference

but they still require a choice of clusters/groups. The most recent methods like

[Müller and Watson, 2022] and [Sun and Kim, 2015] with bandwidth calculated

using [Lazarus et al., 2018] offer further improvements when applicable but re-

quire a worst-case scenario assumption regarding covariance functions and an

assumption regarding the extent of spatial covariances.

The associated tuning parameter choice potentially complicates applying any

of these methods. Typically, this choice is relatively easy with modest levels of

spatial correlation but becomes difficult as the dependence in the data increases.

In this paper, we introduce a simple method to make it easier to choose tuning

parameters and apply these existing inference methods by reducing the spatial

dependence in the covariances that need to be estimated.

We illustrate our approach in a linear regression context for ease of exposition.

In a linear regression model we include a set of functions of locations as ad-

ditional regressors. We refer to these extra regressors as spatial basis terms.

These spatial basis terms have true coefficients that are zero but they have

small-sample correlations that in effect absorb some of the spatial correlation in

regression residuals and scores. This reduces the spatial correlations in scores

and makes inference easier. We refer to this reduction in spatial dependence

as pre-whitening, making scores closer to white noise. Of course, the cost to

including spatial basis terms in a regression is that it also reduces the regres-

sor variation that identifies the coefficient(s) of interest. The goal is to trade

off a small reduction in identifying variation for an appreciable improvement in

spatial dependence inference quality. Our method is not limited to linear regres-

sion, it can be easily applied other contexts by simply augmenting conditioning

information with spatial basis terms.

We present our method in a context with spatial data indexed on the plane

and presume that the researcher has access to a vector of coordinates for each

observation. Further we assume that there is a metric that characterizes depen-

dence in the data and they are mixing and obey a standard set of regularity

conditions so a law of large numbers and central limit theorem apply. Close ob-
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servations can be highly dependent but as distance grows observations approach

independence.

There are several ways to generate sensible basis functions which serve to help

with spatial pre-whitening. We choose to focus on B-splines as well as higher

dimensional basis functions derived either directly or from tensor products of B-

splines. One dimensional B-splines are piece-wise polynomials that are nonzero

only on a finite range. An order zero B-spline is a step function, and order one

B-spline is a piece-wise linear triangle, order two is a piece-wise parabola, etc.

B-spline approximations then consist of linear combinations of a collection of

these individual B-splines, suitably spread out.

We present a theorem giving conditions over which asymptotic coverage of HAC

confidence intervals approaches a nominal value, e.g. 95%. The theorem de-

fines an asymptotic frame over sequences of metric spaces that serve as spa-

tial indexing sets. The spaces/metrics are allowed to be non-Euclidean. We

also discuss extensions of our spatial basis approach to large cluster spatial

dependence inference methods like those of [Ibragimov and Müller, 2010] and

[Bester et al., 2011b]

A related contribution to ours is that in [Müller and Watson, 2024], who char-

acterize a class of spatial unit root processes indexed on subsets of a Euclidean

plane, demonstrate that classical t statistics diverge in a suitable sense. They

provide a spatial demeaning operation which improves confidence interval cover-

age distortion problems arising from behavior related to the spurious regression

phenomenon.

In Section 2 we present notation and our basic setup, followed by a formal

econometric analysis in Section 3. In Section 4 we present a small simulation

study that illustrates the inference problem we address and how our approach

is a promising solution. Future drafts of this paper will include a Section

5 which does two things. First it will examine Monte Carlo performance of

simple algorithms to implement the choice of spatial basis terms. We consider

using either a BIC penalty and a nearest neighbor correlation criteria for model
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selection. In addition, we will include Section 6 which will contain a Monte

Carlo evaluation of using a parametric approximating model to construct critical

values following [Cao et al., 2023].

2. Data and Estimation

Observed data is a collection of ordered pairs of random variables, (Yi, Xi) with

i in an indexing set S. The Xi ∈ Rp are regressors and Yi ∈ R are outcome

variables. The indexing set S is observed and has cardinality |S| = n. S is also

outfitted with a metric or distance measure d : S × S → [0,∞). d evaluated at

i and j is denoted dij The definition of d is extended to subsets A,B ⊆ S by

dAB = infi∈A,j∈B dij . We assume that the data are weakly dependent and that

observations i and j approach independence as dij grows large.

For ease of exposition, we present our method assuming both Xi and Yi are

mean zero and focus on estimation of the linear regression model:

Yi = X ′
iβ0 + εi.

The random variables εi are unobserved and β is identified through the usual

conditions that E[εiXi] = 0 and E[XiX
′
i] is full rank. With weakly dependent

data, Ordinary Least Squares (OLS) estimates of β0 are consistent.

Given that consistent estimates can be constructed, an accompanying problem

is constructing a 1− α level confidence set Ĉ for β0, that satisfies

Pr(Ĉ contains β0) ≥ 1− α− νn

where νn is a remainder which is small in that it can be bounded by a vanishing

function of n for a class of data generating processes which are delimited later.

Failure to account for dependence in the data across i may lead to substantial

distortion of coverage probability (i.e., Pr(Ĉ contains β0) may in practice be far

from 1− α.) Standard methods for constructing Ĉ in the context of the linear

model with sufficiently strongly mixing properties for observations across i, is to

estimate β̂ using least squares estimation, followed by standard error calculation
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using one of many adjustments for spatial dependence. [Conley, 1999] provides

one such example in which a spatial HAC adjustment is used. Subsequent

refinements are reviewed above.

We propose confidence interval procedure which is designed to work together

with previously designed spatially robust inferential procedures. Our proposal is

to augment the regressors Xi with additional regressors Gi generated from what

we term a spatial pre-whitening basis. A spatial pre-whitening basis is a set G of

functions g ∈ G of the spatial indexing set, each of the form g : S → [0, 1]. Then

Gi ∈ RG is defined with components [Gi]g = g(i). The main examples of spatial

pre-whitening bases that we discuss below are spatially localized B-splines.

Our procedure is defined as follows. To construct a confidence interval for a

component of β0, first estimate [β̂, γ̂] with OLS regression Yi on [Xi, Gi]. Sub-

sequently construct the usual confidence interval using spatial HAC estimation

with bandwidth h > 0 and kernel function k for the above regression. Let V̂(k,h)

be the corresponding estimate. For a component [β0]j of interest of β0, let qa

be the ath quantile of the standard Gaussian random variable (i.e., of N(0, 1)),

and set the total margin of error estimate m̂.e. = q1−α/2[V̂(k,h)]
−1/2
jj .

Ĉj =
[
β̂j − m̂.e. , β̂j + m̂.e.

]
.

More generally, confidence sets for functionals a(β0) may be constructed using

the delta method the usual way. Confidence ellipsoids covering β0 are also

constructed using the usual asymptotic Gaussian approximation. Note that

Ĉ = Ĉj × Rp\{j} covers all of β0 with the same probability as Ĉj covers [β0]j .

In the sections below, we discuss data-driven choices for pre-whitening basis G,
kernel k and bandwidth h.

3. Analysis

We characterize sets of regularity conditions via what we call an asymptotic
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frame. An asymptotic frame is captured by a pair

F = (F1, F2)

where

F1 = (ℓkern, ℓbasis) and

F2 = (Lmom, Lmix, Lcond, Lgrowth, Lbasis, Lkern)

are an ordered pair of vanishing sequences and an ordered tuple of positive

constants.

Each of the elements of F2 is a positive constant dominating measures of reg-

ularity of the data and functions used in estimation. They restrict moments,

rank, mixing, metric regularity, the kernel, and pre-whitening basis, G. Simi-

larly, both elements of F1 are vanishing sequences of positive real numbers. The

parameters in F1 help characterize the spline basis that we use to augment our

regression as well as the size of the HAC bandwidth h relative to the sample size

n. We demonstrate properties of Ĉ defined above relative to a given asymptotic

frame.

For any asymptotic frame F , let PF be a statistical model, which is a collec-

tion of random vectors of the form (Yi, Xi)i∈S , and each of which satisfies the

following conditions.

1. (Linearity.) Yi = Xiβ0 + εi with E[εi|Xj ] = 0 for i, j ∈ S,

2. (Moments.) |Yi|+ ∥Xi∥2 ≤ Lmom for i ∈ S,

3. (Mixing.) For ZA, ZB depending on {(Yi, Xi)}i∈A, {(Yi, Xi)}i∈B , A,B ⊆
S, Z ′

B an independent-of-ZA copy of ZB and v ∈ [0, 1] depending on two

arguments, |E[(v(ZA, ZB)]− E[v(ZA, Z
′
B)]| ≤ 2 exp(−dAB/Lmix).

4. (Conditioning.) For R ⊆ S, λmin(|R|−1
∑

i∈R E[XiX
′
i]) ≥ 1/Lcond and

λmin(|R|−1E[
(∑

i∈R εiXi

) (∑
i∈R εiXi

)′
]) ≥ 1/Lcond.

5. (Metric Regularity.) dij ≥ 1 for i, j ∈ S and |B2r(i)| ≤ Lgrowth|Br(i)| for
i ∈ S, r > 0 where Br(i) is the ball of radius r about i.
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In addition to assumptions on the data generating process, to each asymptotic

frame F , assign a set of estimation tuning parameters in TF consisting of a kernel

function k(d), a positive real bandwidth h > 0, and an association S 7→ G which

assigns to every finite metric space S a collection functions on G, which is called

a pre-whitening basis, and g ∈ G are of the form g : S → [0, 1]. Let g̃ be the

residual from the linear projection g on span(G \ {g}). Estimation parameters

in TF satisfy the following conditions.

6. (Kernel Regularity.) k(0) = 1, k(x) = 0 for x ≥ 1 and k is relative

to Lgrowth in that |1 − K(d)| ≤ Lkernx
Lgrowth . Also, 1 ≤ (ℓkern)nh and

h ≤ (ℓkern)nn.

7. (Basis Regularity.) For g ∈ G, diam(supp(g))2 < (ℓbasis)nh/6 and 1 ≤
(ℓbasis)n|supp(g)| ≤ (ℓbasis)nLbasis|{i ∈ S : |g̃(i)| > 1/Lbasis}|. For i ∈ S,

|{g ∈ G : i ∈ supp(g)}| ≤ Lbasis. For i ∈ S and g ∈ G, |g̃(i)| ≤ Lbasis.

In the above definition, Condition 1 defines the linear model. Condition 2 states

bounds on observable random variables. Condition 3 is a non-degeneracy as-

sumptions on the Xi. Condition 4 restricts the growth rate of cardinalities of

balls within S. Non-Euclidean metrics are allowed but the growth rate of the

number of elements within balls with respect to radius being characterized by

bounded doubling as measured by Lgrowth is a characteristic that Euclidean

spaces do also have.3 If S is part of a sequence of cubes in an integer lattice,

then Lgrowth may be taken to be two raised to a power equal to the dimension

of the lattice. Condition 6 restricts attention to g which have suitably bounded

support. This condition models spline-like dictionaries (sets of approximating

functions). Finally, Condition 7 imposes standard regularity on the kernel func-

tion and bandwidth. A key part of Condition 7 is that h, the HAC bandwidth,

must be longer than diam(supp(g)). The reason for this is that, projecting Xi

data onto spline functions implies nonzero correlations between nearby projec-

tion residuals. The HAC bandwidth needs to account for this. Finally, Condi-

tion 7 condition that bounds the number of g supporting any i. Such a condition

3By Assoud’s theorem [Assoud, 1977], a regularized version of the metric given by S
^

=

(S, d1/2) admits a bi-Lipshitz embedding into a Euclidean space, where the dimension and

bi-Lipshitz constant only depend on the doubling constant, here Lgrowth.

7



holds, for example, in tensor products of B-splines on lattices. For instance, for

second order shape preserving B-splines on the interval [0, 1], at most 3 spline

terms have support over any x ∈ [0, 1].

There are two main technical hurdles that our analysis needs to handle. First,

the pre-whitening regressors are non-stationary (their support is localized), and

second, their number may be moderately large (not bounded by an absolute

constant, but small relative to n). As a result, we design the definition of an

asymptotic frame so that the handling of these technical problems must feature

in the proof of Theorem 1 below.

Theorem 1. For any frame F , and data generating process in PF and estima-

tion tuning parameters in TF there is a sequence ν which depends only on F

which satisfies limn→∞ νn = 0 and

Pr(β0 ∈ Ĉ) ≥ 1− α− νn.

Theorem 1 states that under the statistical model described above, our pre-

whitening procedure enjoys an asymptotic coverage of 1−α, up to a remainder

term νn which vanishes under n → ∞. At the same time, the usual spatial HAC

as in [Conley, 1996] also achieves asymptotically 1 − α coverage, again up to a

vanishing remainder term. In fact, this can be seen either by referencing the

arguments in [Conley, 1996] or by applying Theorem 1 using an empty set of g.

There are potentially several choices for pre-whitening dictionaries G. A good

choice of G could simultaneously improve coverage probability and reduce the

length of the confidence interval. For instance, under the conditions for Theorem

1, HAC estimation without pre-whitening will also have asymptically correct

coverage.

The proof of the Theorem develops properties of S to derive law of large numbers

and central limit theorem -type bounds for spatial data. Central limit theorems

have been developed for dependent data, e.g., dating back to [Stein, 1972] or for

spatially indexed data more recently in [Jenish and Prucha, 2009]. The bounds
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we develop require much stronger moment conditions but have the advantage

that they depend on S in an explicit way and only through F .

The results in Theorem 1 extend to confidence sets constructed using large clus-

ter methods like [Ibragimov and Müller, 2010] and [Bester et al., 2011b]. These

methods rely on an approximation that holds for a small (fixed) number of large

clusters. These key aspects of this approximation are that within cluster aver-

ages are approximately Gaussian and independent of each other. [Cao et al., 2023]

demonstrate that a k-medoids clustering algorithm can be used to construct a

small set of clusters with large interiors relative to their boundaries that will

have these two properties. The mixing properties demonstrated in the proof

of Theorem 1 for residuals from projections on our spatial basis terms will

hold within-cluster for a small set of large clusters. This, along with moment

conditions implies that within-cluster averages are approximately Gaussian and

independent of each other. Thus application of [Ibragimov and Müller, 2010] in-

ference is immediate and if the homogeneity restrictions in [Bester et al., 2011b]

hold, this method can also be applied.

Proof of Theorem 1. Theorem 1 is proven for a scalar β0, p = 1. The case p > 1

is analogous, noting that p is implicitly restricted by (Lmom, Lcond).

Let ℓ = max((ℓkern)n, (ℓbasis)n). Let L = 2max(F2)
8.

All log operations are base 2.

Lemma 1. For T ⊆ S, x ≥ 1 and ∆ = {i ∈ T 2 : di1i2 ≤ x}, |∆| ≤ |T |Llog x+2.

Proof of Lemma 1. For i ∈ T there is the sequence of bounds |Bx(i)| ≤
Lgrowth|Bx/2(i)| ≤ L2

growth|Bx/4(i)| ≤ ... ≤ L
⌈log x⌉+1
growth |{i}|, where ⌈x⌉ denotes

least integer ≥ x. Note |{i}| = 1 and ⌈log x⌉+ 1 ≤ log x+ 2. Lemma 1 follows

with |∆| = | ∪i∈T (Bx(i) ∩ T )| ≤ |T |Llog x+2
growth ≤ |T |Llog x+2.

A law of large numbers is helpful. For T ⊆ S and x ≥ 1 define

f1(T, x, ν) = 4|T |−1Llog x+4 + 8L2 exp(−(x− ν)/L).
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Lemma 2. Let Wi be random variables at i ∈ T ⊆ S with var(Wi) ≤ 2L2 and

|corr(Wi,Wj)| ≤ 2 exp(−(dij − ν)/L). Let c > 0, x ≥ 1. Then

Pr
(
|T |−1

∣∣∣∑
i∈T

Wi − E[Wi]
∣∣∣ > c

)
≤ c−2f1(T, x, ν).

Proof of Lemma 2. By Lemma 1, |∆| ≤ |T |Llog x+2. Then by partition-

ing the following sum, E[(|T |−1(
∑

i∈T Wi − E[Wi])
2] = |T |−2E[

∑
i∈∆(Wi1 −

E[Wi1 ])(Wi2−E[Wi2 ])+
∑

i∈T 2\∆(Wi1−E[Wi1 ])(Wi2−E[Wi2 ])≤ |T |−2(|∆|(2L)2+
|T |2(2L)22 exp(−(x− ν)/L)). Markov’s inequality gives the lemma.

Note here that for ZA, ZB and Z ′
B as defined in the mixing condition in the intro-

duction, because |corr| ≤ 1, it follows that |corr(ZA, ZB)| = |corr(ZA, ZB)|−0 =

|corr(ZA, ZB)| − |corr(ZA, Z
′
B)| ≤ exp(−dAB/Lmix).

Next are properties of ξ̂, η̂ and ζ̂, which are defined as least squares coefficients

Xi, εi and Yi on Gi. Denote X̃i = Xi −Giξ̂, ε̃i = εi −Giη̂ and Ỹi = Yi −Giζ̂.

Lemma 3. For every g ∈ G, there is a set Kg with diam(Kg) ≤ ℓh such that

ξ̂g, η̂ and ζ̂g depend only on Xi and Yi for i ∈ Kg . In addition, X̃i, ε̃i and Ỹi

depend only on {(Xi, Yi)}i∈B2ℓh(i).

Proof of Lemma 3. ξ̂g may be found by applying the Frisch Waugh Theorem.

Then the least squares solution is ξ̂g =
(∑

i∈G̃ g̃(i)2
)−1 ∑

i∈G̃ Xig̃(i). g̃ can

also be defined using exclusively the k ∈ G with common points of support

with g given by Kg = supp(g) ∪
⋃

k:supp(k)∩supp(g)̸=∅ supp(k) and ξ̂g depends

only on Xi for i ∈ Kg. As supp(g) ⊆ Bℓh/6(ig) for some ig ∈ S, and as

diam(supp(k)) ≤ 2ℓh/6, then Kg ⊆ Bℓh(ig) and by Lemma 1, |Kg| ≤ Llog ℓh+2.

The same holds for η̂ and ζ̂.

Lemma 4 For random variables ZA, ZB which depend only on {(Ỹi, X̃i)}i∈A

and {(Ỹi, X̃i)}i∈B , for A,B ⊆ S, Z ′
B an independent-of-ZA copy of ZB and

v ∈ [0, 1] depending on two arguments,

|E[(v(ZA, ZB)]− E[v(ZA, Z
′
B)]| ≤ 2 exp(−(dAB − 4ℓh)/Lmix).
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Proof of Lemma 4 Events depending on ZA can be defined using {(Yi, Xi)}i∈A2ℓh

where A2ℓh is the 2ℓh enlargement of A given by {i ∈ S : diA ≤ 2ℓh}. The same

is true for ZB . Then apply the mixing condition from the body of the paper

and note that dA2ℓhB2ℓh ≥ dAB − 4ℓh.

Lemma 5. Let x, y ≥ 1. Define subsets of S4:

A = {i ∈ S4 : di1i2 ≤ y and di3,i4 ≤ y},

C1 = {i ∈ A : diam({i1, i2, i3, i4}) ≤ 3x},

C2 = {i ∈ A \ C1 : dπi1,{πi2,πi3,πi4} ≥ x for some permutation π},

C3 = {i ∈ A \ (C1 ∪ C2) : d{πi1,πi2},{πi3,πi4} ≥ x for some permutation π}.

Then C1 ∪ C2 ∪ C3 = A and

|C1| ≤ nL3 log 3x+6 and |C2|+ |C3| ≤ |A| ≤ n2L2 log y+4.

Proof of Lemma 5. To show the first statement suppose i ∈ A, i /∈ C1 ∪ C2.

There must be π such that dπi1πi3 > 3x. As i /∈ C2, both Br(πi1) and Br(πi3)

must each contain a remaining component of i, which may be taken πi2 and πi4

respectively. By triangle inequality dπi2πi4 > x as well as d{πi1,πi2}{πi3,πi4} >

r. So i ∈ C3. Next bound the cardinalities of A,C1. Let A1/2 = {i ∈ S2 :

i2 ∈ By(i1)}. Then |A1/2| ≤ nmaxi∈S |By(i)|. As in Lemma 1, |By(i)| ≤
Llog y+2. Then A = A1/2 × A1/2 gives |A| ≤ |A1/2|2. Similarly, |C1| is bounded
analogously. Finally, by inclusion, |C2|+ |C3| ≤ |A|, and the lemma is proven.

Let f2(R, x) = L8 exp(−(x/3− 2ℓh)/L) + 4!|R|−2L2 log x+12

Lemma 6 Let zi be mean 0 random variables with E[z4i ] ≤ L, let R ⊆ S and

let W = |R|−1
∑

i∈R zi. Let x ≥ 1. Then E[W 4] ≤ f2(R, x).

Proof of Lemma 6. Let x ≥ 1 and letA◦ = {i ∈ R4 : no permutation of i is in A }
where A is the set defined in Lemma 5 using y = x. If i ∈ A◦ then there is a per-

mutation of i such that dπi1,{πi2,πi3,πi4} ≥ x/3. To see this, note either di1i2 ≥ x

or di3i4 ≥ x. If the first, then by also either di1i3 ≥ x or di2i4 ≥ x, either

di1{i2,i3} ≥ x or di2,{i1,i4} ≥ x. In the first of these cases, either di1i4 ≥ x/3, in
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which the desired permutation is the identity, or di1i4 ≤ x/3 and so di2i3 ≥ x. By

triangle inequality, one of i2 or i3 must have distance ≥ x/3 from the remaining

elements of {i1, i2, i3, i4}. Then maxi∈A◦ E[zi1zi2zi3zi4 ] ≤ L exp(−(x/3−ℓh)/L).

Simplifying and aggregating gives the proof.

Lemma 7. For g ∈ G, E[ξ̂4g ] ≤ L4f2(supp(g̃), x). Additionally, E[(G′
iξ̂)

4] ≤
L7 maxg∈G f2(supp(g̃), x). Finally, E[X̃

4
i ] ≤ 4L7(1 + maxg∈G f2(supp(g̃), x)).

Proof of Lemma 7. Apply Lemma 6 to ξ̂g making sure to account for the least

squares solution denominator and to lower bound using the dictionary regu-

larity condition. Also, E[(G′
iξ̂)

4] = E[(
∑

g:supp(g)∋i g(i)ξ̂g)
4] ≤ |{g : supp(g) ∋

i}|2
∑

g:supp(g)∋i g(i)
4E[ξ̂4g ] ≤ L7 maxg∈G f2(supp(g̃), x). Finally, X̃i = Xi −Giξ̂

so E[X̃4
i ] ≤ 4(L4 +maxg∈G L7f2(supp(g̃), x)).

Next is a law of large numbers for X̃2
i .

Lemma 8. For x ≥ 1 and c > 0,

Pr(|n−1
∑
i∈S

X̃2
i − E[X2

i ]| ≥ c+ L7 max
g∈G

f2(supp(g̃), x)
1/2) ≤ 8c−2f1(S, x, 4ℓh).

Proof of Lemma 8. By Lemma 2, for x ≥ 1, Pr(|n−1
∑

i∈S X2
i −E[n−1

∑
i∈S X2

i ]| ≥
c/2) ≤ 4c−2f1(S, x, 0). By least squares optimality,

∑
i∈S XiX̃i = 0. Lemma

2 also applies to Pr(n−1
∑

i∈S(Giξ̂)
2 − (L7 maxg∈G f2(supp(g̃), x))

1/2 ≥ c/2) ≤
4c−2f1(S, x, 4ℓh). Combining and simplifying gives the lemma.

Also needed is a central limit theorem for X̃iεi, which is next. Let S^ ⊆ E

be the image of a bi-Lipshitz Euclidean embedding ι to a Euclidean with bi-

Lipschitz constant and dimension depending only on L, which exists by Assoud’s

theorem; see description in previous section. The proof of the following lemma

constructs a function

f3(S) with lim
|S|→∞

f3(S)

which depends only on S and F and depends on S only through |S|.
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Lemma 9. Let Ξ =
∑

i∈S X̃iεi. Let σ
2 = var(Ξ). Let t ∈ R. Then

Pr(σ−1Ξ ≤ t)− Pr(N(0, 1) ≤ t) ≤ f3(S).

Proof of Lemma 9. Let 0 < a < 1 and Q0 = [0,m]dim(ιS) and U0 = Q0 \ [0, (1−
a)m]dim(ιS). Let U = U0 + (mZ)dim(ιS). Then by the pigeonhole principle

there is w ∈ {0, 1, ...,m}dim(ιS) such that |(w + U) ∩ ιS^| ≤ n1/L̄L̄ where L̄

may depend on L as well as dim(ιS) and the bi-Lipschitz constant of ι and

a. Then there is a collection R of |R| = m disjoint subsets such that for

R,R′ ∈ R, dRR′ ≥ am and |S \ ∪R∈RR| ≤ L̄n1/L̄ and for which m ≥ n1/L̄/L̄.

By taking unions of R,R′ ∈ R if necessary, all R may be taken to have |R|/L ≤
|R′| ≤ L|R|. For R ∈ R let WR =

∑
i∈R X̄iεi. Equate Ξ =

∑
R∈R WR +

r for a remainder r. Let W ′
R be independent copies of WR. Order R ∈ R

arbitrarily with R1, ..., Rm. Then let Ξ0 = Ξ − r and Ξl = Ξl−1 −WRl
+W ′

Rl
.

Then Ξm, by the Berry-Esseen central limit theorem, satisfies Pr(Ξm ≤ t) −
Pr(N(0, 1) ≤ t) ≤ m−1/2 maxR∈R E[|WR|3] maxR∈R E[W 2

R]
−3/2. To bound 3rd

moments of sums of zi, refer to Lemma 4 above. Then E[|WR|3] ≤ E[|WB |4]3/4 ≤
maxR∈R,x≥1(|R|4L8 exp(−(x/3 − 2ℓh)/L) + 4!|R|2L2 log x+4L8)3/4. Conversely,

E[W 2
R] is lowerbounded by 1/L using the conditioning regularity conditions.

Finally, |Pr(Ξl ≤ t)−Pr(Ξl−1 ≤ t)| ≤ 2 exp(am−4ℓh)/L). Summing over l and

optimizing over a, x and accounting for r provides for the existence of f3(S).

Let f4(x) = n−1L3 log 3h+6L8 + L2 log x+43L9 exp(−(x− 4ℓh)/L).

Lemma 10. For any x ≥ 1 and c > 0, Pr(|ΩK
0 − E[ΩK

0 ]| ≥ c) ≤ c−2f4(x).

Proof of Lemma 10. Define A,C1, C2, C3 as in Lemma 5 and specialize to y = h.

Let zi = εiX̃i. Then E[(ΩK
0 − E[ΩK

0 ])
2] expands to

E
[ 1

n2

∑
i∈S4

Ki1i2Ki3i4(zi1zi2 − E[zi1zi2 ])(zi3zi4 − E[zi3zi4 ])
]

=
1

n2

∑
i∈A

Ki1i2Ki3i4

(
E[zi1zi2zi3zi4 ]− E[zi1zi2 ]E[zi3zi4 ]

)
.

Let Mj = maxi∈Cj
Ki1i2Ki3i4 |E[zi1zi2zi3zi4 ] − E[zπi1zπi2 ]E[zπi3zπi4 ]|, j ≤ 3.

By 2maxi∈C1 Ki1i2Ki3i4E[|zi1zi2zi3zi4 |] ≤ L, M1 ≤ L. Next decompose M2 ≤

13



M2a+M2b withM2a = maxi∈C2 Ki1i2Ki3i4 |E[zi1zi2zi3zi4 ]−E[zπi1 ]E[zπi2zπi3zπi4 ]|,
and M2b = maxi∈C2

Ki1i2Ki3i4 |E[zπi1 ]E[zπi2zπi3zπi4 ] − E[zi1zi2 ]E[zi3zi4 ]|. As

dBD(i1),BD(i2)∪BD(i3)∪BD(i4) ≥ r, applying the mixing from Lemma 6 gives

M2a ≤ L exp(−(x − 4ℓh)/L). In addition, E[zπi1 ] = 0 and either the bound

|E[zi1zi2 ]| = |E[zi1zi2 ] − E[zi1 ]E[zi2 ]| ≤ L4 · L exp(−(x − 4ℓh)/L) holds or the

same bound for (i3, i4) holds. Together, these give M2b ≤ 2L exp(−(r−4hℓ)/L).

For M3, if π ∈ ⟨{(1 2), (3 4)}⟩, then |E[zi1zi2zi3zi4 ] − E[zi1zi2 ]E[zi3 , zi4 ]| =

|E[zi1zi2zi3zi4 ] − E[zπi1zπi2 ]E[zπi3 , zπi4 ]| ≤ L exp(−(x − 4ℓh)/L). If not, then

either di1i2 ≥ x ≥ h or di3i4 ≥ x ≥ h and therefore Ki1i2 = 0 or Ki3i4 = 0.

Then M3 ≤ L exp(−(x− 4ℓh)/L).

From the bounds on M1,M2,M3, |A|, |C1|, and that |C2|, |C3| ≤ |A|,

E[(Ω̄K

0 − E[Ω̄K

0 ])
2] ≤ 1

n2
|C1|M1 +

1

n2
|A|M2 +

1

n2
|A|M3

≤ 1

n2

(
nL3 log 3x+6L8 + n2L2 log h+43L9 exp(−(x− 4ℓh)/L)

)
Using Markov’s inequality and simplifying gives the lemma.

Next let δβ = β0 − β̂. Denote ES = n−1
∑

i1∈S and EK
S =

∑
i2∈S Ki1i2 . Then

Ω̂− ΩK

0 = ESE
K
S X̄i1(εi1 +Xi1δβ −Gi1 γ̂)X̄i2(εi2 +Xi2δβ −Gi2 γ̂)

− ESE
K
S X̄i1εi1X̄i2εi2 .

For a parameter u ∈ R define

δ1 = ESE
K
S X̃i1Xi1X̃i2Xi2u

2, δ2 = −2ESE
K
S X̃i1Gi1 γ̂X̃i2Xi2u,

δ3 = ESE
K
S X̃i1G

′
i1 γ̂X̃i2G

′
i2 γ̂, δ4 = 2ESE

K
S X̃i1εi1X̃i2Xi2u,

δ5 = 2ESE
K
S X̃i1εi1X̃i2G

′
i2 γ̂.

Under the special case u = δβ , the decomposition Ω̂−ΩK
0 = δ1 + ...+ δ5 holds.

Let

f5(x) = 4L6(1 + Lmax
g∈G

f2(supp(g̃), x)L
log h+2)f1(S, x, 4ℓh+ 2h)

+n3L32 exp(−(x− 4ℓh)/L) + L5Llog x+2 max
g∈G

f2(supp(g̃), x).

14



Lemma 11. For j = 1, ..., 5, x ≥ 1 and |u| ≤ 1,

Pr(δj ≥ c ∩ δ2β ≤ u2) ≤ c−2uf5(x) + Pr(δ2β ≤ u2).

Proof of Lemma 11. Using the 4th moment bound of Lemma 3 with Lemma 2,

Pr(δj ≥ c) ≤ uc−24L6(1 + Lmax
g∈G

f2(supp(g̃), x)L
log h+2)f1(S, x, 4ℓh+ 2h).

For δ5, note γ̂g = (
∑

i∈Kg
g̃(i)2)−1

∑
i∈Kg

g̃(i)Yi. Let Dg be the denominator

and Wi1 =
∑

i2∈Bh(i1)
Ki1i2X̃i1εi1X̃i2G

′
i2
γ̂ so δ5 = n−1

∑
i1∈S Wi1 and

E[Wi1 ] = E

 ∑
i2∈Bh(i1)

Ki1i2X̄i1εi1X̃i2

∑
g∈G

g(i2)γ̂g



= E

 ∑
i2∈Bh(i1)

Ki1i2X̄i1εi1X̃i2

∑
g∈G

g(i2)D
−1
g

 ∑
i∈Bx(i1)

g̃(i)Yi +
∑

i∈Kg\Bx(i1)

g̃(i)Yi

 .

For i ∈ Kg\Bx(i), note that the above expectation is ≤ L22 exp(−(x−4ℓh)/L)×
(|{g : g(i2) ̸= 0}|×|Kg|×|Bh(i1)|) while the contribution of the i ∈ Bx(i) terms

is limited to |{g : g(i2) ̸= 0}| × |Bx(i)| × L4/Dg adding to a total bound of

≤ n3L32 exp(−(x− 4ℓh)/L) + L5Llog x+2 max
g∈G

f2(supp(g̃), x).

For δ3, note that γ̂ = ξ̂δβ + η̂. Decompose

δ3 = ESE
K
S X̃i1G

′
i1 η̂X̃i2G

′
i2 γ̂ + ESE

K
S X̃i1G

′
i1 γ̂X̃i2G

′
i2 ξ̂δβ .

Formally replacing u for δβ in the right hand term allows proceeding exactly as

for δ2 to calculate a bound. The left hand term is bounded exactly like δ3.

The Lemma holds after simplifying.

Let f6(x) = Llog x+xh−1L+4f3(S, x) + n2L exp(−(x− 4ℓh)/L).

Lemma 12. |E[Ω̄0]− E[Ω̄K
0 ]| ≤ f6(x).
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Proof of Lemma 12. Use T = S and ∆ defined with x ≥ 1 as in Lemma 1. Then

|∆| ≤ nLlog x+2
growth and for i ∈ ∆, using the smoothness assumption, |1−Ki1i2 | ≤

Lkern(xh
−1)Lgrowth . Note that |∆|×|1−Ki1i2 | ≤ nLkernL

2
growthL

log x+xh−1 logLgrowth

growth .

E[ΩK
0 ]− E[Ω0] = n−1

∑
i∈S2

E[(Ki1i2 − 1)X̃i1εi1X̃i2εi2 ]

=
∑

R∈{∆,S2\∆}

n−1
∑
i∈R

E[(Ki1i2 − 1)X̃i1εi1X̃i2εi2 ].

Each sum above is bounded as in the previous lemmas.

Theorem 1 now follows by choosing x to be an appropriately intermediate se-

quence depending on F and combining the probability bounds of the above

lemmas. QED.

4. Simulation Study

This Section provides simulation results that illustrate the nature of our infer-

ence problem and how our proposed method will improve inference.

Our simulations here use a set of n = 500 uniformly distributed locations on

a unit square for location data. These locations are drawn once and used for

all subsequent simulations. We consider a regression of Yi on Xi where both

processes have the same distribution and are independent of each other. Both

variables have the same mixture distribution that combines idiosyncratic noise

with a spatially correlated component resulting in a covariance matrix that is

a linear combination of an identity matrix and a non-diagonal matrix Σ. So we

generate variables Xi with:

Xi ∼ N(0, 1), cov(Xi, Xj) = (1− ρ) + ρΣij

Where Σ has variances of one and off-diagonals (i, j) given by exp(−dEuc
ij /θ)

with dEuc
ij being the Euclidean distance between locations i and j. Yi have the

same DGP as Xi and they are independent of each other.
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Table 1 presents results where Σ has parameter θ =
√
2/10. To get better

understand level of spatial correlation implied by this value of θ, consider the

implied ratio of the variance of the sample mean of the elements of a N(0,Σ)

vector relative to the analog for an N(0, I) vector. A θ =
√
2/10 implies a

sample mean variance that is approximately 45 times greater than if the DGP

were N(0, I). If the same number of observations were generated from a discrete

time series AR1 model, this level of dependence would correspond to an AR1

with slope of approximately .96. Thus, varying the parameter ρ from zero to one

results in a wide variety of dependence levels for Xi and Yi. Furthermore, this

type of DGP presents a challenge for HAC estimators even with smaller levels

of ρ since it displays non-trivial correlations for relatively large (compared to

our unit square sample region) distances, even when the implied variance of the

mean is moderate. To capture enough terms to do well in terms of bias kernel

bandwidths/cutoffs need to be large enough that they have enough noise to

potentially undermine the quality of distribution approximations which do not

account for noise in variance estimators (and hence do not account for noise in

the denominator of t-statistics).

Entries in Table 1 are rejection frequencies for t-tests under the true null hy-

pothesis of zero slope in a regression of Yi on Xi. The first panel presents

results with no spline terms and different bandwidths using a Gaussian kernel,

N(0, σ2I). 4 The bandwidth is described by headings .05,.10, .15 which give

the value of2σ for each kernel. The second panel uses the same HAC estimator

but adds an 8× 8 tensor product of triangular B-splines to the regression.5

Rows in Table 1 present differing values of ρ, starting from ρ = 0 when both Xi

and Yi are white noise. Subsequent rows present alternative mixture propor-

tions. To illustrate the amount of correlation in both Xi and Yi as ρ increases,

the second column labeled ‘corr’ reports the correlation between pairs of obser-

4We highly recommend using a positive semi-definite kernel function k(x). For larger

numbers of spline terms, non-PSD kernels can yield negative variance estimates frequently

enough to be an issue.
5In each coordinate dimension the interior splines are spaced to be shape preserving and

a ‘half-triangle’ is used at each edge of the coordinates’ support, see Figure A.1. The tensor

product is then formed as all cross-products of these splines in each dimension.
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vations at a distance of .10. It is important to note that spatial correlations

that would be small in a familiar time series setting can be very substantial

in a spatial setting where there are many neighbors at even small distances.

Small pairwise correlations can add up to very substantial variation in sample

means. As mentioned above, as ρ approaches one the variance of sample means

is similar to its analog for a highly serially correlated AR1 process.

The No Splines panel illustrates the HAC difficulties that concern us. Ap-

preciable size distortions are are apparent for ρ values of .2 and above. Size

distortions become very severe as ρ approaches one. Increasing kernel band-

width/cutoff can help improve size distortions but this alone cannot eliminate

distortions because increasing cutoffs while improving bias comes at a cost of

increasing noise in variance estimates undermining the quality of used in the

typical spatial HAC [Conley, 1999] variance approximation used here.

The ’Triangle Splines’ panel presents t-test results for regressions that have been

augmented with an 8 by 8 tensor product of the triangle (piece-wise linear) B-

splines illustrated in Figure 1. Addition of these B-spline terms can be seen to

dramatically improve rejection frequencies, even for the higher values of ρ that

generate data with extremely high levels of spatial correlation. This illustrates

the potential for our method to drastically improve the size performance of these

HAC methods. The sensitivity of rejection frequencies to bandwidth choice is

also greatly reduced. With our method, HAC can work better and be easier to

implement.

Table 2 presents average confidence interval lengths for our three HAC band-

widths and HR for regressions that include our 8 by 8 set of spline basis terms.

The format of rows displaying results for differing values of ρ is analogous to

Table 1. Entries are averages across simulations of nominal 95% confidence

intervals.

The HR confidence intervals have average length about .19. HAC confidence

interval lengths for smaller values of ρ are also about .19 and the slowly increase

as ρ increases until about .20 at ρ = .8. HAC Coverage probabilities remain
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No Splines Triangle Splines

HAC 2σ HAC 2σ

ρ Corr .05 .10 .15 HR .05 .10 .15 HR

0.0 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.1 0.05 0.07 0.07 0.07 0.08 0.05 0.05 0.05 0.06

0.2 0.10 0.13 0.12 0.11 0.14 0.05 0.05 0.05 0.06

0.3 0.15 0.16 0.13 0.12 0.18 0.04 0.04 0.05 0.04

0.4 0.20 0.24 0.19 0.16 0.27 0.06 0.05 0.06 0.06

0.5 0.25 0.26 0.21 0.16 0.32 0.06 0.06 0.06 0.06

0.6 0.30 0.30 0.22 0.17 0.37 0.06 0.06 0.06 0.07

0.7 0.35 0.37 0.28 0.22 0.48 0.07 0.07 0.07 0.08

0.8 0.39 0.39 0.28 0.23 0.52 0.09 0.07 0.07 0.09

0.9 0.44 0.43 0.31 0.24 0.57 0.09 0.08 0.07 0.11

1.0 0.49 0.42 0.30 0.22 0.59 0.13 0.11 0.10 0.18

Table 1: Rejection frequencies testing the true null hypothesis of zero slope with

nominal 5% t-tests for different levels of spatial correlation (ρ). HAC esimates

use Gaussian kernels with 2σ = .05, .10, .15. Right panel uses tensor product of 8

triangle splines illustrated in Figure 1. Column labled ‘Corr’ displays correlation

of points at distance of .1. 1000 simulations.

19



HAC Bwidth 2σ

ρ Corr .05 .10 .15 HR

0.0 0.00 0.19 0.19 0.19 0.19

0.1 0.05 0.19 0.19 0.19 0.19

0.2 0.10 0.19 0.19 0.19 0.19

0.3 0.15 0.19 0.19 0.19 0.19

0.4 0.20 0.19 0.19 0.19 0.19

0.5 0.25 0.19 0.19 0.19 0.19

0.6 0.30 0.19 0.19 0.19 0.19

0.7 0.35 0.19 0.19 0.20 0.19

0.8 0.39 0.20 0.20 0.20 0.19

0.9 0.44 0.20 0.21 0.22 0.19

1.0 0.49 0.22 0.23 0.24 0.19

Table 2: Confidence Interval length of different HAC variance estimators with

an 8x8 tensor of triangular B-splines. 1000 simulations.
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Figure 1: The figure illustrates our set of eight triangle splines in each individual

coordinate dimension. Each is zero for all coordinates outside the base of its

triangle. Our tensor spline is comprised of all products of the eight vertical and

eight horizontal coordinate splines.

fairly accurate for ρ between 0 and .8 without a large increase in their average

length. For example, with a bandwidth of 2σ = .1 there is at most a 2%

size distortion, nominal 95% intervals cover at 93%. With our approach these

intervals are both close to nominal coverage and remain short enough to be

scientifically useful. Even with the two most extreme correlation levels ρ = .9, 1

in the Table, the intervals do not explode in length with averages of .20 to .24

across bandwidths. This paired with size distortions of at most 8% and only 5%

with the largest bandwidth imply these intervals perform well even with very,

very hign levels of spatial dependence.

Figure 2 presents five sub-graphs illustrating the performance of our spatial basis

pre-whitening approach. These figures display results from 1000 simulations

of the mixture process described above for ρ = .8. In each simulation, 500

observations of Xi and Yi are generated and an OLS regression of Yi on Xi and

a spatial basis G is conducted for a variety of specifications of G. The various G
are all constructed based upon and 8 by 8 tensor product of triangle B-splines.

First the 64 principal components (PCs) of this tensor product are computed.
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Then choices of G are taken as the first PC, the first two PCs, first three PCs,

and so on until all 64 PCs are used. The horizontal axis in each subgraphs

indicates how many PCs were used, thus reading the graphs from left to right

illustrates how results change as the number of PCs is increased.

These sub-graphs simply present averages across simulations of characteristics

of a set of fixed models. The next Section will investigate the performance of

model selection algorithms that may choose different G across simulations and

thereby improve inference procedures.

The sub-graph labeled ‘HAC 2σ = .10 Reject’ presents rejection frequencies for

a set of nominal 5% t-tests of the true null hypothesis of zero slope using a

Gaussian kernel HAC estimator with two standard deviation ‘bandwidth’ equal

to .10. As the number of PCs increase, the rejection frequencies generally decline

and approach 7% when all 64 PCs are included in G. Comparing these rejection

frequencies to the 28% rejections reported in Table 1 for the corresponding HAC

estimator without a spatial basis reveals a very substantial improvement in size

as the number of PCs is increased.

The sub-graph labeled ‘Avg. CI’ presents the average 95% Confidence Interval

length across simulations. As the number of terms in G grows, initially these

average confidence intervals shrink in length even as their coverage properties

improve. Eventually, as the number of PCs climbs above 50 the average CI

length begins to rise slowly. When all PCs are used it is approximately 3%

larger than it’s minimum length. This is in line with the anticipated effects of

increasing the number of terms in the spatial basis G. Adding terms will reduce

spatial correlation in residuals which will tend to lower the variance of the β̂

estimator but it will also remove some of the identifying variation in X which

acts to increase the variance of β̂. It appears that the first effect dominates up

to about 40-50 PCs and after that the latter dominates.

The sub-graph labeled ‘HR Reject’ displays rejection frequencies for heteroskedas-

ticity robust standard errors, with no spatial dependence correction. For small

numbers of PCs there are unsurprisingly very large size distortions. However,
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Figure 2: The horizontal axis indexes the number of principal components from

an 8 by 8 tensor product of triangle B-splines used in the spatial basis, G. The

DGP uses ρ = .8.

as the number of PCs approaches 64 these rejection frequencies approach about

9%, the spatial basis drastically reduces the spatial dependence in scores.

The second row of sub-graphs illustrate potential model selection criteria, Bayesian

Information Criteria (BIC) and nearest neighbour correlations in residuals, la-

beled ‘BIC’ and ‘NN Corr’ respectively. In interpreting the BIC sub-graph recall

that averages across simulations for a given number of PCs are displayed, not

the results of a search for minimum BIC within each simulation. This graph still

illustrates a tendency for BIC to be lower with intermediate numbers of PCs

and then rise as the number of PCs approach 64. Nearest neighbor correlations

in contrast have a tendency to decline as the number of PCs increases. There-

fore, we anticipate that choice of the components of G with differ across criteria

based upon these two criteria. We examine two candidate G choice criteria in

the following Section.

5. Pre-whitening Basis Selection
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When this Section is completed, it will examine potential methods for choosing

G when the data has a two-dimensional index and the functions used to construct

G are triangle B-splines. We investigate using either BIC or an average nearest

neighbor correlation in residuals as our model selection criteria. We examine

two candidate sets of components for G: sets of tensor products and sets of

principal components of tensor products.

1. Alternate Sets of Full Tensors The first method is to construct a set of

candidate Gs with each being a tensor product of triangle B-splines in each

dimension. We then select from among these candidate full tensor products

either via a BIC penalty or the one with nearest neighbor correlation nearest to

zero. In our simulations, we consider tensor products of 4,5,6,7,8,9,10 triangle

B-splines, thus resulting in a range of 16 to 100 terms in G.

2. Principal Components of Tensors This method is to first construct a tensor

products of B-splines in each dimension, G0, and calculate the principal compo-

nents (PCs) of G0 to form G. For each tensor we consider candidate G formed

by the first PC, the first two PCs, and so on until the full set of PCs. In our

simulations we examine tensor products of 4 to 10 triangle B-splines in each

dimension to form the set G0. Our model selection is across combinations of

tensor dimension and number of PCs used. Again we evaluate performance

using both BIC and nearest neighbor residual correlation criteria.
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